
IDEAL: Interactive Design Environment

for Agent system with Learning mechanism

Takahiro Uchiya1 Syo Itazuro1 Ichi Takumi1 Tetsuo Kinoshita2

 1 Nagoya Institute of Technology 2 Tohoku University
1 Gokiso-chou, Syowa-ku, Nagoya, 466-8555 JAPAN,
2 2-1-1 Katahira, Aoba-ku, Sendai, 980-8577 JAPAN,

t-uchiya@nitech.ac.jp itazuro@uchiya.nitech.ac.jp

takumi@nitech.ac.jp kino@riec.tohoku.ac.jp

Abstract
The agent-oriented computing is a technique for

generating the agent who operates autonomously

according to the behavior knowledge. Moreover, agent

can have the characteristic called "Learning” skill. More

efficient operation of agents can be expected by realizing

"Learning" skill. In this research, our aim is to support

agent designer who designs and develops the intelligent

agent system equipped with “Learning” skill. We propose

interactive design environment for agent system with

learning mechanism using repository-based agent

framework called DASH framework. Proposed framework

enables agent designer to design and implement the

learning agents without highly expertise, therefore we can

reduce the designer's burden. In this paper, we explain

the DASH framework, Q-learning, Profit Sharing and

proposed design environment. Moreover we show the

effectiveness of the proposal method through the some

experiments.

1. INTRODUCTION
In recent years, the network service develops greatly

along with the rapid spread of the internet, and the

importance of the network service in the society where we

are surrounded has risen. User's needs are diversified and

change frequently based on the appearance of new service

and the update of existing service. Therefore, the necessity

of the flexible system that performs automatically has

risen. Nowadays, some researchers are focusing on the

agent-oriented software computing as a means to achieve

the flexible system.

The agent-oriented computing is a technique for

generating the agents who operate autonomously by

adding the function to the object to change own parameter

and procedure responding to the environment. Moreover,

agents can study the best action from the result of a past

action. These characteristic is called "Learning” skill.

More efficient operation of agents can be expected by

realizing "Learning" skill.

In this research, we focus on the development of

intelligent agent system. Our aim is to support agent

designer who designs and develops the agent system

equipped with “Learning” skill. We propose interactive

design environment for agent system with learning

mechanism using repository-based agent framework called

DASH framework. Proposed framework enables agent

designer to design and implement the learning agents

without highly expertise, therefore we can dramatically

reduce the designer's burden.

In this paper, we firstly explain DASH framework [1],

Q-learning [2][3] for single agent’s learning and Profit

Sharing (PS) [4] for multiagent learning as the assumption

knowledge. Next, we explain the design environment

which provides some functions to develop the learning

agents. Finally, we verify the effectiveness of the proposal

method through the some experiments.

2. DASH FRAMEWORK
In this research, DASH (Distributed Agent System

based on Hybrid architecture) framework that is one of the

agent frameworks is used. The DASH agent is a rule-

based agent because it has some behavior rules of the if-

then type defined by the agent designer. Each agent holds

the knowledge in the form of “fact” and “rule”. A rule is

represented in the following form.

(rule Rule-name Condition-part (If-part)

 --> Action-part (Then-part))

It behaves based on the domain knowledge-base that

determines appropriate agent behavior (Fig. 1).

The inference mechanism consists of the inference

engine, the working memory (WM), and the rule set.

The DASH agent operates as follows.

(P1) The inference engine that controls the operation

knowledge searches for the rule that matches to the

content referring to WM.

(P2) The matched rule is executed.

(P3) It returns to one when the content of WM is updated

by executing the selected rule.

Fig.1: Inference mechanism of DASH agent

3. Q-LEARNING

3.1 Outline of Q-Learning
We use Q-Learning method for realizing intelligent

single agent. Q-Learning [2][3] is a typical technique used

in the reinforced learning field. Reinforcement learning is

a technique to give agents the evaluation of the result of

the action that the agent took. The agent gradually learns

the best action to maximize this evaluation.

Q-Learning has shown that a sufficient number of trials

in Markov decision processes engender an optimal

solution. In this research, because of the simplification of

the settings, we assume that the DASH agent is a single

agent with a Markov property. Therefore, it is possible to

realize highly reliable learning of agent behavior.

3.2 Process of learning
In Q-Learning, an agent learns by updating the priority

of an agent's respective rules based on the result of the

action. The flow of concrete learning is shown below.

1. The agent observes the existing state (or environment),

and searches for the rule that matches it. The definition

of the state indicates the state of WM by the agent in

the DASH framework.

2. When two or more matched rules exist, one is selected

from them based on the agent's action selection

technique.

3. The rule that is selected is executed.

4. The rule priority is updated from the execution result

according to the update formula.

5. Check whether the agent's operation is done or not.

When the agent's operation continues, it returns to 1.

3.3 Action selection technique
Reinforcement learning has no necessity for devising an

action selection technique when aiming only at learning.

Learning will be complete if all rules are executed many

times so that learning can advance through trial-and-error.

Therefore, it need only have selected the rule at random.

However, the cases in which learning and system

operation are requested simultaneously are actually the

most common. For that case, it is necessary to devise the

action selection technique to execute the high priority rule.

The ε-greedy method and the soft max method, etc. are

known as a typical action selection technique.

The ε-greedy method is a technique for the selection of

the rule that the priority is the maximum by the probability

1-ε, and selects the rule at random by probability ε.

The soft max method is a technique for calculation of

the selection probability of each rule according to the ratio

of the priority of the rule, and selects the action based on

the probability.

3.4 Update formula
3.4.1 Outlines of update

In Q-Learning, the rule priority has been updated using

the following update formula.

),(max),()1(),(

)(
asQrasQasQ

sAa

In the update formula, Q(s,a) shows the priority of the

rule that takes action a in the state s, and Q'(s',a') shows

the priority of the rule that takes action a' in the transition

state s'. Moreover, r shows the reward obtained using the

transition from s to s', and A(s') shows the available action

set in the state s'.

α is the learning rate for which the parameter range is

0<α<1.

γ is the discount rate for which the parameter range is

0<γ<1.

Priority is updated every time in the state transition, and

the agent has been updating the priority of the rule based

on reward r and the value of high priority rule in the state

s' expressed as),(max
)(

asQ
sAa

.

3.4.2 Learning rate and discount rate

The learning rate is a parameter representing the

balance of priority whether we regard the original priority

value as important or regard the newly obtained result

such as available rule set as important when the priority of

the rule is updated. The update formula shows that when α

approaches 0, we regard the original priority value as

important. Oppositely, when α approaches 1, we regard

the newly obtained result as important. It is generally true

that the learning rate is set to 0.1.

The discount rate is a parameter showing how

importantly we regard the reward obtained in the future.

Although reward r was obtained using the transition from

state s to s', no complete guarantee exists of obtaining the

best result from future action because it has not executed

state s' yet. Therefore, it is necessary to discount the

priority of executable rules in state s' to some degree. The

update formula shows that when γ approaches 0, we

disregard the future reward. When γ approaches 1, we

regard the future award as important. It is generally true

that the discount rate is set to 0.9–0.99.

4. Profit Sharing
4.1 Outline of Profit Sharing

We use Profit Sharing (PS) method for realizing

intelligent multi-agent system. PS is known as one of the

typical technique in the reinforcement learning field. The

reinforcement learning is a technique to give agent the

evaluation of the result of the action that the agent took.

The agent gradually learns the best action to maximize

this evaluation.

PS does not guarantee the optimal solution, however PS

is suitable for multiagent reinforcement learning [4].

4.2 Process of learning
In the PS, agent learns by updating priority of rule in

the environment at that time based on the result of the

action. The flow of concrete learning is shown below.

1. The agent observes the existing state (or environment),

and searches for the rule that matches to it. The

definition of the state indicates the state of WM by the

agent in the DASH framework.

2. When two or more matched rules exist, one is selected

from them based on agent's action selection technique.

3. The selected rule is executed, and memorized as

“episode-rule” by the agent.

4. Check whether the agent has transferred to the goal

state or not. If the agent has not, returns to one.

5. Priorities of all episode-rule are updated from the

execution result according to the update formula.

6. Check whether the agent's operation is done or not.

When the agent's operation continues, returns to one.

4.3 Action selection technique
Reinforcement learning has no necessity for devising an

action selection technique when aiming only at learning.

Learning will be complete if all rules are executed many

times so that learning can advance through trial-and-error.

Therefore, it need only have selected the rule at random.

However, the cases in which learning and system

operation are requested simultaneously are actually the

most common. For that case, it is necessary to devise the

action selection technique to execute the high priority rule.

The ε-greedy method and the soft max method, etc. are

known as a typical action selection technique.

The ε-greedy method is a technique for the selection of

the rule that priority is the maximum by the probability 1-

ε, and selects the rule at random by the probability ε.

The soft max method is a technique for the calculation

of the selection probability of each rule according to the

ratio of the priority of the rule, and selects the action

based on the probability.

4.4 Update formula
4.4.1 Outlines of update

In the PS, the rule priority has been updated by using

the following update formula.

1,0

,),()1(),(

episodet

trasQasQ tttt

In the update formula, Q(st,at) shows the priority of the

rule in the environment at that time that takes action a in

the state s. Moreover, r(t) shows the reward function

obtained by the transition from s to s'.

α is the learning rate that parameter range is 0<α<1.

Priorities of all episode-rule are updated when the agent

transfers to the goal state, and the agent has been updating

the priority of the rule based on the reward function r(t).
4.4.2 Learning rate

The learning rate is a parameter representing the

balance of priority whether we regard the original priority

value as important or regard the newly obtained result

such as available rule set as important when the priority of

the rule is updated. The update formula shows that when α

approaches 0, we regard the original priority value as

important. Oppositely, when α approaches 1, we regard

the newly obtained result as important. It is generally true

that the learning rate is set to 0.1.

5. PROPOSAL OF INTERACTIVE

DESIGN ENVIRONMENT OF AGENT

SYSTEM WITH LEARNING

MECHANISM

5.1 IDEA
 The Interactive Design Environment of Agent system

(IDEA)[5] provides an interactive design environment for

agent system designers. The following four mechanisms

are introduced into IDEA to support agent design.

(M1) Mechanism of agent search support

This mechanism’s has the search condition input area

for seeking agents from the repository, the search result

display area, and the preview window of the agent

knowledge.

(M2) Mechanism of agent programming support

This mechanism has an agent-programming editor

based on a rule-based knowledge representation of the

DASH framework. Using this editor, the designer can

describe and test the agent programs.

(M3) Mechanism of agent simulation support

This mechanism has some interactive simulation

functions to analyze agent’s behavior, such as ‘virtual

distributed environment’, ‘exchange messages between

designer and agents’, ‘dynamic knowledge modification’,

and ‘message log analyzer’. Using these functions, the

designer can monitor and control the behavior of agents in

an interactive manner during the testing and debugging of

agents.

 (M4) Mechanism of agent registration support

This mechanism provides an interface to store the

completed agent system to the repository.

5.2 Introduction of learning mechanism
In this research we newly introduce the learning

mechanism of intelligent agents and integrate it into IDEA.

The new design environment is called IDEAL

(Interactive Design Environment for Agent system with

Learning mechanism) which helps agent designer to

design and implement the Q-Learning or PS based

learning agents (Fig. 2). Then we focus on the (M5)

learning mechanism. This mechanism has following

functions.

5.3 Functions of learning mechanism
5.3.1 Automatic learning function

The rule priority is automatically updated by using the

Q-Learning scheme or PS scheme. The automatic learning

mechanism is newly introduced as a mechanism to update

priority, and it operates in cooperation with the inference

mechanism built into existing DASH framework. The

automatic learning mechanism is composed by the action

selection engine and the learning engine.

・Action selection engine

This engine selects one action. The ε-greedy method

and the soft max method are implemented as an action

selection technique, and agent designer chooses one

method when they start the learning agent.

・Learning engine

By using the update formula, this engine updates the

priority of the executed rule that the action selection

engine selected.

5.3.2 Preservation and reference function of learning

data

After the learning process proceeds to some degree, the

rule name and the priority of each rule are preserved with

the file of Comma Separated Value as learning data. This

file is called a learning data file. When the same agent

works again, agent's operation begins after reading the

learning data file and setting the priority of each rule.

Therefore, it is possible to interrupt or restart the

learning act. Moreover, we have a future plan to enable

new agent designer to use the learning result of other users.

5.3.3 Automatic drawing in graph and preservation

function
To visually confirm the appearance that the agent's

operation advances efficiently, an automatic drawing is

performed as the graph of learning process. We assume

that one trial is from the initial state to the target state, and

the number of the execution of the rule of every one trial

is displayed automatically by the graph form. Moreover,

to confirm the past learning process, the function to

preserve the graph data as the DAT file is provided.

Fig.2: Overview of Interactive Design Environment of Agent system

with Learning mechanism (IDEAL).

Fig.3: Flow of operation

5.4 Flow of operation
This mechanism operates as follows (Fig. 3).

(P1) Reference of the content of WM

(P2) Transmission of the available rule set to the Action

Selection Engine

(P3) Selection of the rule in consideration of learning data

(P4) Transmission of the selected rule to the Inference

Engine

(P5) Execution of the rule

(P6) Update of the content of WM

(P7) Update of the priority in leaning data

Fig. 4: Maze problem.

6. EXPERIMENT
6.1 Experiment of Q-learning
6.1.1 Experiment 1: Confirmation of the

operation

[Outlines]
We created the following sample agent called

"Meiro.dash". Meiro.dash is an agent that solves the maze

problem portrayed in Fig. 4. The agent only has

information about the room that can be moved from each

room. It searches for the shortest route from start (S) to

goal (G).

We confirmed that Q-Learning was performed

appropriately by setting the following parameters.

・Learning rate: 0.1

・Discount rate: 0.9

Moreover, we confirmed the operation of the automatic

graph description function. We observed the change of the

rule execution frequency to reach the target goal on 100

times with two cases. One used the ε-greedy method. The

other used the soft max method.

[Results and consideration]

As results of experiments, we obtained two graphs

using the automatic graph description function. Fig. 5

shows the result obtained using the ε-greedy method; Fig.

6 shows the result obtained using the soft max method. A

horizontal axis shows the trial frequency (Number of

Trials) and the vertical axis shows the movement

frequency (Number of Episodes). In each case, we

confirmed that the movement frequency settled gradually

to the optimal value. Therefore, we were convinced that

appropriate learning was performed correctly.

Fig. 5: Result obtained from the ε-greedy method.

Fig. 6: Result obtained from the soft max method.

6.1.2 Experiment 2: Investigation of the

reduction rate of the description amount

[Outlines]
To show that the agent designer's burden is reduced by

the proposed mechanism, we investigated the reduction

rate of the program description amount.

・Description amount A: The amount of all descriptions

necessary for the learning function when we implement

the learning agent on DASH without using the proposed

method.

・ Description amount B: The description amount

necessary for the learning function when we implement

the learning agent on DASH with the proposed method.

We calculated the reduction rate of description amount

related to learning by measuring A and B above. The

reduction rate of description amount used by this

experiment is the following.

Reduction rate = 100)1(
A

B

[Results and consideration]
The experiment 2 result is shown below. Table I shows

that the reduction rate of description amount related to

learning is about 97.6%. By this result, we confirmed that

our proposed method can reduce the burden of

implementation of the agent's learning skill. Therefore, we

achieved the support of the agent designer who has no

expert knowledge related to agent programming.

Therefore, we were able to verify the effectiveness of the

proposed method.

 Table I: Reduction rate of description amount related to

learning

Description

amount A (lines)
Description

amount B (lines)
Reduction rate

(%)

187 4 97.6

Table II: Result of the questionnaire (convenience)

6.1.3 Experiment 3: Questionnaire survey
[Outlines]

 To verify the effectiveness of the proposed method, we

asked nine test users with experience in agent design using

DASH framework, to use our prototype, and to answer a

questionnaire about each function’s convenience,

operability, and improvement. The effectiveness and

operability are given rankings according to the five-grade

evaluation system.

[Results and consideration]

Results of the questionnaire are as follows. Table II and

Table III show evaluations related to convenience and

operability. Table IV shows a comprehensive evaluation.

Table III: Result of the questionnaire (operability)

Table IV: Result of the questionnaire

(comprehensive evaluation)

From the questionnaire results, we were able to verify

that the convenience of automatic learning function and

automatic drawing in graph function are rated higher.

However, operability is rated lower. Therefore, we must

refer to improvement by free answer for improving each

function’s interface. Moreover, preserving the graph

function and preservation and reference function of

learning data are rated lower about both of convenience

and operability. The reason for the low score is, as test

users said, these are developing functions. For that reason,

they have no idea how to use them. Therefore, we must

expand functions and implement functions that are easy to

understand and use.

Score 1 2 3 4 5 Average

Automatic learning 0 0 1 4 4 4.33

Automatic drawing in graph 0 0 0 5 4 4.44

Preserving the graph 0 1 5 3 0 3.22

Preservation and reference

of learning data

0 0 6 3 0 3.33

Score 1 2 3 4 5 Average

Automatic learning 0 0 3 6 0 3.67

Automatic drawing in graph 0 0 3 4 2 3.89

Preserving the graph 0 1 6 1 1 3.22

Preservation and reference

of learning data

0 2 6 1 0 2.89

Score 1 2 3 4 5 Average

Comprehensive evaluation 0 0 2 7 0 3.78

6.2 Experiment of Profit Sharing

6.2.1 Experiment 4: Confirmation of the

operation

[Outlines]

We created the following sample agents who solve the

tracking problem shown in Fig. 7. There are two Lion-

Agents and one Goat-Agent, and Lion-Agents search for

the shortest route to Goat-Agent using PS. Goat-Agent

moves randomly. These Lion-Agents have only

information about where he is, and other two agents are.

We define that goal state is the state that both of two Lion-

Agents adjoin the Goat-Agent.

We confirmed that PS was performed appropriately by

setting following parameters.

・Learning rate: α=0.1

・Reward function: r(t) = 100

We observed the change of the rule execution

frequency to reach the goal state on 10000 times, and

compared the case using PS and the case without PS

(movement randomly).

[Results and consideration]

As the result of experiment, we obtained a graph shown

in Fig.8. A horizontal axis shows the frequency of trial,

and a vertical axis shows the average of movement

frequency every 100 trials.

The graph shows that the movement frequency settled

gradually to the optimal value. Therefore, we were

convinced that appropriate learning was correctly

performed.

6.2.2 Experiment 5: Investigation of the

reduction rate of description amount
[Outlines]

In order to show that the agent designer's burden is

reduced by the proposed mechanism, we investigated the

reduction rate of program description amount.

・Description amount A: The amount of all descriptions

necessary for the learning function when we implement

the learning agent on DASH without proposed method

Fig.7: The tracking problem

Fig.8: Result of tracking problem

・ Description amount B: The description amount

necessary for the learning function when we implement

the learning agent on DASH with proposed method.

We calculated the reduction rate of description amount

concerning learning by measuring above A and B. The

reduction rate of description amount used by this

experiment is as follows.

The reduction rate = 100)1(

A

BA

[Results and consideration]
The result of experiment 5 is shown below. Table.V

shows that the reduction rate of description amount

concerning learning is about 94.3%. By this result, we

confirmed that our proposal method is able to reduce the

burden of the implementation of agent's learning skill.

Therefore, we achieved the support of the agent designer

who doesn't have the expertise knowledge concerning

agent programming. Hence, we could verify the

effectiveness of proposal method.

Table. V: The reduction rate of description amount

concerning learning

Description

amount A (lines)
Description

amount B (lines)
Reduction rate

(%)
194 11 94.3

7. CONCLUSION
In this paper, we proposed the design support

mechanism which provides some functions to develop the

intelligent agent which equipped with reinforcement

learning skill. Moreover, we verify the effectiveness of the

proposal method through the some experiments. As a

result, we confirmed the agent designer's burden is

reduced by the proposed mechanism.

Our future issues are as listed below.

・Improvement of the usability using GUI

Now, agent’s designer must determine some

parameter’s values, such as learning rate, using both GUI

and property section of DASH file. Because of the lack of

uniformity, designer may not know in where he fills in the

parameter’s values, and it may cause the confusion.

Therefore, we should develop the gui-based unified input

scheme, and improve the usability.

・Improvement and expansion of functions

We should improve and expand each prototype function

to improve its usability.

8. ACKNOWLEDGEMENT
 This work was supported by Grant-in-Aid for Scientific

Research (C) 25330258 and JST CREST.

9. REFERENCES
[1] Kenji Sugawara, Hideki Hara, Tetsuo Kinoshita,

Takahiro Uchiya: Flexible Distributed Agent System

programmed by a Rule-based Language, Proceedings

of the Sixth IASTED International Conference of

Artificial and Soft Computing, 2002, pp.7-12.

[2] Peng, J. and Williams, R.J.: Efficient Learning and

Planning within the Dyna Framework, Adaptive

Behaviour, Vol.1, No.4, pp.437-454(1993)

[3] Rummery, G. A. and Niranjan, M.: On-line Q-learning

Using Connectionist Systems, Technical Report

CUED/F-INFENG/TR 166, Engineering Department,

Cambridge University, 1994.

[4] Grefenstette, J.J.: Credit Assignment in Rule

Discovery Systems Based on Genetic Algorithms,

Machine Learning, Vol.3, 1988, pp.225-245.

[5] Takahiro Uchiya, Takahide Maemura, Hideki Hara,

Kenji Sugawara and Tetsuo Kinoshita, Interactive

Design Method of Agent System for Symbiotic

Computing, International Journal of Cognitive

Informatics and Natural Intelligence (IJCINI), Vol.3,

No.1, 2009, pp.57-74.

http://ejje.weblio.jp/content/unified

