
Distributed Cooperative Optimization on Cluster Trees

Toshihiro Matsui and Hiroshi Matsuo
Nagoya Institute of Technology

Gokiso-Cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan
{matsui.t, matsuo}@nitech.ac.jp

Abstract—Resource allocation problems on resource supply
networks are formalized with Distributed Constraint Optimiza-
tion Problems. In previous studies, solution methods based on
pseudo trees have been proposed. However, when the pseudo
trees contain nodes of high degree and a large number of
cycles, those methods are not applicable due to the large size
of local problems in agents. Here, we employ cluster trees
that hierarchically divide the problem into sub-problems. With
optimistic approximation, solution methods on the cluster tree
are applied to several large problems.

Keywords-Distributed Constraint Optimization; resource al-
location; resource supply network

I. INTRODUCTION

Distributed resource allocation on networks including
power supply networks is an important application of multi-
agent systems. Since the resource allocation is an optimiza-
tion problem, distributed optimization methods are necessary
to solve the problem. Distributed Constraint Optimization
Problem (DCOP) is a basic framework of cooperative prob-
lem solving in multiagent systems [1], [2], [3], [4]. The
states of agents and the relationships between agents are
formalized into a constraint optimization problem, which
is distributed on the multiagent systems. Several types of
distributed search algorithms are employed for the DCOPs.
The representation of DCOPs and corresponding solution
methods can also be extended to meet particular problems.

Resource allocation problems motivated by the power
supply networks of smart-grid systems have been studied as
distributed optimization problems. In the supply networks,
resources that are initially distributed among source nodes
have to be shared among all nodes. In a related work [5], a
dedicated class of DCOPs and a solver have been proposed
to generate feeder trees under resource constraints. Other
studies address the resource allocation on a feeder tree [6],
[7]. These studies relate to Resource Constrained DCOP
(RCDCOPs) [8], which is a dedicated class of problems
where shared resources are represented as global constraints
that can be decomposed into agents. Their solution methods
are based on pseudo trees on the problems.

Since computational and memory costs of the above solu-
tion methods grow with several parameters related to the size
of the problems, those methods are not directly applicable
to large problems. In the case of this class of problems,
approximation of the pseudo trees is not straightforward

because of hard constraints on the resource allocation. On
the other hand, if inexact methods are allowed, it is possible
to employ other graph structures for solution methods. In
this work, we investigate another type of method based on
cluster trees on the resource supply networks.

II. BACKGROUND

A. Problem Definition

As addressed in the previous section, there are sev-
eral studies of distributed resource allocation problems on
a network that are motivated by power supply networks
containing distributed resources. We use a definition of a
resource allocation problem similar to [6], [7]. Most of the
definitions are inherited from [7].

In this network, amounts of the resource in several nodes
are allocated to other nodes. The previous studies assume
that the structure of the networks is limited to trees [6], [7].
Here, we address networks including cycles. While feeder-
trees are common in actual power networks, we focus on
more general cases.

The components of the network are as follows.
• Nodes: Each node in the network supplies or consumes

an amount of resource. When the nodes supply re-
sources, they are called sources. On the other hand,
nodes that receive resources from other nodes are called
sinks. There are limitations on the amounts of supply
and consumption. The node also has a preference on
the amount of the resource.

• Links: Each link connects two nodes. The links and
nodes form paths to transfer an amount of resource.
The capacity of the link limits the amount of resource
that is transferred in a link. As a common assumption,
the loss of the resource in the transfer is ignored.

In addition to the above limitations on the amount of
resource, there is another type of constraint on the trans-
ferred resources. Namely, the total amount of the resource
that is supplied and consumed has to be zero. The goal of the
problem is to globally optimize an aggregation of preference
under the constraints.

The problem is formally defined by ⟨N,L,R, F,L⟩,
where N , L, R, F , and L are a set of nodes, a set of links, a
set of amounts of resource on nodes, a set of cost functions,
and a set of amounts of resource on links, respectively.

xr1

xr2

xr3 xr4

xr5

xr0

xl1,2

xl0,1

xl1,5

xl2,3 x
l
2,4

xl1,3

xl0,5

3 4

5
2

1

0

Figure 1. Pseudo tree for RCDCOP

0 5

1

2 3

4

8

6

7

9

10

Figure 2. Hierarchical Decomposi-
tion

For node i ∈ N , the preference of the supply and the
consumption on the amounts of the resource is defined as
follows.

• Ri: Ri ∈ R is a finite set of amounts of resource that
are supplied or consumed by node i. Where amount r ∈
Ri is a negative value, r represents an amount of the
supplied resource. On the other hand, where amount r
is a positive value, it represents an amount of consumed
resource. Node i chooses a value of the amount from
Ri.

• fi(r): fi(r) ∈ F is a cost function from amount r ∈
Ri of the resource to a non-negative value. Here, we
use cost functions to represent the preferences of the
nodes because our solution methods are designed for
minimizing problems.

Link (i, j) is defined for a pair ⟨i, j⟩ of nodes. For each
node i, the set of neighborhood nodes that are directly
connected with links is denoted as Nbri. The transfer of
the resource on link (i, j) ∈ L is represented as follows.

• Li,j : Li,j ∈ L is a finite set of amounts of resource
transferred through link (i, j). Amount l ∈ Li,j is a
finite value such that −lci,j ≤ l ≤ lci,j , where lci,j is the
capacity of link (i, j). The sign of value l represents
the direction of the transfer. It is necessary to define a
direction of a flow on the network. l takes a positive
value when the corresponding link transfers an amount
of resource in the same direction as the flow.

In each node i ∈ N , the summation of ri and li,j for all
links (i, j) that connect node i must always be zero. The con-
straint is defined as

∑
(i,j)∈Lin

i
li,j = ri +

∑
(i,k)∈Lout

i
li,k

with set Lin
i of input links and set Lout

i of output links of
node i. Lin

i and Lout
i represent a flow on the network.

For allocation R of amounts of the resource for all nodes,
the global cost f(R) is defined as f(R) =

∑
i∈N fi(ri).

Here, ri takes a corresponding value in allocation R. The
goal of the problem is to find the optimal allocation R∗ that
minimizes f(R) under the constraints.

B. Representation as Resource Constrained DCOP
DCOPs have been studied as a framework of multiagent

cooperation. With the representation of DCOPs, an optimiza-
tion problem in a multiagent system is defined as a constraint

optimization problem whose variables, constraints, and eval-
uation functions are distributed among agents. The problem
is solved using distributed cooperative search algorithms that
are based on message communication.

RCDCOP [8] is an extended class of DCOPs that contains
dedicated representations of resources and constraints related
to the resources. The resource allocation problem shown in
Subsection II-A is formalized as the RCDCOPs [6], [7].
Here, we show an RCDCOP that represents the resource
allocation problem.

The RCDCOP for the resource allocation on the network
is defined by ⟨A,Xr, X l, Dr, Dl, F, C⟩. Here, A represents
a set of agents. Xr is a set of variables that represent
amounts of supplied or consumed resource in the nodes. X l

is a set of variables that represent amounts of transferred
resources in the links. Dr and Dl are sets of finite domains
of variables in Xr and X l, respectively. F is a set of cost
functions and C is a set of resource constraints. Each agent
i ∈ A corresponds to a node in the resource allocation
problem. For the sake of simplicity, we use the notation
of an agent and its corresponding node interchangeably.

Additionally, a partial order on a set of agents is defined
based on the pseudo tree [3] rooted at a node. Figure 1 shows
a pseudo tree for a RCDCOP. In the figure, six agents/nodes
are represented as nodes of the pseudo tree. The pseudo tree
corresponds to a spanning tree of the original network. Edges
of the spanning tree are called tree-edges. Other edges are
called back-edges. Based on the pseudo tree, notations of
parent agent pi, set of child agents Chi and set of lower
neighborhood agents Nbrsli (the child and pseudo child
nodes) are defined for each agent i.

Agent i has a variable xr
i ∈ Xr that represents the amount

of supplied or consumed resource. i also has a set X l
i ⊂ X l

of variables that represent the amount of transferred resource
from i. xl

i,j ∈ X l
i represents the amount of resource

transferred from agent i to its lower neighborhood agents
j ∈ Nbrsli. Similarly, xl

pi,i
∈ X l

pi
represents the amount of

resources transferred from i’s parent agent pi to i. Agent i
decides the values of the variables except for xl

pi,i
, whose

value is determined by pi.

Dr
i ∈ Dr defines the domain of variable xr

i for agent i.
Dl

i,j ∈ Dl defines the domain of variable xl
i,j for link (i, j).

Dr
i and Dl

i,j correspond to Ri and Li,j , respectively.

fi(x
r
i) ∈ F is a cost function that corresponds to fi(ri)

for node i in the resource allocation problem. Similarly, ci ∈
C is a resource constraint for node i. The resource constraint
ci is defined as ci : xl

pi,i
= xr

i +
∑

j∈Xl
i
xl
i,j .

The global cost function f(X) for assignment X for all
variables in Xr ∪ X l is defined as f(X) =

∑
i∈N fi(x

r
i)

Here, xr
i takes a corresponding value in X . The optimal

allocation X ∗ minimizes f(X) under the constraints.

C. Computation based on Pseudo Trees

Several exact solution methods can be applied to the
RCDCOP defined in Subsection II-B. In [6], [7], solution
methods are shown for the case where the networks are trees.
Those methods are generalized for pseudo trees. Here, we
show the most important computation on the pseudo tree.
For more details, please see [2], [6], [7], [8].

The computation of the cost value is recursively defined.
The optimal cost g∗i (X u

i) for assignment X u
i of resource

from i’s ancestor nodes and the sub-tree rooted at agent i is
represented as follows:

g∗i (X u
i) = min

Xi

gi(X u
i ∪ Xi) (1)

gi(X u
i ∪Xi) = δi(X u

i ∪Xi)+
∑

j∈Chi,Xu
j ⊆Xu

i ∪Xi

g∗j (X u
j) (2)

δi(X u
i ∪Xi) =

{
fi(di) s.t. (xr

i , di) ∈ Xi ci is satisfied.
∞ otherwise

(3)
Here, Xi denotes an assignment such that {(xr

i , di)} ∪∪
j∈Nbrli

{(xl
i,j , di,j)}, di ∈ Dr

i , di,j ∈ Dl
i,j .

In Equations (1), (2), and (3), for the sake of simplicity,
it assumed that each agent is able to refer to cost values and
assignments of other agents. However, in actual computa-
tion, the values are unknown until they are received from
other agents as messages. To represent the unknown cost
values, a lower limit value 0 and an upper limit value ∞ are
employed. As a result of the aggregation with limit values,
a cost value is separated into a lower bound and an upper
bound of the true value.

Here, we prefer an algorithm similar to ADOPTs [2],
[8], [7] that is based on tree-search and partial dynamic-
programming since its memory use is relatively lower than
that of pure dynamic programming [3], [6]. In the pro-
cessing, a single solution is constructed at a time based
on the pseudo tree. The processing consists of two phases:
the computation of the cost values and the decision of the
optimal assignments of the variables. In the computation of
the cost values, the globally optimal cost value is computed.
The tree-search repeats the computation for each solution.
In the search processing, an assignment (context) X u

i is sent
in a top-down manner using VALUE messages that are sent
along tree edges. For the current context, cost values are
aggregated in a bottom-up manner using COST messages.
Unknown assignments are evaluated using upper and lower
bounds of cost values. In the root agent, the boundaries
eventually converge to the optimal value. Then, the optimal
assignments of the root agent’s variables are determined.
Similarly, optimal assignments of other variables are recur-
sively determined in a top-down manner.

In the case where the pseudo trees contain nodes of high
degree and a large number of cycles, those methods are
not applicable due to the large size of local problems in

agents. The size of the local problem exponentially grows
with the degree of the node and the induced width [3] of
the pseudo tree. An approximation method eliminate cycles
of pseudo trees [9]. In the case of the resource allocation
problem on resource supply networks, the elimination means
that the amount of resource is fixed to a constant value for
the corresponding link because the resource constraint has
to be satisfied for the link. It seems not to be easy to choose
such constant values. Moreover, the size of the local problem
also grows with the number of lower neighborhood nodes
in Nbrli. To reduce the size of combinations, the size |Li,j |
of link (i, j) and the domain of the corresponding variable
can be reduced. This also reduces feasibility of the original
problem.

III. DISTRIBUTED RESOURCE ALLOCATION ON CLUSTER
TREE

A. Hierarchical Decomposition of Problems

As shown above, exact solution methods based on pseudo
trees are not directly applicable to large and complex prob-
lems. Approximation methods are therefore necessary.

To approximate the resource allocation problems, we
employ a different method that hierarchically decomposes
the problems. Namely, the network is recursively divided
into multiple parts. Links between the parts are then ap-
proximated as a single link. This kind of method may
decrease feasibility of the original problem since resources
are approximately allocated using the hierarchical structure.
On the other hand, if there are sufficient paths in the divided
parts, the method takes advantage of decreasing the size
of the problems. Since each region is represented as an
abstract node, we assume that an overlay communication
link between the abstract nodes is available.

As a simple method, a region is decomposed into two
regions in the hierarchical structure. The regions are hence
represented as a binary tree. The tree is basically the same
as the well-known cluster tree. Based on the cluster tree,
notations of parent node cPrnti and set of child nodes
CChildi are defined for node i. Since a cluster consists
of two nodes, another node in the same cluster is referred
to as peer node cPeeri. The set of neighborhood nodes
is denoted as CNbrsi. Similar to the representation of
RCDCOP, each node i corresponds to an agent. Figure 2
shows a hierarchical decomposition of the network. Below,
we mainly use notations of nodes and links shown in
Subsection II-A instead of RDCDOP because we also need
a horizontal view of the network.

In the actual computation, the hierarchical structure is
constructed in a bottom up manner that repeats clustering of
two neighboring nodes. In the clustering, clusters with fewer
nodes have priority. When a new node k is generated by
integrating two nodes i and j, link (i, j) is eliminated in k’s
view. For other links that connect to i and j, corresponding
links that connect to k are generated. If there are two links

21

3
0

4

2
3

4
1

5

0 5

6

6

0

5

2 31

4

(Unbalanced tree for explanation)
Figure 3. Hierarchical Decomposition and Cluster Tree

(i, o) and (j, o) from the two nodes i and j to the same node
o, those links are integrated into new link (k, o). In that case,
capacity lck,o of new link (k, o) is defined as lck,o = lci,o+lcj,o.
If there is link (i, p) from only one node i of k’s child nodes
to non-child node p, new link (k, p) directly corresponds to
the original link. The capacity of (k, p) equals lci,p. In Figure
3, link (2, 3) is eliminated in node 4. Links (1, 2) and (1, 3)
are integrated into (1, 4). Link (0, 3) corresponds to (0, 4).

In addition, cost functions of child nodes i and j are
aggregated into a new cost function of k. Each value of the
new cost function is the summation of corresponding values
of original cost functions. If there are multiple summation
values for the same amount of resource, the minimum value
is chosen. Moreover, there are resource constraints among
links connecting to nodes i and j. In the case of violating the
constraint, the cost value is ∞. Let lci,j denote the capacity
of link (i, j). For all links connecting i except (i, j), let lci
denote the summation of capacity for those links. Similarly,
lcj denotes the summation of capacity for all links connecting
j except (i, j). New cost function fk(rk) is defined as
follows.

fk(rk) = min f(ri, rj) where rk = ri + rj (4)

f(ri, rj) =

{
fi(ri) + fj(rj) ci,j is satisfied
∞ otherwise (5)

ci,j : ri + rj = rk ∧ (∃l, (−lci,j ≤ l ≤ lci,j) ∧ (6)
(−lci ≤ ri − l ≤ lci) ∧ (−lcj ≤ rj + l ≤ lcj))

The above integration is repeated until there are no neigh-
boring nodes that are not integrated.

The pseudo code of the distributed clustering algorithm
is shown in Figure 4. flgtrmi is a flag that represents the
termination of the processing. cSizei represents the size of
i’s cluster. Variables whose name begin with ‘cLock’ are
used to maintain the locking status as shown below. Because
the integration affects neighboring nodes, the information of
nodes is propagated to nodes in two hops (lines 32-38, 40-
43) using CLSTST messages. 1 Here, we use a simple lock-
and-commit protocol for mutual exclusion of integrations.
Due to limitation of space, procedure MaintainLocking (line
18) is not shown. In the procedure, agent i that has no parent

1It is possible to eliminate extra information for non-peer nodes.

1 Main procedure:
2 flgtrmi ← false. CNbrsi ← Nbrsi.
3 CLinksi ← information of links connecting to i.
4 cSizei ← 1. cPeeri ← ϵ. cPrnti ← ϵ. CChldi ← ∅.
5 cLockReqi ← false. cLockAcki ← ϵ. cLockAckCSizei ← ϵ.
6 cLockRdyi ← false. cLockWaiti ← false.
7 for each j ∈ Nbrsi{
8 CNbrsj ← ∅. CLinksj ← ∅. cSizej ← ϵ. cPeerj ← ϵ.
9 cPrntj ← ϵ. cLockReqj ← false. cLockAckj ← ϵ.

10 cLockAckCSizej ← ϵ. fj ← ϵ. }
11 Similarly, initialize the information of nodes in just two hops.
12 Maintain. // initiation.
13 repeat{ receive messages until a break condition. Maintain.}

15 Maintain:
16 if(¬flgtrmi){
17 if(information of all nodes in two hops has been received){
18 if(¬cLockRdyi){ MaintainLocking. } // cLockRdyi is set.
19 if(cLockRdyi ∧ ¬cLockWaiti){
20 Clustering. cLockWaiti ← true. }
21 if(cLockRdyi ∧ cLockWaiti){
22 if(cPrntcPeeri = cPrnti∧
23 (cPrnti received CLSTST messages from all nodes in
24 CNbrcPrnti)){ // i can refer cPrnti’s status.
25 cLockReqi ← false. cLockRdyi ← false.
26 cLockWaiti ← false. } }
27 if(cPrnti = ϵ ∧ cLockAcki ̸= ϵ){
28 // reflect information of peer node of cluster
29 if(cPeercLockAcki = i){
30 cPeeri ← cLockAcki. cPrnti ← cPrntcPeeri . } }
31 }
32 send (CLSTST, CNbrsi, CLinksi, cSizei, cPeeri,
33 cPrnti, cLockReqi, cLockAcki, cLockAckCSizei, fi,
34 {(CNbrsj , CLinksj , cSizej , cPeerj , cPrntj , cLockReqj ,
35 cLockAckj , cLockAckCSizej)|j ∈ Nbrsi})
36 to j ∈ CNbrsi.
37 if(¬cLockReqi ∧ cLockAcki = ϵ ∧ cPrnti ̸= ϵ){
38 flgtrmi ← true.} }

40 Receive (CLSTST, CNbrs, CLinks, cSize, cPeer, cPrnt,
41 cLockReq, cLockAc, cLockAckCSize, f ,
42 set of information of neighborhood nodes of node j)
43 from j ∈ CNbrsi: update information of each node.

Figure 4. Distributed Clustering (Procedures of Node i) (1)

tries to get a lock by assigning true to cLockReqi while
ties are broken based on the size of clusters and identifiers
of nodes. On the other hand, agent i that has no parent
acknowledges the locking of higher priority node j by as-
signing j and cSizej to cLockAcki and cLockAckCSizei,
respectively. If agent i receives acknowledgements from
nodes in two hops, i clusters i and one of the neighborhood
nodes (lines 19-20). After the update is propagated to related
nodes, the locking is released (lines 21-26).

Figure 5 shows the procedure of clustering. Node i
generates and initializes its parent node k (lines 1-17). Then,
new links are generated based on links that relate i and
cPeeri (lines 18-30). New cost function fk(r) is generated
(lines 31-39). Finally, node k starts its processing (line 40).

1 Clustering:
2 choose j s.t. argminj∈Nbr cSizej where
3 Nbr = {m|m ∈ Nbri ∧ cPrntm = ϵ}. cPeeri ← j.
4 generate new node k. cPrnti ← k. k flgtermk ← false.
5 k cSizek ← cSizei + cSizej . k cPrntk ← ϵ.
6 k cPeerk ← ϵ. k cLockReqk ← false. k cLockAckk ← ϵ.
7 k cLockAckCSizek ← ϵ. k cLockRdyk ← false.
8 k cLockWaitk ← false. k CChldk ← {i, j}.
9 store information of i and j to node k in the same manner of

10 CLSTST messages.
11 let CNbr = {n|n ∈ (CNbri\{j}) ∪ (CNbrj\{i})∧
12 cPrntn = ϵ}.
13 k CNbrk ← CNbr.
14 store information of j ∈ CNbr to node k
15 in the same manner of CLSTST messages
16 but use default (empty) information for nodes in CNbrj .
17 if(|k CNbrk| = 0){ k cPrntk ← noparent. }
18 // integration of links
19 for each pair of links (i, p) and (j, p) s.t. cPrntp = ϵ {
20 generate new link (k, p). lck,p ← lci,p + lcj,p.
21 record that (k, p) originates from (i, p) and (j, p).
22 store information of (k, p) into k CLinksk. }
23 for each link (i, p) s.t. there are no (j, p), cPrntp = ϵ {
24 generate new link (k, p). lck,p ← lci,p.
25 record that (k, p) originates from (i, p).
26 store information of (k, p) into k CLinksk. }
27 for each link (j, p) s.t. there are no (i, p), cPrntp = ϵ {
28 generate new link (k, p). lck,p ← lcj,p.
29 record that (k, p) originates from (j, p).
30 store information of (k, p) into k CLinksk. }
31 // integration of cost functions
32 lci ←

∑
lci,p in CLinksi except lci,j

lci,p.
33 lcj ←

∑
lcj,q in CLinksj except lci,j

lcj,q .
34 for all r s.t. r = ri + rj , ri ∈ Ri, rj ∈ Ri{ w∗

r ←∞. }
35 for each ri ∈ Ri{ for each rj ∈ Ri{
36 if(∃l ∈ Li,j ,−lci ≤ ri − l ≤ lci ∧ −lcj ≤ rj + l ≤ lcj){
37 r ← ri + rj . w ← fi(ri) + fj(rj).
38 if(w < w∗

r){ w∗
r ← w. } } } }

39 generate k fk(r) from w∗
k.

40 launch node k.

k denotes k’s variable.
Figure 5. Distributed Clustering (Procedures of Node i) (2)

B. Resource Allocation based on Hierarchical Structure

Based on the hierarchical structure, the resource allocation
is computed in a top-down manner. In this phase, node k
allocates amount r̃i and r̃j of resource for child nodes i and
j that have been integrated into k.

When node k is the root node, r̃k is zero. In the allocation,
constraint r̃k=r̃i + r̃j has to be satisfied. With r̃i and r̃j ,
amount l̃i→j of resource transferred between node i and link
(i, j) is determined. Similarly, amount l̃j→i is determined for
node j. Here, l̃i→j = −l̃j→i.

When node k is not the root node, there are links between
k and its neighborhood nodes. Such links are categorized
into two types:

1) A link between k and peer node cPeerk that has been
integrated with k. The allocation of resource for this link is
determined by parent node cPrntk.

2) Links between node k and other nodes except peer

node cPeerk. The allocation of resource for these links is
originally determined in one of the higher layers.

The amount of resource is possibly decomposed in the
top-down processing. Node k maintains the correspondence
among each link (k, p) and links that connect to its child
nodes i and j. The amount of resource transferred via
link (k, p) has been allocated in higher layers. Node k
therefore determines the amount of resource transferred via
the corresponding links for i and j.

When link (k, p) corresponds to two links (i, p) and (j, p),
the shares of resource have to be determined. The optimal
allocation of these shares requires search processing. In the
case that capacities lci,p and lcj,p of links (i, p) and (j, p)
are large, the search processing is expensive since there are
(2lci,p+1)(2lcj,p+1) allocations. To avoid this computation,
we optimistically determine the allocation. Namely, the
allocation is determined in proportion to the ratio between
lci,p and lcj,p. When amount l̃k,p of resource is allocated to
link (k, p), allocations l̃i,p and l̃j,p for links (i, p) and (j, p)
are represented as l̃k,p = l̃i,p + l̃j,p ∧ l̃i,p/l

c
i,p ≈ l̃j,p/l

c
j,p.

As shown above, for all links, node k decomposes the
allocation of resources into child nodes i and j. Then,
node k determines allocations r̃i, r̃j , l̃i→j , and l̃j→i such
that the value of cost function fk(rk) is minimized. In the
minimization, constraints of (a) r̃k=r̃i+r̃j , (b) l̃i→j = −l̃j→i

and (c) one similar to Equation (6) have to be satisfied. In
constraint (c), the shares of resource that are determined in
higher layers are used instead of boundaries of lci and lcj in
Equation (6). The allocation is totally represented as follows.

(r̃i, r̃j) = argminf ′(ri, rj) (7)

l̃i→j = −(l̃i + ri), l̃j→i = −(l̃j + rj) (8)

f ′(ri, rj) =

{
fi(ri) + fj(rj) c′i,j is satisfied
∞ otherwise

(9)

c′i,j : ri + rj = r̃k ∧ (10)

ri + li→j = −l̃i ∧ rj + lj→i = −l̃j ∧
li→j = −lj→i ∧ −lci,j ≤ li→j ∧ li→j ≤ lci,j

Here, l̃i and l̃i denote the total amounts of resource allocated
to links connecting nodes i and j except (i, j), respectively.
The allocations of resource are notified to nodes i and j.
Then, similar processing is repeated in lower layers. Since
the method obviously decreases the size of the solution
space, feasible solutions are possibly lost.

C. Search on Cluster Trees

Since the method shown in Subsection III-B greedily
allocates the amount of resource, it easily falls into infeasible
solutions. To avoid such infeasible solutions, we employ
distributed tree search on the cluster trees. When a node
cannot satisfy the resource constraints, it notifies its parent
node of the infeasibility. As a result of this backtracking,

1 Main procedure:
2 let t and s denote cPrntk and cPeerk, respectively.
3 let i and j denote child nodes in CChldk.
4 flgtrmt ← false. flgtrmk ← false.
5 flgokk ← indeterm. flgokallk ← indeterm.
6 ∀b ∈ {i, j},∀r ∈ Rk, ∀l ∈ Li,j , f lg

ok
b,r,l ← indeterm.

7 ctxnode
t ← ∅. ctxlink

t ← ∅. r̃k ← ϵ. alclinks
k ← ∅.

8 if(k is the root node){r̃k ← 0. Maintain. } // initiation
9 repeat{ receive messages until a break condition. Maintain.}

11 Maintain:
12 if(((k is the root node) ∨ (CLSTTD has been received)) ∧
13 ¬flgtrmk){ alclinks

i ← ∅. alclinks
j ← ∅.

14 for each allocation lp,o ∈ alclinks
k of link (p, o) {

15 Decompose lp,o. }
16 DetermineAllocation r̃i, r̃j , l̃i→j and l̃j→i.
17 store l̃i→j into alclinks

i . store l̃j→i. into alclinks
j .

18 if(there is no feasible allocation){
19 if(k is the root node){ execute abort sequence. }
20 flgok ← false. }else{ flgok ← true. }
21 flgokallk ← flgok ⊗

⊗
b,r,l flg

ok
b,r,l.

22 // ⊗ represents the aggregation of tri-state values
23 // (false, indeterminate and true)
24 if(((k is the root node) ∨flgtrmt) ∧flgokallk){
25 flgtrmk ← true. }
26 if(flgokk){
27 send (CLSTTD, ctxnode

k ∪ {r̃k}, ctxlink
k ∪ {lk,s}, r̃b,

28 alclinks
b , flgtrmk) to b ∈ {i, j}. }

29 if(¬flgtrmt ∧ flgokallk ̸= indeterm){
30 send (CLSTBU, ctxnode

k , ctxlink
k , r̃k, lk,s, flgokallk) to t. } }

32 Receive (CLSTTD, ctxnode, ctxlink, r̃, alclinks, flgtrm)
33 from node t:
34 if(ctxnode ̸= ctxnode

t ∨ ctxlink ̸= ctxlink
t){

35 // clear cache data when context changes.
36 ∀r ∈ Rk, ∀l ∈ Li,j ,
37 flgoki,r,l ← indeterm,flgokj,r,l ← indeterm. }
38 ctxnode

t ← ctxnode. ctxlink
t ← ctxlink. r̃k ← r̃.

39 alclinks
k ← alclinks. flgtrmt ← flgtrm.

41 Receive (CLSTBU, ctxnode, ctxlink, r̃, alclink, flgok)
42 from node b ∈ {i, j}:
43 if(ctxnode = ctxnode

t ∧ ctxlink = ctxlink
t){

44 fok
b,r̃,alclink ← flgok. }

46 Decompose lp,o:
47 if(p = i ∨ o = i){ store lp,o into alclinks

i . }
48 else if(p = j ∨ o = j){ store lp,o into alclinks

j . }
49 else if((p, o) originates from single edge (p′, q′)){
50 lp′,o′ ← lp,q . Decompose lp′,o′ . }
51 else { // (p, o) originates from two edges (p′, q′) and (p′′, q′′).
52 determine lp′,q′ and lp′′,q′′ s.t.
53 lp,q = lp′,q′ + lp′′,q′′ ∧ lp′,q′/l

c
p′,q′ ≈ lp′′,q′′/l

c
p′′,q′′ .

54 Decompose lp′,o′ . Decompose lp′′,o′′ . }

Figure 6. Distributed Search on Cluster Tree (Procedures of Node k) (1)

another allocation is chosen. While there are opportunities to
employ other distributed backtracking algorithms including
efficient backtracking mechanisms, here we apply simple
synchronous tree search for the sake of simplicity.

The previous approach shown in Subsection II-C also

1 DetermineAllocation r̃i, r̃j , l̃i→j and l̃j→i:
2 l̃i ←

∑
l∈alclinks

i
l. l̃j ←

∑
l∈alclinks

j
l. w∗ ←∞.

3 for each ri ∈ Ri{ for each rj ∈ Ri{
4 if(r̃k = ri + rj){
5 li→j ← −(l̃i + ri). lj→i ← −(l̃j + rj).
6 if(li→j = −lj→i ∧ −lci,j ≤ li→j ∧ li→j ≤ lci,j∧
7 flgoki,ri,li→j

̸= false ∧ flgoki,rj ,lj→i
̸= false){

8 w ← fi(ri) + fj(rj).
9 if(w < w∗){ w∗ ← w. r̃i ← ri. r̃j ← rj .

10 l̃i→j ← li→j . l̃j→i ← lj→i. } } } } }

Figure 7. Distributed Search on Cluster Tree (Procedures of Node k) (2)
Notations t, s, i and j are the same as Figure 6.

employs tree search. Note that the search on pseudo trees
aggregates values of cost functions in the bottom-up com-
putation. On the other hand, the search methods on the
cluster tree find a satisfiable solution since the cost values
are already aggregated in the preprocessing.

Figure 6 shows the pseudo code of the search algorithm
on the cluster trees. Here, flgokk , flgokallk and flgokb,r,l
represent whether an allocation is satisfiable or not. Contexts
ctxnode

t and ctxlink
t represent an allocation for nodes and

links in the levels of ancestor and parent nodes. r̃k and
alclinksk represent an allocation for node k. The root node
initiates the computation (line 8). The allocation is sent
using CLSTTD messages (line 27). Node k updates the
information from its parent node based on the messages
(lines 32-39). Then, node k decomposes the allocation for
edges excluding the edge between its child nodes (lines 14-
15 and 46-54). Based on the allocation, node k determines
allocation for r̃i, r̃j , l̃i→j and l̃j→i (line 16 and Figure 7).
The satisfiability of the allocation is reported using CLSTBU
messages (lines 29-30). The information of satisfiability is
stored to flgokb,r,l (lines 41-44). Backtracking is performed
to find other allocations if necessary.

IV. CORRECTNESS AND COMPLEXITY

The proposed method shown above is an inexact method
since there are two inexact computations. First, it optimisti-
cally aggregates cost functions in the clustering process. Al-
though the minimization resembles dynamic programming,
it does not consider consistency between the cluster and
other nodes. Second, it optimistically determines shares of
resource for two integrated links. The quality and the feasi-
bility of solutions therefore decrease. However, when there
are sufficient paths of links in each cluster, the feasibility is
possibly preserved.

In the clustering process, each node enumerates |Ri| ·
|Rj | · (2lci,j +1) combinations of allocations for child nodes
i and j in the worst case. To find l of constraint ci,j
in Equation (6), the combination contains the capacity of
link (i, j). In the allocation process, each node enumerates
|Ri| · |Rj | combinations. On the other hand, in the exact
solution methods based on pseudo trees, the complexity of
computation exponentially grows with the number of lower

neighborhood nodes in each node. Let |Rk|, lc and n denote
the size of the domain of cost function fk(r), the capacity of
a link, and the number of lower neighborhood nodes in node
k, respectively. Node k then enumerates |Rk| · (2lc + 1)

n

combinations.

V. EVALUATION

The proposed method was experimentally evaluated
using example problems. As the first evaluation, we
designed example problems that consist of sources
and sinks. The problems are designed with parameters
⟨np, nl, ne, lc, r

l, ru, pl, pu, cl, cu⟩. np, nl and ne are the
number of sources, sinks and links, respectively. lc defines
the capacity of links. Here, all links have the same capacity.
With rl and ru, amount of resource ri that is required by
sink node i is defined so that rl ≤ ri ≤ ru. For the sake
of simplicity, we used a constant amount ri of the required
resource. Similarly, pl and pu define the maximum amount
rj of resource that is supplied from source node j. Source
node j chooses the amount rj between 0 and rj . cl and cu

define coefficient value cj for cost function fj(rj) of each
source node j. The cost function fj(rj) is defined as cj · rj .
Those parameters ri, rj and cj were randomly determined
based on the unique distribution. Table I shows parameters
of problems. Each network is a single connected component.
The problem instances contain both feasible and infeasible
problems. The results are averaged for fifty instances.

We compared the following methods.
• clst: greedy method on cluster trees without search

processing.
• clstsch and clstsch100: tree search methods on cluster

trees. clstsch100 limits the maximum size of domain of
each cost function fi(r) to 100 using uniform sampling.

• ptsdsch, psdschfbs, psdsch100: search methods on
pseudo trees. psdschfbs returns the first best solution.
psdsch100 limits the maximum number of combina-
tions of allocations to 100 in each agent. For several
links, constant amounts of resources are allocated in
proportion to their capacities. The parameter is chosen
so that the experiment of problem (h) can be performed
in a practical time frame (about two minutes for each
instance).

All methods employ a best-first strategy to choose alloca-
tions. We excluded the pre-processing to generate the pseudo
trees from evaluations. On the other hand, the clustering
processing of the proposed method is evaluated. The simu-
lation is based on message cycles. The number of the cut-
off cycle is 10,000. The experiments are performed on a
computer with Intel(R) Core(TM) i7 CPU 920 @ 2.67GHz,
6GiB memory, Linux and g++.

Table II shows the number of feasible solutions, the
number of infeasible solutions and the number of instances
that reached the cut-off cycle. In small problems (a), most
search methods find the optimal solutions. While the search

Table I
PARAMETERS OF PROBLEMS

problem np nl ne lc rl ru pl pu cl cu

(a) 10 10 19 2 1 1 1 10 1 10
(b) 10 10 21 2 1 1 1 10 1 10
(c) 10 10 23 2 1 1 1 10 1 10
(d) 10 90 99 20 1 2 20 40 1 10
(e) 10 90 120 20 1 2 20 30 1 10
(f) 50 50 99 10 1 2 10 20 1 10
(g) 50 50 120 10 1 2 5 10 1 10
(h) 50 50 250 5 1 2 5 10 1 10

Table II
NUMBER OF FEASIBLE INSTANCES (FSBL), NUMBER OF INFEASIBLE

INSTANCES (INFSBL) AND NUMBER OF INSTANCES THAT REACHED THE
CUT-OFF CYCLE (OVER)

problem (a) (b) (c) (d)
algorithm fsbl infsbl over fsbl infsbl over fsbl infsbl over fsbl infsbl over
psdsch 38 12 0 41 8 1 9 1 40
psdschfbs 38 12 0 42 8 0 48 1 1
psdsch100 18 32 0 19 31 0 23 25 2 0 50 0
clst 30 20 0 21 29 0 24 26 0 6 44 0
clstsch100 38 12 0 41 9 0 46 4 0 23 23 4
clstsch 38 12 0 41 9 0 46 4 0 21 22 7
problem (e) (f) (g) (h)

algorithm fsbl infsbl over fsbl infsbl over fsbl infsbl over fsbl infsbl over
psdsch100 0 40 10 0 50 0 0 43 7 0 1 49
clst 3 47 0 23 27 0 27 23 0 0 50 0
clstsch100 42 6 2 43 5 2 50 0 0 44 3 3
clstsch 42 4 4 47 0 3 50 0 0 45 1 4

methods on cluster trees cause errors in the case of (b),
they work relatively well. In the case of (c), exact method
psdtree cannot solve most problems within the cut-off cycle.
In the case of a larger size of problems, only inexact methods
can be applied because psdtree needs huge execution time.
While the quality of the results depends on the problems,
all methods on cluster trees can execute for those problems.
psdtree100 shows poor performance since the setting for
large problems (h) is insufficient even in small problems
(a).

Table III shows the cost value of solutions, the number
of iterations (message cycles) and the execution time. Those
results are averaged for the instances that are solved by all
methods. While the methods on cluster trees return the first
best solution, the quality is better than that of psdtreefbs. In
the cases of (b) and (c), psdtree needs many iterations due to
back edges in the pseudo trees. In all results, the methods on
the cluster trees need less execution time than the methods
on the pseudo trees.

Table IV shows several values of the methods. Those re-
sults are also summarized for the instances that are solved by
all methods. The clustering processing requires a relatively
larger number of iterations (itrc) than the search processing
(itrs). In the case of psdtree, the maximum size of the domain
of cost functions (maxr) is less than that of clsttree. However,
the size of local problems in each agent (maxcmb) is large
because of links for lower neighborhood nodes.

VI. DISCUSSIONS

In this paper, we addressed basic solution methods based
on both pseudo trees and cluster trees. While there are a

Table III
COST VALUES OF SOLUTIONS (COST), NUMBER OF ITERATIONS (ITER)

AND EXECUTION TIME (SEC)

problem (a) (b) (c) (d)
algorithm cost iter sec cost iter sec cost iter sec cost iter sec
psdsch 1.65 52 0.330 1.49 2623 47.31 1.28 4905 52.69
psdschfbs 2.19 25 0.151 2.26 47 1.13 2.14 63 1.73
clstsch100 1.75 147 0.040 1.71 167 0.05 1.61 173 0.07 5.96 855 1.67
clstsch 1.75 147 0.040 1.71 167 0.06 1.61 173 0.07 5.94 1062 1.55
problem (e) (f) (g) (h)

algorithm cost iter sec cost iter sec cost iter sec cost iter sec
clstsch100 5.55 1068 2.95 1.52 954 1.54 1.38 653 1.20 1.88 1263 21.67
clstsch 5.55 1112 2.80 1.51 403 0.51 1.39 660 1.17 1.90 1289 21.70

Table IV
NUMBER OF ITERATIONS OF PRE-PROCESSING (ITERC), NUMBER OF

ITERATIONS OF SEARCH PROCESSING (ITERS), MAXIMUM SIZE OF
DOMAIN |Ri| OF COST FUNCTIONS fi (MAXR), MAXIMUM SIZE OF

LOCAL PROBLEMS (MAXCMB), AND NUMBER OF MESSAGES PER
ITERATION (CLSTST, CLSTBU, CLSTTD, VALUE, COST)

problem (c)
algorithm maxr maxcmb value cost
psdsch 11 67292 (134500) 18 18
psdschfbs 11 67292 (134500) 14 14
problem (c)

algorithm iterc iters maxr maxcmb clstst clsttd clstbu
clstsch100 148 24 54 5717 (9945) 26 27 21
clstsch 148 24 54 5717 (9945) 26 27 21
problem (h)

algorithm iterc iters maxr maxcmb clstst clsttd clstbu
psdsch (1.661E+9)
clstsch100 998 265 100 1794018 (8.496E+6) 337 173 158
clstsch 998 290 374 5637838 (2.674E+7) 337 173 159
(·) in maxcmb is the theoretical size (without pruning) for all instances.

Other results are averaged for solved instances.

number of efficient methods to improve those methods, we
focused on the effects of the approximation using the cluster
tree.

The methods based on the pseudo tree will also be
approximated using similar approaches. However, the ap-
proximation needs relatively complex aggregations on the
pseudo tree to determine an optimistic allocation of the
amount of resource. On the other hand, the idea based on
the cluster tree is intuitively simple.

While the hierarchical decomposition is useful, more
sophisticated methods will be necessary for large, inter-
connected and dynamic networks. Such advanced methods
should be developed considering topological theory and
complex network theory.

The proposed method requires overlay networks. The
evaluation of the communication delays on the networks is
beyond the scope of this study because it will contain routing
protocols.

The above issues should be evaluated in future works. Our
current results show that the proposed method is applicable
to large and complex problems where the previous methods
are not directly applicable.

VII. CONCLUSION

In this work, we presented a solution method for a dis-
tributed resource allocation problem motivated by a power
supply network containing distributed sources. Our method

employs cluster trees on networks instead of pseudo trees.
While the proposed method is an inexact method, it works
with relatively large problems. The experimental results
show the effectiveness of the proposed method.

Our future work will include improvements of search
methods for our approach, theoretical analysis of the ap-
proximated problems, and more detailed comparison of the
approximation methods for both the proposed methods and
the methods of pseudo trees.

ACKNOWLEDGMENTS

This work was supported in part by KAKENHI, a Grant-
in-Aid for Scientific Research (C), 25330257 and the Arti-
ficial Intelligence Research Promotion Foundation.

REFERENCES

[1] R. Mailler and V. Lesser, “Solving distributed constraint
optimization problems using cooperative mediation,” in 3rd
International Joint Conference on Autonomous Agents and
Multiagent Systems, 2004, pp. 438–445.

[2] P. J. Modi, W. Shen, M. Tambe, and M. Yokoo, “Adopt:
Asynchronous distributed constraint optimization with quality
guarantees,” Artificial Intelligence, vol. 161, no. 1-2, pp. 149–
180, 2005.

[3] A. Petcu and B. Faltings, “A scalable method for multiagent
constraint optimization,” in 19th International Joint Confer-
ence on Artificial Intelligence, 2005, pp. 266–271.

[4] A. Farinelli, A. Rogers, A. Petcu, and N. R. Jennings, “Decen-
tralised coordination of low-power embedded devices using the
max-sum algorithm,” in 7th International Joint Conference on
Autonomous Agents and Multiagent Systems, 2008, pp. 639–
646.

[5] A. Kumar, B. Faltings, and A. Petcu, “Distributed constraint
optimization with structured resource constraints,” in 8th In-
ternational Conference on Autonomous Agents and Multiagent
Systems, 2009, pp. 923–930.

[6] S. Miller, S. D. Ramchurn, and A. Rogers, “Optimal decen-
tralised dispatch of embedded generation in the smart grid,”
in 11th International Conference on Autonomous Agents and
Multiagent Systems, vol. 1, 2012, pp. 281–288.

[7] T. Matsui and H. Matsuo, “Considering equality on distributed
constraint optimization problem for resource supply network,”
in 2012 IEEE/WIC/ACM International Conference on Intelli-
gent Agent Technology, 2012, pp. 25–32.

[8] T. Matsui, M. Silaghi, K. Hirayama, M. Yokoo, and H. Mat-
suo, “Resource constrained distributed constraint optimization
with virtual variables,” in 23rd AAAI Conference on Artificial
Intelligence, 2008, pp. 120–125.

[9] T. Okimoto, Y. Joe, A. Iwasaki, M. Yokoo, and B. Faltings,
“Pseudo-tree-based incomplete algorithm for distributed con-
straint optimization with quality bounds.” in 17th International
Conference on Principles and Practice of. Constraint Program-
ming, 2011, pp. 660–674.

