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Rayleigh Fading Compensation for 16QAM

Using FFT
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Abstract|Pilot symbol assisted modulation (PSAM) has

been proposed to overcome the Rayleigh fading. Howev-

er, as the fading rate becomes more rapid, it is di�cult to

provide an exact interpolation with conventional PSAM.

To compensate for the fast Rayleigh fading, a PSAM

which calculates in the frequency domain rather than the

time domain as in conventional PSAM is proposed. Al-

though this PSAM scheme only needs the zero interpolation

for fading estimation, it provides a very accurate estimate

even in relatively fast Rayleigh fading environments.

We introduce this PSAM using fast Fourier transform

(FFT) and apply it to 16QAM, and then show some results

of computer simulations.

Keywords|Fading Compensation, Pilot Symbol, 16QAM,

FFT.

I. Introduction

F

ADING is one of the main problems in land mobile

communications (LMC) because it introduces irre-

ducible error 
oors and seriously degrades the quality of

communication links. This fading must be compensated

for high-quality communications.

Transmissions at a higher rate and higher capacity are

becoming increasingly required especially in digital com-

munications. However, expanding the bandwidth is di�-

cult because of the limited spectrum for LMC. Quadrature

amplitude modulation (QAM) is one e�ective modulation

technique used in achieving high bit rate transmission with-

out increasing the bandwidth, and is therefore a competi-

tive candidate for LMC. However, QAM requires more ex-

act fading compensation because QAM signals have both

the amplitude and phase information, and they must both

be compensated accurately. Thus, accurate fading compen-

sation techniques for digital communications with QAM

are very important.

Pilot symbol assisted modulation (PSAM) is a well-

known fading compensation technique for LMC and has

been studied by many authors. This technique employs

inserted pilot symbols. In the transmitter, a known pilot

symbol, which is usually assigned as one of the outermost

points of the modulated signal constellation, is inserted

periodically in the transmitted symbol sequence. Then the

receiver extracts the fading of the channel at pilot symbols.

From the fading at pilot symbols, we estimate the fading

at the data stream and remove it. Some estimate tech-

niques have been proposed [1], [2], [3], and they have been

applied to various systems and modulations which have
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fading channels [4], [5]. Furthermore, there are some stud-

ies on PSAM treating the fading, which is not 
at Rayleigh

fading [6]. These techniques use various functions such as

Gaussian, Bessel, etc. in the time domain to estimate fad-

ing, and then compensate it. Recently, as the frequency

used in LMC has become higher and higher, the fading

rate has become more and more rapid, and robust fading

compensation is needed. However, with these conventional

methods, the estimate may be derived less accurately or

the estimate functions and the coe�cient of functions tend

to become much more complex.

It should be noted that the Rayleigh fading is a kind of

band-limited process. Concentrating on this characteristic,

we propose a method of using fast Fourier transform (FFT)

[7] to execute the channel estimation with the PSAM. In

this method, received pilot symbols are translated once in-

to the frequency domain. After that the zero symbols are

inserted into them, and the result produced is reconvert-

ed into the time domain. The calculated result becomes

the estimated fading. Since this method needs only zero

insertion in the fading estimation, it is simple; however, it

produces very accurate estimation. The main di�erence be-

tween this method and the conventional methods of PSAM

is that the fading estimation proceeds in the frequency do-

main rather than the time domain.

In this paper we introduce this method. First, a detailed

description of the system construction and the strategy of

the method are presented. Then we investigate the the-

oretical degradation in an additive white Gaussian noise

(AWGN) environment. The degradation of digital trans-

missions in the Rayleigh channel has been studied [8], [9].

We investigate the degradation in the Rayleigh fading en-

vironment for the proposed method with QAM. It is con-

�rmed that the degradation with the proposed method in

a relatively fast Rayleigh fading environment is almost the

same as that in an AWGN environment; that is, the pro-

posed method can successfully follow the fast fading.

Examples of applying this method to 16QAM are given

through computer simulations. The e�ects of some param-

eters are also investigated.

II. Fading Compensation Method Using FFT

A. Frame Format of PSAM

The Fading processes like Rayleigh or Rician are one of

the band-limited processes, and the bandwidth is f

D

Hz

when the maximum Doppler frequency is f

D

.

Fig. 1 shows the frame format studied in this paper. We

takeN symbols as a frame, and insert a known pilot symbol

at the beginning of each frame, and thus the data stream in
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Fig. 1. Frame format.
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Fig. 2. Gray-coded 16QAM.

one frame includes N �1 symbols. The fading information

on pilot symbols in the channel can be obtained. Using

this fading information, fading on the whole symbol stream

can be calculated under the following condition according

to the sampling theorem:

f

D

T

s

�

1

2N

(1)

where T

s

is a symbol interval.

Fig. 2 shows the signal constellation of Gray-coded

16QAM, and the point A is adopted as the pilot symbol z

p

at the beginning of a frame. Although the pilot symbols

can be selected from any point in Fig. 2, from the view

point of the signal power, we take point A which is one of

the four outermost points, and is e�ective to decrease the

noise in
uence.

B. System Model

The baseband system block diagram is shown in Fig. 3.

TX data bits are mapped every four bits into one of the six-

teen signal points of 16QAM of Fig. 2. Then, known pilot

symbols are periodically inserted, and the composite signal

is band-limited by the low-pass �lter (LPF). After that,

it is transmitted over a Rayleigh fading channel with the

AWGN. At the receiver, the received signal is �rst band-

limited by the LPF. The fading of the received signal is

compensated using an estimate obtained from the received

pilot symbols. Finally, the received data is decided.

The received signal has a complex envelope, which is

given by

r(t) = c(t)s(t) + n(t) (2)

where c(t) is the complex channel gain including fading and

frequency o�set, and n(t) is the equivalent low-pass AWGN

z(i)^

AWGNfading

TX
Data

RX
Data

16QAM
Mapping

Pilot Symbol
Insertion

LPF

Fading Estimation
& Compensation

Decision LPF

z(i)

Fig. 3. System block diagram.

with a variance of �

2

; s(t) is given by

s(t) =

1

X

i=�1

z(i)p(t� iT

s

) (3)

where z(i) is the ith symbol value of 16QAM including the

pilot symbol, and p(t) is the raised cosine pulse given by

p(t) =

sin(�t=T

s

)

�t=T

s

�

cos(��t=T

s

)

1� (2�t=T

s

)

2

(4)

where � is the roll-o� factor. We used an equal root alloca-

tion for the �lter at the transmitter and receiver with the

roll-o� factor of � = 0:5. To simplify the study we assume

in the following that the clock and frame synchronization

is completely obtained. Then, after LPF and sampling we

get the discrete signal:

r(i) = c(i)s(i) + n(i) (5)

where s(i) = z(i) in perfect synchronization.

Denoting the channel estimate by ĉ(i) and the fading-

compensated data by ẑ(i), we have

ẑ(i) =

c(i)z(i) + n(i)

ĉ(i)

: (6)

After the decision on ẑ(i), we get the RX data bits.

C. Fading Estimation Using FFT

Fig. 4 and 5 show the principle of the proposed method.

Fig. 4 (a) illustrates the periodic fading process cut by

a rectangular window and sampled every T

p

sec, and its

spectrum. The fading process in Fig. 4 (a) is repeated with

a period of T

FL

, because this series is used for the discrete

Fourier transform which needs a periodical process. In this

fading process, if the Nyquist condition, f

D

T

p

� 1=2 is

satis�ed, the spectrum includes all components of fading

in the T

FL

section. Theoretically, there are zero points

between the repetitious non-zero spectra in Fig. 4 (b).

To carry out the interpolation, we inserted zero symbols

between these two non-zero spectra. Fig. 5 (b) shows the

results of doing this. By transforming this series into the

time domain, an interpolated time series is obtained as Fig.

5 (a) shows. Zero interpolation in the frequency domain

thus plays the same role as symbol interpolation in the

time domain. We used this principle since it is simple.

The fading estimate operation using FFT is shown in

Fig. 6, and the frame structure used in the calculation

in Fig. 6 is shown in Fig. 7. We calculate and estimate a

fading series ofN

p

frames at a time from 2N

p

pilot symbols.



IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, VOL. XX, NO. Y, MONTH 1998 3

0 t

TFL

Fading processTp

0

1/Tp

fD

1/TFL

f

FFTIFFT

TFL

(a)

(b)

Fig. 4. The periodic fading process and its spectrum.
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Fig. 5. Zero inserted spectrum and interpolated fading series corresponding to the spectrum.
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Fig. 6. Con�guration of fading estimate operation.

First, the 2N

p

symbol fading series g(l)(l = 0; 1; � � � ; 2N

p

�

1) is obtained by dividing the received pilot symbols by z

p

:

g(l) =

r(l)

z

p

: (7)

Since FFT and the inverse fast Fourier transform (IFFT)

are used in calculation, inserting a window function is ef-

fective in concentrating the signal spectrum. By inserting

it, we can decrease the spectrum power out of the calculat-

ing band, and thus reduce the alias e�ect. This operation

increases the precision of estimation.

There are many window functions. We apply a few of

them as listed below and compare them:

(a) Hanning window function

w

(H)

l

=

1

2

�

1� cos

�

�l

N

p

��

(8)

g  (2N  -1)p

1 frame
Symbol

N   framep

g  (0) g  (1) . .

Pilot Symbol Data Symbol

Compensated Data Symbol

N  /2  framep N  /2  framep

. . .

N

11 1

Fig. 7. Frame structure in calculation.

(b) Parzen window function

w

(P )

l

= 1�

�

�

�

�

2l�N

p

+ 1

N

p

+ 1

�

�

�

�

(9)

(c) Welch window function

w

(W )

l

= 1�

�

2l�N

p

+ 1

N

p

+ 1

�

2

(10)

Thus, we get the series:

g

1

(l) = g(l)w

l

; (l = 0; 1; � � � ; 2N

p

� 1) (11)

and then transform g

1

(l) into the frequency domain by us-

ing FFT:

G

1

(n) =

2N

p

�1

X

l=0

g

1

(l) exp(�

j�nl

N

p

): (12)

(n = 0; 1; � � � ; 2N

p

� 1)
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Note that although this formula is only a discrete Fouri-

er transform (DFT), we apply FFT in calculation to save

time.

Within the range of Eq. (1), this G

1

(n) includes all

the frequency components of the received fading symbols,

and near n = N

p

, G

1

(n) approximately equals zero, while

it does take the value of zero theoretically. Then we can

interpolate from 2N

p

symbols to 2NN

p

symbols with zero

interpolation as below:

G

0

1

(m) =

8

>

>

<

>

>

:

NG

1

(m); [0 � m � N

p

� 1]

0; [N

p

� m � N

p

(2N � 1)� 1]

NG

1

(m� 2N

p

fN � 1g);

[N

p

(2N � 1) � m � 2N

p

N � 1]

(13)

As mentioned above, this zero interpolation in the frequen-

cy domain is identical to the interpolation between pilot

symbols in the time domain. Since only zero insertion is

needed, this interpolation scheme is simple.

Then the time domain series is obtained by transforming

G

0

1

(m) using IFFT:

g

0

1

(k) =

1

2NN

p

2NN

p

�1

X

m=0

G

0

1

(m) exp(

j�mk

NN

p

) (14)

(k = 0; 1; � � � ; 2NN

p

� 1)

For the same reason to save time in Eq. (12), we use IFFT

in calculation of Eq. (14) though it is only a formula of the

inverse discrete Fourier transform (IDFT).

We truncate the calculated series of g

0

1

(k) to avoid the

alias e�ect. Usually the alias e�ect appears more severely

at the two ends of the calculating span. Then we pick

up only the central half of the NN

p

symbols (NN

p

=2 �

k � 3NN

p

=2� 1) of the calculated g

0

1

(k) to maintain high

accuracy.

There is also another reason for truncating the series

g

0

1

(k). Recall that before applying FFT, we used a window

function to restrict the spectrum. Because of this, we must

divide out its components after IFFT. However, the divi-

sion can not be done because the window functions usually

have zero value at the end points, and so it is convenient

to exclude the end points through the truncation.

Finally, we get the estimated fading series by removing

the components of the window function as follows:

ĉ(k) =

g

0

1

(k +NN

p

=2)

w

0

k+NN

p

=2

(15)

(k = 0; 1; � � � ; NN

p

� 1)

where w

0

k

is the same window functions as those of Eqs.

(8){(10) but with a di�erent number of points. This is

because that after interpolation, the number of points in-

creased.

(a') Hanning window function

w

(H)

0

k

=

1

2

�

1� cos

�

�k

NN

p

��

(16)

(b') Parzen window function

w

(P )

0

k

= 1�

�

�

�

�

2k �NN

p

+ 1

NN

p

+ 1

�

�

�

�

(17)

(c') Welch window function

w

(W )

0

k

= 1�

�

2k �NN

p

+ 1

NN

p

+ 1

�

2

: (18)

In Eqs. (16){(18), k takes values fromNN

p

=2 to 3NN

p

=2�

1.

Since FFT and IFFT are used in calculation, we let N

and N

p

take the value of the power of 2.

III. BER Performance in AWGN Channel

Next we consider the theoretical BER performance of

the proposed scheme in the AWGN channel. The theoret-

ical BER performance of coherently-detected Gray-coded

16QAM in the AWGN environment is [10]

P

bnon

(


0

) =

3

8

erfc

�

p

0:4


0

�

�

9

64

erfc

2

�

p

0:4


0

�

(19)

where 


0

= E

b

=N

0

, E

b

is energy per information bit, and

N

0

is the one-side noise spectral density.

The performance of PSAM is degraded because of a pow-

er loss due to the insertion of pilot symbols. In the proposed

scheme, this degradation is given by

D

1

= 10 log

�

N

N � 1

�

dB: (20)

In addition, there is a degradation D

2

caused by the

fading estimation error. This occurs because the received

pilot symbols include noise components, and because of the

error of the interpolation.

First we compare the received signal power before and

after interpolation. Following Eq. (6), the received fading-

compensated pilot symbol is represented by

g(l) = c(l) +

n(l)

z

p

(21)

where n(l) is the zero mean complex Gaussian noise with a

variance of �

2

. The average noise power of g(l) is �

2

=jz

p

j

2

.

In Eqs. (8){(10) and (16){(18) we applied the window

functions to the received symbols. However, we can ignore

its e�ect because these operations a�ect neither the total

power of g(l) nor the noise variance �

2

on the whole. We

can also ignore the operation of truncation since it does

not change the SNR of g(l).

From Parseval's theorem, we get the equations below:

2N

p

�1

X

l=0

jg

1

(l)j

2

=

1

2N

p

2N

p

�1

X

n=0

jG

1

(n)j

2

(22)

2NN

p

�1

X

k=0

jg

0

1

(k)j

2

=

1

2NN

p

2NN

p

�1

X

m=0

jG

0

1

(m)j

2

: (23)
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From Eq. (13) we get an equation for the power spectrum

as follows:

2NN

p

�1

X

m=0

jG

0

1

(m)j

2

= N

2N

p

�1

X

n=0

jG

1

(n)j

2

N: (24)

Then, from Eqs. (22){(24) we get

2NN

p

�1

X

k=0

jg

0

1

(k)j

2

=

2N

p

�1

X

l=0

jg

1

(l)j

2

N (25)

which shows that the total power of the received fading

signal does not change before and after interpolation.

Next, we assume the estimated fading series ĉ(k) as

ĉ(k) = c

0

(k) + n

0

1

(k) (26)

where c

0

(k) has the estimating error components caused

not by the AWGN of the received pilot symbols but by

the inaccuracy of the interpolation, and where n

0

1

(k) is the

noise component whose power is �

0

2

1

caused by the AWGN

of the received pilot symbols. Then the following equation

is obtained from Eq. (6):

ẑ(k) =

c(k)z(k) + n(k)

c

0

(k) + n

0

1

(k)

(27)

where c

0

(k) = c(k) if the interpolation is perfect.

In the AWGN channel, the channel gain is c(k) = 1 and

we can assume c

0

(k) = c(k) = 1 theoretically. Since the

total power and the signal power do not change before and

after interpolation, it can be said that the noise power in

Eq. (21) is equal to that in Eq. (26). As a result, the noise

power of n

0

1

(k) becomes �

0

2

1

= �

2

=jz

p

j

2

.

Therefore, from Eq. (27), the received symbols are given

by [2]:

ẑ(k) =

z(k) + n(k)

1 + n

0

1

(k)

' z(k) + fn(k)� z(k)n

0

1

(k)g (28)

and the noise power becomes �

2

(1 + �

2

z

=jz

p

j

2

) where �

2

z

is

the power of z(k).

Thus, D

2

becomes

D

2

= 10 log

�

1 +

�

2

z

jz

p

j

2

�

dB: (29)

If we assume that all symbols are generated with the equiv-

alent probability, the variance becomes �

2

z

=jz

p

j

2

= 5=9; for

example, if �

2

z

= 1 then jz

p

j

2

= 9=5, and D

2

is about 1:92

dB.

In the case of N = 16, D

1

is about 0:28 dB and the total

degradation becomes about 2:2 dB.

Fig. 8 shows the result of the computer simulation in

the AWGN channel environment. The values of N = 16,

N

p

= 16, and T

s

= 1=16k sec are adopted. The degra-

dation is almost the same as the theoretical one calculated

above, and the BER performances with three window func-

tions are almost the same. The rectangle function in Fig.

8 means that no window function is used, which was de-

scribed in [11].
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Fig. 8. BER performance of proposed scheme in AWGN channel.
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Fig. 9. E�ect of the window functions.

IV. BER Performance in Rayleigh Channel

In this section we show the results of the computer sim-

ulations in Rayleigh channel with several di�erent channel

conditions.

The main restriction of the proposed method is Eq.

(1), and the main parameters are N , N

p

, and f

D

T

s

. By

changing the values of these parameters, we can apply this

scheme in various fading environments.

A. Selecting a Window Function

To compare the performance of estimation with a variety

of window functions, we calculate the BER performance

versus the fading pitch (Fig. 9), where N = 16, N

p

= 16,

and E

b

=N

0

= 40 dB. We assume that there is no frequency

o�set in the received signal.

In Fig. 9, the theoretical limit of Eq. (1) is f

D

T

s

= 1=32,

which is f

D

= 500 Hz supposing T

s

= 1=16k sec, and the

Gaussian function is the second-order Gaussian interpola-

tion in [2]. In a relatively fast fading environment, fading

estimation is greatly improved with the proposed scheme,

compared with the conventional one; e.g., the Gaussian

interpolation. However, the proposed scheme needs more

pilot symbols. It needs to process 2NN

p

symbols at a time

for estimation and calculation. As a result, there must be
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Fig. 10. BER performance in a relatively fast fading environment.

a large memory in this system and there will be a large cal-

culating delay if N or N

p

is large. In contrast, the second-

order Gaussian scheme processes only (2N +1) symbols at

a time. However, with a parameter of N = 16, N

p

= 16,

and T

s

= 1=16k sec, these NN

p

symbols are 256 and the

cache delay is only 16 msec in the proposed scheme. The

outstanding characteristic of the proposed scheme is that it

can compensate very accurately until the theoretical limit

is approached as shown in Fig. 9.

Next, we select the window functions. In Fig. 9, the

three window functions give near BER performance. Since

the one with the Hanning window function presents the

best performance, we adopt the Hanning window in the

following simulations.

B. BER Performance in a Relatively Fast Fading Environ-

ment

The theoretical BER of 16QAM in a Rayleigh fading

environment is given in [2] by

P

bray

(


0

) =

Z

1

0

1




0

exp

�

�







0

�

P

bnon

(
)d
: (30)

Fig. 10 shows the BER performance in a relatively

fast Rayleigh fading environment where f

D

T

s

= 0:025.

This condition is near the theoretical compensation lim-

it f

D

T

s

= 1=32. The proposed scheme can compensate

almost exactly, and no error 
oor appears even in the high

E

b

=N

0

region with the Hanning function.

The degradation from the theoretical curve is caused by

inserting pilot symbols (D

1

) and the fading estimation er-

ror (D

2

). In the proposed method, this degradation occurs

as follows: If the fading becomes too fast, there is a leak-

age of power components outside the range of G

1

(n) in Eq.

(12), and zero symbols are inserted where they are not e-

qual to zero actually. Then the estimate precision rapidly

worsens near and above the limit of Eq. (1).

However, the degradation of the proposed scheme in Fig.

10 is about 2:2 dB from the theoretical one. This is the

same as in the Gaussian channel shown in Fig. 8. Then,

it can be said that c

0

(k) ' c(k) even in a relatively fast
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Fig. 11. BER performance versus calculating span N
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Fig. 12. BER performance in a relatively slow fading environment.

Rayleigh fading environment; i.e., the proposed scheme can

follow the fast fading.

Fig. 11 shows the BER performance versus the num-

ber of received pilot symbols N

p

used in fading estimation

where E

b

=N

0

= 40 dB, and N = 16. Since the performance

with an N

p

of more than 2

4

= 16 is almost the same even in

a fast fading environment f

D

T

s

= 0:025, we select N

p

= 16

to reduce the calculation in the following.

C. BER Performance in a Relatively Slow Fading Environ-

ment

We showed that the proposed method can compensate

precisely in a relatively fast Rayleigh fading environment.

Next, we consider a relatively slow fading environment with

a rate of f

D

T

s

= 0:005. From Eq. (1), we get N � 100.

Then we letN = 2

6

= 64 and the results of the BER perfor-

mance are shown in Fig. 12. The theoretical degradation

is about 1.99 dB from Eq. (20) and (29).

The proposed method can compensate exactly, and the

degradation is also near to that of the theoretical one. If

we only need to consider the system in slow fading envi-

ronments, we can expand the interval between the pilot

symbols. The tradeo� is a large bu�er memory and a cal-

culating delay because the frame length becomes long.
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Fig. 14. Compensated frame ratio r.

Fig. 13 shows the BER performance versus the pilot

symbol space N with the parameter of f

D

T

s

. The theo-

retical limit is N � 20 when f

D

T

s

= 0:025, and N � 100

when f

D

T

s

= 0:005. Beyond these limits, the BER per-

formances degrade sharply (Fig. 13). However, it can be

seen that the performance is independent of N within the

limit. Thus, we can set up the pilot symbol space as large

as possible.

D. E�ect of the Ratio Between the Compensated Frame

and the Whole 2N

p

Frame

Up to now, a �xed ratio of 1=2 of the compensated frames

to the whole 2N

p

calculating frames, as shown in Fig. 7,

has been adopted. This ratio can be increased to improve

e�ciency. However, it must take values less than 1, be-

cause the value of 1 implies that the end point of a window

function to be divided takes zero value. We compare the

performance with various ratio r, which is de�ned in the

following referring to Fig. 14:

r =

N

c

2N

p

: (31)

Fig. 15 shows the BER performance versus the ratio r with

the parameter of E

b

=N

0

= 40 dB. The BER performance

becomes worse as r closes to 1 especially when f

D

T

s

is

0:025. This degradation is caused by the alias e�ect and the

e�ect of the AWGN. The alias e�ect becomes stronger and

stronger as both ends of the frames are approached. When

a large r is adopted, these end points are used, which results
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Fig. 15. BER performance versus frame ratio r.

in degradation. Moreover, since the value of the end point

of the window function decreases for large r, and because

this small value is used in division as a denominator in

Eq. (15), the in
uence of AWGN also becomes relatively

stronger.

Although the frame ratio of r = 1=2 is adopted in the

continuing calculations, r may be increased to a degree of

3=4 because the degradation against the ratio r is negligible

when f

D

T

S

is small such as 0:005.

E. BER Performance in Fading Environments with Fre-

quency O�set

Next we consider the carrier o�set. The power spectrum

of c(t) including a carrier o�set is given by

S(f) =

b

0

�f

D

r

1�

�

f�f

off

f

D

�

2

(32)

(�f

D

� f � f

off

� f

D

)

where b

0

is the mean received power and f

off

is the residual

frequency o�set. From this equation, we know that we

can compensate with the proposed scheme if the shifted

spectrum is within the range of the Nyquist rate. Then,

the sampling theorem including the carrier o�set is given

by

(f

D

+ f

off

)T

s

�

1

2N

: (33)

Fig. 16 shows the BER performance versus (f

D

+ f

off

)T

s

with a parameter of f

D

where E

b

=N

0

= 40 dB.

Naturally, the BER curve is similar to that of Fig. 9,

and until near the limit of Eq. (33) the fading estimation

is carried out almost exactly. It is also shown that the BER

performance is almost 
at against f

off

in this range. The

possible f

off

range of the compensation is dependent on

f

D

. If f

D

is small, the range becomes wide within the limit,

and it becomes narrow with the large f

D

. For example, at

f

D

T

s

= 0:005, the tolerance of f

off

is 340 Hz for BER=

10

�4

, and this value decreases to 20 Hz at f

D

T

s

= 0:025.

As an example, the BER performance with the parameters
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Fig. 17. BER performance in fading and frequency o�set environ-

ment.

of f

D

T

s

= 0:005, and f

off

= 240 Hz is shown in Fig. 17.

It is shown that the proposed method can compensate the

Rayleigh channel with frequency o�set until the Nyquist

rate is approached.

V. Conclusions

A fading compensation scheme using FFT was proposed

and applied to 16QAM. This proposed scheme is a kind of

PSAM. The main di�erence from the conventional PSAM

scheme is that the proposed scheme interpolates received

pilot symbols in the frequency domain instead of the time

domain. The fading series becomes easier to deal with by

translating received pilot symbols into the frequency do-

main by FFT, and the zero insertion outside of the band-

width of the fading in the frequency domain is identical

to the interpolation between the pilot symbols in the time

domain. Since only zero insertion is needed, the proposed

scheme is simple.

Changing the number of N

p

when the interpolation is

carried out is equivalent to changing the dimension of the

interpolating function in the conventional method. It is d-

i�cult to consider the high order interpolating function in

the time domain because of the complexity of the coe�-

cient. However, it is possible to take a large N

p

with the

proposed method because the increase of N

p

only changes

the size of the calculation on FFT, and IFFT.

The e�ectiveness of this scheme was veri�ed through

computer simulations. It is shown that this scheme can

compensate exactly until the Nyquist rate is approached.

A certain degree of the frequency o�set can also be com-

pensated, and the possible range of the o�set compensation

depends on f

D

.

Application of this method to other 
at fading such as

a Rician fading is straightforward as long as the fading

is a band-limited process. Furthermore, this scheme can

be applied to other modulations almost without changing,

though only a 16QAM constellation has been studied in

this paper.
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