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PAPER

Calligraphy Generation Using Deformable Contours

Lisong WANG†∗, Lifeng HE††, Tsuyoshi NAKAMURA†, Atsuko MUTOH†, Nonmembers,
and Hidenori ITOH†, Member

SUMMARY This paper considers the problem of generating
various calligraphy from some sample fonts. Our method is based
on the deformable contour model g-snake. By representing the
outline of each stroke of a character with a g-snake, we cast the
generation problem into global and local deformation of g-snake
under different control parameters, where the local deformation
obeys the energy minimization principle of regularization tech-
nique. The base values of the control parameters are learned
from given sample fonts. The experimental results on alphabet
and Japanese characters Hiragana show such processing as a rea-
sonable method for generating calligraphy.
key words: calligraphy generation, deformable contour, regu-
larization, font, g-snake

1. Introduction

Nowadays, the desktop publishing system (DTP) is
rapidly growing, inherently, imitating and generating
artistic calligraphy of a character in diversity styles
automatically with a computer is always demanded.
However, writing style varies from person to person,
the shape variety of the strokes of a character is quite
complicated. Usually, it is not only difficult to capture
the inner relationship between different writing style
by simple rules, but also evaluate the quality of pre-
sented calligraphy. For these reasons, currently there
are only two methods for calligraphy generation. One
is preserving some different fonts in advance, and giv-
ing out a type of writing among them opportunely, as
used in almost all editor or printing tool, and the other
is using some manually defined deformation regulations
based on some expert’s experiences, as applied in many
calligraphy processing systems [5], [6], [9].

Obviously, the first method lacks the flexibility, the
number of type of calligraphy generated is font-limited,
and enormous computer resources are required with the
increase of amounts of the font, also to prepare fonts in
advance is a work of time consuming. The second one
needs human intervention too much, it depends on large
numbers of trial-and-error trying, generally the satisfied
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results are hard to be obtained without some special
knowledge about calligraphy. Moreover, both methods
do not explain the relationship between different types
of the same character.

Addressing to the weaknesses of the current meth-
ods, we propose a method for generating versatile cal-
ligraphy from limited fonts based on the model of de-
formation contour. Our problem can be formulated as
follows. Given two sample calligraphy C0, C1 and a
controlling parameter t ∈ [0, 1], to construct versatile
intermediate object Ct, together with the increase of
t, Ct is a more violent deformation in resembling ten-
dency from C0 to C1. In fact, our proposed method for
generating calligraphy from limited fonts is an applica-
tion of regularization technique [7]. We pay attention
to the contours of strokes of a character, and cast the
generation problem into global and local deformation
of a deformable contour model.

Some deformable contour models based on regu-
larization technique have been developed and success-
fully applied to many aspects of machine vision. Kass
first established a well-known active contour model, the
snake model to process vision tasks such as edge de-
tection, boundary formulation and stereo and motion
matching [2]. The deformation of a snake completely
relies on the sum energy minimization.

To achieve the aim of contour extraction of arbi-
trary object under noisy image [4], Lai gives a more in-
novative one, so-called generalized active contour, the
g-snake model, based on the stochastic relaxation the-
ory [1]. The common feature of both models is that, for
each model, there is a defined internal energy to keep
the contour continuity, i.e., to keep the initial shape of
a contour, and an imaginary external force acted on the
contour to make it deform. The contour is attracted by
such actions to deform to a desirable final state, where
the sum of internal and external energy of the contour
is minimal. Due to the different usage, the external
force could be image intensity, edge, termination etc.
An advantage of g-snake is that it is capable of rep-
resenting any arbitrary shape. Moreover, it not only
accounts for global changes due to rigid motions, but
also retains the ability for local control.

When dealing with the calligraphy generation
problem, we must consider both global and local de-
formation of a stroke. Therefore, the g-snake model
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Table 1 Some solutions using regularization.

Target object Regularization treatment

Edge detection min
f

∫
[(Qf − i)2 + λ(fxx)

2]dx

Intensity Restoration for sequential images
min

f

∫ ∫ ∫
[(Qf − i)2 + λ(δf · V + ft)

2]dxdydt

Optical flow detection from territory min
u,v

∫ ∫
[(ixu+ iyv + it)

2 + λ(ux
2 + uy

2 + vx
2 + vy

2)]dxdy

Surface reconstruction detection min
f

∫ ∫
[(ixu+ iyv + it)

2 + λ(ux
2 + uy

2 + vx
2 + vy

2)]dxdy

Color min
z

‖Iv − Az‖2 + λ‖Pz‖2

Optical flow detection from contour min
v

∫ [
(V · N − V N )2 + λ

(
∂V

∂s

)2

ds

]

can be used as the deformation model for our task.
In our method, for sample data C0 and C1 mentioned
above, we represent each stroke of a sample by a closed
g-snake, investigate global deformation between corre-
sponding strokes, imagine that there are pulling forces
acted on C0 to make it deform to C1, and learn the
contour deformable control parameter by using C1 as
the final convergence of enery minimization from ini-
tial position C0. Then, we can control the generation
of a series of interpolation Ct by varying the learned
parameters.

The rest of this paper is constructed as follows.
In next section, we briefly review the basic concepts
used in regularization technique. Section 3 introduces
g-snake model. We describe the application of g-snake
for our problem in detail in Sect. 4, and show experi-
mental results on alphabet and Japanese character “Hi-
ragana” in Sect. 5. Finally, conclusion and future works
are summarized in Sect. 6.

2. Regularization

For a problem P , if its solution relative to the initial
conditions can be determined directly, it is called a
well-posed problem. Inversely, if there are too much
solutions, means the solution can not be determined
directly, it is an ill-posed problem. For example, one
equation with two variables is a typical ill-posed prob-
lem.

Regularization technique is a basic method to
transform an ill-posed problem to a well-posed one.
Here we use a simple model, the solution of linear equa-
tions, as our example to explain its basis concepts. This
problem can be described as: for given vector x, to find
the vector y to meet Eq. (1).

Ay = x (1)

where, A is a linear operator that contains coefficients

in each equation.
When the inverse matrix A−1 of A does not exist,

y cannot be directly determined for a given x, the prob-
lem is ill-posed. In such situation, a reasonable way is
introducing some constraints on y to make it to be di-
rectly determined. For example, finding y such that
for any linear transformation B, y makes the normal
second power B, i.e., ‖By‖2, minimum. The problem
is formulated as find x in expression 2.

min
y

‖Ay − x‖2 + λ‖By‖2 (2)

where, λ is Lagrangian multiplier. By such assumption,
the solution can be directly determined, and then the
problem is changed to be well-posed. Here, λ is also
called regularization parameter.

Regularization has found a lot of applications in
recognition aspect, such as edge detection, optical flow
detection, surface reconstruction, etc. Table 1 lists
some solutions using regularization to treat ill-posed
problems in recognition aspect [7]. The body in inte-
gral symbol are the defined energy mentioned above,
the Table 1 illustrates the regularization technique is
a problem to find a minimum sum energy indeed. De-
tailed symbol definitions and their meanings should be
referred to [7].

3. Deformable Contours Model: g-Snake

In [4], the major role of the g-snake model is to deal
with an ill-posed problem, modeling and extracting ar-
bitrary deformable contours of any object from an ob-
servational noisy image.

3.1 Representing Contour of an Object

In g-snake model, a contour is represented as a link
of point vector constructing it, U = [u1,u2, · · · ,un],
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where, each u ∈ E = {(x, y) : x, y = 1, 2, · · · ,M}, thus
U ∈ En. Each element in U is also called snaxel (snake
pixel). According to the vector combination principle,
a snaxel ui can be expressed as a linear combination of
its two adjacent snaxel vectors:

ui = αiuiα + βiuiβ
(3)

where the basis indices are given by:

iα =
{

i− 1; i > 1
3 i = 1 iβ =

{
i+ 1; i < n
n− 2 i = n

(4)

Accordingly, collecting and putting all of snaxel i
together, the shape equation of the contour of an object
can be written down as:

AUT = 0 (5)

where A is called shape matrix that contains the nec-
essary information to describe the shape:

A =




1 −β1 −α1 0 · · · 0
−α2 1 −β2 0 0 · · ·
0 −α3 1 −β3 0 · · ·
· · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · · · · · · ·
0 0 · · · −αn−1 1 −βn−1

0 0 · · · −βn −αn 1




(6)

A contour U is called nontrivial if |xiαyiβ
−

xiβ
yiα | > 0 for 1 ≤ i ≤ n. The non-trivial condition en-

sures that uiα and uiβ are linearly independent for all
i. Furthermore, A is stable for nontrivial contours be-
cause α, β and U are related by linear equations. This
kind of shape representation is account for both global
and local deformations:

• Global Deformations
Global deformations correspond to rigid motion of
contour such as scaling, rotation, stretching and
dilation. It has been proven in [4] that the contour
representation mentioned above keeps the follow-
ing invariance property for a contour:

Two nontrivial contours satisfy the same
shape equation if and only if they are related
by a linear transformation.

Therefore, according to this invariance property,
the global deformation of a contour can be com-
puted simplely by affine transformations without
any influence on the shape matrix. This is a very
desirable property, because the local deformations
are troublesome, one hopes not having to consider
their influence on global deformation.

• Local Deformations
The g-snake models the local deformations as ran-
dom fluctuation of snaxels in an interested family
of contours U ∈ Ω ⊇ En. An internal energy Eint

induced by shape matrix A is defined to represent

such fluctuation:

Eint(U) =
(AUT )TR−1(AUT )

l(U)
(7)

where R = diag{σ2
1, σ

2
2 , · · · , σ2

n} are the deforma-
tion variances σ2

i of snaxel i, l(U) is a normalizing
constant:

l(U) =
1
n

n∑
i=1

‖ ui+1 − ui ‖2

Now the probabilities of contour U, p(U), can be
assigned as expression 8 which is so-called Gibbs
measure:

p(U) =
1
Z
exp(−Eint(U)) (8)

where Z is also a normalizing constant:

Z =
∑
U∈Ω

exp(−Eint(U))

Equivalently, expression 8 also defines the condi-
tional probability of Markov random field to yield prior
distributions for any arbitrary contour.

p
(
ui

∣∣u1,u2, · · · ,un

)
= p

(
ui

∣∣uiα ,uiβ

)
(9)

The expression 9 means that a contour U is en-
tirely specified by all probability of ui, while a proba-
bility of ui is specified by its two adjacent basis snaxels.

3.2 Maximum Posterior Estimation

The g-snake model treats the contour extraction task
as a process to estimate unknown deformation of con-
tour from an image. By using Bayesian framework, it
can be realized as maximum posterior(MAP) estima-
tion. Rewriting and denoting the internal and external
energy as follows:

Eint(ui) =
‖ ui − αiuiα − βiuiβ

‖2

l(U)
(10)

Eext(ui,g) = 1− hi
T f(ui + g) (11)

where g is an arbitrary reference point, hi is an unit
vector which indicates the interested deformation di-
rection of a snaxel on the contour, and function f(x)
corresponds the external force which pulls the contour
to desirable position.

Then contour extraction task turns into solving
problem of MAP estimation, formulated as an energy
minimization problem of finding Umap and gmap in ex-
pression 12.

{Umap,gmap}

= argmin
U,g

n∑
i=1

{
λi

1− λi
Eint(ui) + Eext(ui,g)

}

(12)
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where

λi =
σ2

η

σ2
η + σ2

i

∈ [0, 1]

are the local regularization parameters which control the
amount of local template deformation. σ2

η is the Gaus-
sian distribution of the noise contained in force mea-
surement. λi are derived from a method named local
minimax criterion [3].

4. Calligraphy Generation System

In this section, we introduce our calligraphy genera-
tion system. The problem domain we address is to find
agreement regulations to bind different writing types of
a given calligraphy character, and to use such regula-
tions to generation new calligraphy. We think that a
different calligraphy of a character is a deformation of
its stroke contours satisfying energy minimum principle
under some external constraints.

Because of the deformation complexity, it is diffi-
cult to arrange simple and plain rules to comprehend
deformations of every points for a stroke. Our basic
thinking is to investigate the deformation of several
salient feature points on sample calligraphy C0 and C1,
assuming that the deformation is owing to some forces
coming from C1 and acting on the outline of strokes
of C0, and it will convergence to somewhere. To keep
the sum of energy of points minimum, we can charge
the position determination of remaining points with the
energy minimum processing, and hence, to generate
versatile calligraphy. The deformation of strokes can
be simply described by the energy minimum principle.
Now we describe our system in detail.

4.1 Processing Flow

Given two samples C0, C1, in order to generate vary-
ing calligraphys Ct, our system proceeds in following
stages:

• Pre-process.
• Extract strokes from input characters.
• Complete the correspondence completion between
each stroke of C0 and C1.

• Initialize a g-snake on each stroke.
• Investigate global deformation between corre-
sponding strokes.

• Learn g-snake parameter to control local deforma-
tion.

• Vary the learned parameters to generate new cal-
ligraphy.

4.2 Pre-Processing

Because our method addresses the deformation of con-
tour of stroke, we must find where the contour of stroke

is at first. The aim of pre-processing is to detect po-
sition information of contour for every strokes of both
C0 and C1.

The input of pre-processing is a sample calligraphy
Cl, l ∈ {0, 1}, such input can be treated as a binary im-
age. The output is binary array matrix Tl (l ∈ {0, 1})
that contains position information of contour. The di-
mension of matrix Tl is i × j where i (j) equals the
width (height) of the input calligraphy binary image
respectively. Then the binary map Tl is simplely estab-
lished by following process: scan each pixel contained
in the image from left up to right down, investigating
whether the 8 neighbors of the pixel being processed
are all with the same value, black or white. If the 8
neighbors a pixel contains both black and white pix-
els, it is a pixel on contour of stroke. The value of its
correspondence elements in T0 or T1 must set to be 1,
otherwise, for a non-boundary pixel, its correspondence
elements in T0 or T1 is set to 0.

4.3 Stroke Extraction

After getting sets T0 and T1, the next task is to class
its elements into strokes, since the stroke is the basic
processing unit in our system. With such classifica-
tion, we can decompose sample calligraphy to separate
stroke set. The stroke extraction can be realized with
a boundary tracing algorithm naturally, but one thing,
the intersection of two different stroke must be consid-
ered in case suspicious extraction results.

In our system, the stroke extraction processing is
semi-automatic. The salient feature points are decided
manually. They are clicked and informed to the system
with a man-machine interface. For example, to extract
the first stroke of Hiragana “a,” 6 points dotted in Fig. 1
have to be clicked.

For a character whose strokes are separated, no
extra work needs to do except a boundary tracing
is necessary. Supposing n feature points are clicked
near the related stroke of each sample C0 and C1,
each point clicked is aligned to its nearest contour, by
matching it with T0 and T1 obtained in pre-processing
stage, and saving their coordinates in two lists K0 =
[k00, k01, · · · , k0n] and K1 = [k10, k11, · · · , k1n] at first,
where, the elements in K0 and K1 with the same sub-
script are thought as correspondence. We call it a par-
tial correspondence. For a stroke with no intersection,

Fig. 1 Salient feature clicked.
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Fig. 2 Decomposing calligraphy into strokes.

its contour is traced by getting a route for each feature
point to its next feature point: kbi, kbi+1, b ∈ {0, 1}, i ∈
{0, 1, · · · , n}. For the nth feature point, its next point
is the first one clicked.

If a stroke is acrossed by other stroke, the pro-
cess is slight tiresome. With n clicked feature points,
a stroke is divided into n segments. For each pair
kbi, kb(i+1), 0 ≤ i < n, b ∈ {0, 1}, using Tl(l ∈ {0, 1})
to trace and record a route along the boundary of the
stroke (for the point last clicked searching a route to
the first clicked one). If an intersection is encountered,
the program will switch boundary tracing operation to
spline interpolation, to fill the interval of boundary due
to the intersection. Figure 2 is an example of decom-
posing Hiragana “a” and “u” into strokes.

4.4 Correspondence Completion

In this stage, the partial correspondence of feature
points will be turned into a full correspondence of snax-
els. Candidate snaxels to initialize a g-snake are se-
lected from each route between two feature points pro-
duced at last stage for each related stroke, and a full
correspondence for related stroke of two samples is es-
tablished. Given a selected space value between two
snaxel on C0, for each element in K0, the necessary
number and coordinates of from itself to its next one
can be calculated except the last one who’s coming el-
ement is the first element. Then, for its feature point
on C1, assuming the number of snaxel to next element
should be the same as its correspondence element in
K0, the proper adjusted space can be calculated and
snaxel can be selected from the route produced for C1

in last stage. This operation ensures that the number
of snaxels between two correspondence feature points
is the same. We think that there is a binding from the
first to the last one, in all of segments between any two
feature points. This is called a full correspondence map
of two sample calligraphy. The full correspondence map
will be used to produce a force map in order to do local
deformation laterly.

4.5 g-Snake Initialization

To prepare for the deformation, using the snaxels found

Fig. 3 Locating g-snake on a stroke.

Fig. 4 Global deformation of stroke.

in the last stage, a closed g-snake is initialized and lo-
cated on the contour of each stroke, which contains the
necessary shape information. Figure 3 is the example
of locating two g-snakes on the first stroke of Hiragana
course, the space between two snaxels can be adjusted
according to calligraphy being processed. Short space
should be selected for calligraphy with steep slope, but
it takes more time to find it minimum energy position
afterwards. We determine it as 5 empirically for test.

4.6 Investigating Global Deformation

In this processing stage, the global deformation of rigid
motions such as rotation scale and stretching and di-
lation arose between sample stroke is investigated. Af-
ter knowing the global deformation, we can make the
stroke deform globally to some extent using affine-
transformation. Because the rotation and the stretch-
ing have the strongest visual appeal, we investigate
them between each related stroke of sample C0 and C1.
The investigation occurs along the g-snakes in the unit
of a pair of partial correspondence segments. Supposing
that there are m segments on one g-snake, a segment
on C0 starts at x0, y0, ends at x1, y1, while their cor-
respondence points on C1 is x′

0, y
′
0 and x′

1, y
′
1, we first

put the start snaxel of C0 together with that on C1 by
translation (x′

0 − x0, y
′
0 − y0), then by comparing their

coordinates of start and end snaxel, we can know the
necessary stretching "si and rotation angle θi for C0 to
deform to C1 is:

"si =

√
(y′2 − y′1)2 + (x′

2 − x′
1)2√

(y2 − y1)2 + (x2 − x1)2
(13)

θi = arctan
(

y′2 − y′1
x′

2 − x′
1

)
− arctan

(
y2 − y1

x2 − x1

)
(14)

Then such deformation coefficients are put into list
SU = ("s1, "s2, · · · , "sm) and ΘU = (θ1, θ2, · · · , θm). The
elements in the two lists mark the global deformation of
each segment. For example shown in Fig. 4, assuming
arc AB and AB′ are contour correspondence segments,
the global stretching is calculated by comparing the
length of line segment AB and AB′, and the rotation
angle α is the angle between them.
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4.7 g-Snake Control Parameters Learning

In our system, the local deformation is simulated as the
energy minimization process of closed g-snake on the
outline of stroke. The function f(ui) describing the ex-
ternal energy in expression 11 is designated as a pulling
force acted on snaxel on C0, with direction points to its
correspondence snaxel on C1 and the strength in pro-
portion to the normalizing constant l(U) is described
in the last section. Therefore, using the correspondence
table created in previous stage and putting the heads
of g-snake on C1 together with its corresponding global
deformed one on C0, such directions and strengthes to
form a force map is easily generated. Then we use this
force map to minimize the total energy for the g-snake,
and the local regularization parameters λi in expression
12 can be estimated by local minimax criterion [3].

4.8 Generating New Calligraphy

Having known the global deformation parameter SU ,
ΘU and the local regularization parameter λi, then we
can generate a new calligraphy by a control variable
t(0 < t < 1). Giving a different value of t, first deform
each stroke segment globally using affine transforma-
tion under parameters tSU , tΘU , and next deform it
locally by g-snake energy minimization with regulation
parameter tλi. In this way, we can control the defor-
mation from weakly to violently.

5. Experiment Results

This section shows some examples of generated calligra-
phy using our novel generation method. We performed
the simulation on a SUN-SPARC-II workstation. The
calligraphy used as samples C0 and C1 are prepared as
256×256 bitmap image in advance, they are either fonts
residented in our computer system, or read in with a
scanner. Up to now, we tested our system on Japanese
alphabet, Hiragana, and English alphabet for calligra-
phy generation.

In order to clarify the robust of our algorithm, we
deliberately selected four kinds of calligraphy fonts of
Hiragana existing in our computer system which are
called kaisho, gyosho, mini and gothic. Calligraphy of
such fonts for Hiragana “a” are shown in Fig. 5. It is
obvious that these fonts have clearly different appear-
ance. Distinctly, sample free is desirable for an algo-
rithm. That is, an algorithm should be able to deal
with all kind of samples in the problem domain.

Using a pair of calligraphy fonts of Hiragana “a”
as samples, and executing the algorithm described in
last section, due to the difference of control parameters
λ, some generated examples are shown in Fig. 6.

In Fig. 6, calligraphy of the first row is used as sam-
ple C0 and last row for C1. The first column in Fig. 6

Fig. 5 Different type of calligraphy.

Fig. 6 Generated calligraphy.

is a progressively proceeding from kaisho to gyosho,
the second column is kaisho to mini , and the third is
gothic to mini . After learning global and local defor-
mation parameters, the calligraphy in second and third
row are generated by setting t to 0.3 and 0.6. We can
observe from this picture that the increase of t makes
the lose the peculiarity of C0, simultaneously, get that
of C1. This example shows that our algorithm is avail-
able for any selected sample.

Figure 7 gives generated calligraphys for some
other Hiragana “i,” “u,” “e,” and “o.” Same as above,
calligraphy of the first row is used as sample C0 and last
row for C1. The control parameter is set to 0.3 and 0.6
for the second row and the third row respectively.

We also test our method on processing real callig-
raphy. The right down of Fig. 8 is a real calligraphy
of Hiragana “a” read from a scanner. By using it and
existing Hiragana “a” of font kaisho (left up of Fig. 8)
as samples, we can generate intermediate calligraphy,
the right up and the left down shown in Fig. 8 with t
selected as 0.3 and 0.8.

The tests on English alphabet are also made. As it
is simpler than the case of Hiragana, we only show one
example in Fig. 9, where the left up is font calligraphy in
our computer system, the right down is real calligraphy
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Fig. 7 Other generated calligraphy.

Fig. 8 Generated calligraphy from real sample.

Fig. 9 Generated calligraphy.

read in with a scanner, and they are used as sample C0

and C1 respectively. The right up and left down are
generated interpolations with the control parameter as
0.3 and 0.6.

From these experimental results, we know that
that our algorithm do generate the medium states of
samples, and the sample calligraphy can be any type
of font including the real calligraphy. The deformation
can be controlled by varying the parameter t. The re-
sults are similar to calligraphy written by real people.

6. Conclusions

We demonstrated that generating various calligraphy
from different fonts can be modeled as global and lo-
cal deformation of its stroke contour obeying the en-

ergy minimization principle of regularization technique.
Therefore, we applied the deformable contour model
g-snake solving the calligraphy generation problem.
Such a method makes the calligraphy generation more
flexible and the generated results are more natural.
Some useful left work can be indicated as: extracting
strokes of a character automatically, interpolating writ-
ing scratch between strokes, i.e., the semicursive style
of writing, and the extension of our system to calligraph
processing of Chinese characters.
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