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SUMMARY Recently, the quantum information theory at-
tracts much attention. In quantum information theory, the ex-
istence of superadditivity in capacity of a quantum channel was
foreseen conventionally [1], [2]. So far, some examples of codes
which show the superadditivity in capacity have been clarified [3],
[4]. However in present stage, characteristics of superadditivity
are not still clear up enough. The reason is as follows. All exam-
ples were shown by calculating the mutual information by quan-
tum combined measurement, so that one had to solve the eigen-
value and the eigenvector problems. In this paper, we construct
a simplification algorithm to calculate the mutual information
by using square-root measurement as decoding process of quan-
tum combined measurement. The eigenvalue and the eigenvector
problems are avoided in the algorithm by using group covariancy
of binary linear codes [5], [6]. Moreover, we derive the analytical
solution of the mutual information for parity check codes with any
length as an example of applying the simplification algorithm.
key words: quantum information theory, channel capacity,
square-root measurement, mutual information, superadditivity

1. Introduction

We consider classical information transmission over a
quantum channel. In quantum information theory, sig-
nals are described as an ensemble of quantum states,
their decoding process is described by quantum mea-
surements. There are some remarkable differences be-
tween the result in quantum and conventional (classi-
cal) information theories. One example is the existence
of the superadditivity in capacity of a quantum chan-
nel [1], [2]. So far some examples of codes which show
the superadditivity in capacity have been clarified [3],
[4]. All examples of superadditivity were shown by
calculating the mutual information by quantum com-
bined measurement. However, according to the reason
that one had to solve the eigenvalue and the eigenvec-
tor problems, the examples is not many enough and
the characteristics of superadditivity is not sufficiently
clarified.

In this paper, we construct a simplification algo-
rithm to calculate the mutual information in order to
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overcome the difficulty of calculation and to show var-
ious examples of the superadditivity. This paper is or-
ganized as follows. First, we refer to the definition of
capacity of a quantum channel and superadditivity in
capacity in Sect. 2. To calculate the mutual information
is meaningful in order to show an example of superad-
ditivity in capacity. In Sect. 3, the ordinary method to
calculate the mutual information by using square-root
measurement as decoding process is explained. Since
the ordinary method has many costs, a cost reduction
method is hoped. In Sect. 4, we show a simplification
algorithm to calculate the mutual information for any
binary linear code even if the code word length is long.
The simplification algorithm gives a general formula of
the mutual information for any linear code. In Sect. 5,
we derive the analytical solution of the mutual informa-
tion for parity check codes as an example of applying
the simplification algorithm. Then, properties of the
mutual information for parity check codes are also con-
sidered. Conclusion is given in Sect. 6.

2. Superadditivity in Capacity of a Quantum
Channel and Mutual Information

In quantum communication systems, a signal is de-
scribed by quantum state ρ̂i with its a priori prob-
abilities ξi. A decision process of these signal states
ρ̂i is described by detection operators {Π̂j} which are
non-negative Π̂j ≥ 0 and satisfy the resolution of the
identity

∑
j Π̂j = Î. Here Î is the identity opera-

tor. Then the mutual information is defined with a
priori probabilities {ξi} and conditional probabilities
{P (j|i) = Trρ̂iΠ̂j} as

I1(X :Y ) =
∑
i

ξi
∑
j

P (j|i) log
[

P (j|i)∑
k ξkP (j|k)

]
, (1)

where P (j|i) is the probability that the signal j is cho-
sen when the signal i is true. The maximum value of
the mutual information with respect to detection op-
erators and a priori probabilities is called the capacity
without coding C1:

C1 = max
{ξi}

max
{Π̂j}

I1(X ;Y ). (2)

In binary pure-state case, C1 becomes [7], [8]
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C1 =1+P log P +(1−P )log(1−P ) [bits/letter],(3)

where, P is the error probability in the optimal decision
process. For n-th extension of the signals, Cn is defined
in a similar way in Eq. (2) and called “channel capacity
of code word length n.” And it is known that there
exists superadditivity in capacity [1], [2]:

Cm + Cn ≤ Cm+n [bits]. (4)

For a classical channel, the capacity is additive and
the sign of equality is always attained in Eq. (4). We
can define the limit

C = lim
n→∞

Cn
n

[bits/letter], (5)

that is called “the capacity of the quantum channel.”
Recently Hausladen et al. [9] proved that the capacity
is

C = max
{ξi}

S(ρ̂) ≡ max
{ξi}

[−Tr(ρ̂ log ρ̂)], (6)

ρ̂ =
∑
i

ξiρ̂i, (7)

where S(·) represents the von Neumann entropy. In
order to give an example of the strict superadditivity,
it is sufficient to calculate Cn for general n and show
the inequality Cm + Cn < Cm+n.

However, it is too difficult to calculate the channel
capacity Cn of code word length n, because it includes
double optimizatio n of detection operators and a pri-
ori probabilities. Here, we will calculate the mutual
information In(X ;Y ) which is always smaller than Cn.
Then we show an inequality C1 < In(X ;Y )/n. This
ensures the strict superadditivity as

C1 <
In(X ;Y )

n
≤ Cn

n
[bits/letter]. (8)

3. Mutual Information by Square-Root Mea-
surement

Square-root measurement (srm) is known as a typical
quantum combined measurement. Square-root mea-
surement {Π̂

(srm)
j } for pure-state signals {|ψi〉 |i =

0, 1, · · ·M − 1} when ξi = 1
M is defined as follows:

Π̂
(srm)
j = |µj〉〈µj |, j = 0, 1, · · · , M − 1, (9)

|µj〉 = Φ̂− 1
2
√

ξj |ψj〉, (10)

Φ̂ =
M−1∑
i=0

ξi|ψi〉〈ψi|. (11)

It is known that the srm is the minimum error decoding
process for covariant signals with respect to a group
with the operation “Exclusive-OR” when each signal
has equal a priori probability [3], [6]. So we employ the
srm as the quantum combined measurement.

In general, the calculation of a channel matrix in
the srm is difficult because one has to calculate square-
root of the Gram operator. However one can easily
calculate the channel matrix under a certain condition
by applying the following lemma.

Lemma 1 (Hausladen, Jozsa et al. [9]): Let {|ψi〉|i =
0,1, · · · ,M−1} be M -ary linearly independent pure-state
signals, and a priori probability of each signal be equal.
Then, the inner product 〈µj |ψi〉 between the measure-
ment quantum state |µj〉 of the srm and the signal |ψi〉
is related to the square-root of the Gram matrix ΓM as

〈µj |ψi〉 = (Γ
1
2
M )i,j , (12)

where (ΓM )i,j = 〈ψi|ψj〉.
Let us consider a code generated by m-th exten-

sion of letter states {|0〉, |1〉} corresponding to classical
letters 0 and 1 and selection of M = 2n code words
from the 2m possible sequences of length m. Then,
the Gram matrix Γ2n and the conditional probability
P (j|i) a element of channel matrix [P (j|i)] for the code
are

Γ2n = [〈ψi|ψj〉], (13)

P (j|i) = Tr|ψi〉〈ψi|Π̂(srm)
j

= |〈µj |ψi〉|2 = |(Γ frac12
2n )i,j |2, (14)

which are obtained by calculating the square-root of the
Gram matrix. Moreover, each elements of the Gram
matrix is represented by the inner product κ = 〈0|1〉
and the Hamming distance dH(ψi, ψj) between classical
code words which correspond to code word states |ψi〉
and |ψj〉;

(Γ2n)i,j = 〈ψi|ψj〉 = κdH(ψi,ψj), (15)

where the inner product κ is assumed to be real. Us-
ing Eq. (14), the mutual information when the srm is
applied becomes

Im(X ;Y ) =
1
2n

2n−1∑
i=0

2n−1∑
j=0

P (j|i){log P (j|i) + n
}
,(16)

where it is assumed that a priori probabilities of all code
words are ξi = 1

2n . However if the number of the code
words increases, to calculate the above quantity is very
tedious job. Because the calculation of the square-root
of the Gram matrix still remains the eigenvalue and the
eigenvector problems.

4. Simplification Algorithm for Calculating the
Mutual Information

We would like to consider a possibility of calculating a
mutual information for quantum code words with long
length. Here we restrict the case of linear codes in
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which the number of code words is M = 2n. In this
case the code is group covariant with respect to a group
with Exclusive-OR ⊕. So that, we have the following
relations [5], [6]:

∀i, j, k ∈ {0, 1, · · · , 2n − 1},

(Γ2n)i,j = (Γ2n)k⊕i,k⊕j = (Γ2n)0,i⊕j , (17)

(Γ
1
2
2n)i,j = (Γ

1
2
2n)k⊕i,k⊕j = (Γ

1
2
2n)0,i⊕j . (18)

From Eqs. (14) and (18), an element of the channel
matrix by the srm is

P (j|i) = P (i ⊕ j|0) = P (j′|0), (19)

where j′ = i⊕ j (j = 0, 1, · · · , 2n−1). Then the mutual
information can be described as

Im(X ;Y ) = n +
1
2n

2n−1∑
i=0

2n−1∑
j′=0

P (j′|0) logP (j′|0)

= n +
2n−1∑
j=0

P (j|0) log P (j|0). (20)

Therefore, the mutual information can be calculated
by only calculating the 0-th row of the channel matrix
P (j|0), that is, it is sufficient to calculate the 0-th row
of the square-root of the Gram matrix (Γ

1
2
2n)0,j .

Now, we consider the calculation of the square-
root of the Gram matrix. Let a

(k)
j be a (0, j) element

of the Gram matrix Γ2k . Then the Gram matrix is
represented as

Γ2k =




a
(k)
0 a

(k)
1 . . . a

(k)

2k−1

a
(k)
1 a

(k)
0 . . . a

(k)

2k−2
...

...
. . .

...
a
(k)

2k−1
a
(k)

2k−2
. . . a

(k)
0


 . (21)

Similarly, let x
(k)
j be a (0, j) element of the square-

root of the Gram matrix Γ
1
2
2k and the matrix is repre-

sented as

Γ
1
2
2k =




x
(k)
0 x

(k)
1 . . . x

(k)

2k−1

x
(k)
1 x

(k)
0 . . . x

(k)

2k−2
...

...
. . .

...
x

(k)

2k−1
x

(k)

2k−2
. . . x

(k)
0


 . (22)

Since each element of the square-root of the Gram ma-
trix can be represented by only the elements of the
Gram matrix, we have

x
(k)
j = x

(k)
j (a(k)

0 , a
(k)
1 , · · · , a(k)

2k−1
). (23)

When k = 0, the right hand side in Eq. (23) be-
comes simply a square-root. So we have

x
(0)
j = x

(0)
j (a(0)

0 ) = {a
(0)
0 } 1

2 , j = 0. (24)

On the other hand, if k > 0, the Gram matrices for
codes with 2k code words can be partitioned into a
block matrix as

Γ2k =
[

A B
B A

]
, (25)

where A and B are 2k−1 × 2k−1 submatrices [5], [6]. It
is well known that addition, subtraction, and multipli-
cation of a block matrix can be performed by regarding
the matrix blocks as matrix elements. So the square-
root of the matrix (25) is

Γ
1
2
2k =

[
X Y
Y X

]
, (26)

where

X =
1
2
{(A + B)

1
2 + (A − B)

1
2 }, (27)

Y =
1
2
{(A + B)

1
2 − (A − B)

1
2 }, (28)

are 2k−1 × 2k−1 matrices. Here the condition

A ≥ B ≥ 0 (29)

must be satisfied for uniqueness of X and Y . Using the
above equations, the 0-th row of the square-root of the
Gram matrix is represented as follows:

(1) 0 ≤ j ≤ 2k−1 − 1,

x
(k)
j =

1
2

{
x

(k−1)
j

(
a
(k)
0 + a

(k)

2k−1 , a
(k)
1

+ a
(k)

2k−1+1
, . . . , a

(k)

2k−1−1
+ a

(k)

2k−1

)
+ x

(k−1)
j

(
a
(k)
0 − a

(k)

2k−1 , a
(k)
1

− a
(k)

2k−1+1
, . . . , a

(k)

2k−1−1
− a

(k)

2k−1

)}
, (30)

(2) 2k−1 ≤ j ≤ 2k − 1,

x
(k)
j =

1
2

{
x

(k−1)

j−2k−1

(
a
(k)
0 + a

(k)

2k−1 , a
(k)
1

+ a
(k)

2k−1+1
, . . . , a

(k)

2k−1−1
+ a

(k)

2k−1

)
− x

(k−1)

j−2k−1

(
a
(k)
0 − a

(k)

2k−1 , a
(k)
1

− a
(k)

2k−1+1
, . . . , a

(k)

2k−1−1
− a

(k)

2k−1

)}
. (31)

Applying Eqs. (30) and (31) n times repeatedly,
every elements x

(n)
j of square-root matrix Γ

1
2
2n can be

described by only x
(0)
0 (·).

As a result, we obtain the following formula.

x
(n)
j =

1
2n

2n−1∑
k=0

(−1)wH(j·k)
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×
√√√√2n−1∑

l=0

(−1)wH(k·l)a(n)
l , (32)

here wH(i) denotes Hamming weight of i in binary no-
tation. And j · k means “AND” operation for each
bits when j and k are represented as binary numbers
of n-digits. The answer is unique if Eqs. (27) and (28)
satisfy the condition (29). On the other hand, when
Eqs. (27) and (28) do not satisfy the condition, the an-
swer does not have uniqueness. However, we confirmed
that parity check codes with any length always satisfy
the condition (29) at least.

5. Analytical Solution of the Mutual Informa-
tion for Parity Check Codes

Here we apply the simplification algorithm to derive the
analytical solution of the mutual information for parity
check codes.

In binary linear code with M = 2n code words,
a (0, j) element of the Gram matrix (Γ2n)0,j is repre-
sented as

(Γ2n)0,j = a
(n)
j = κdH(ψ0,ψj), (33)

where κ is the inner product between the letter states
and |ψ0〉 = |0〉 · · · |0〉. dH(ψ0, ψj) is Hamming weight of
the classical code word corresponding to |ψj〉. So there
are n + 1 kinds of a

(n)
j .

Single parity check codes have 2m−1 code words
when code word length is m. Assume that the j-th
code word is defined by adding a parity bit at the end
of the binary notation of the number j. Then the Ham-
ming weight of each code word dH(ψ0, ψj) becomes 2p
when wH(j) = 2p(even) or 2p − 1(odd). So Eq. (33)
is represented by �m2 � + 1 kinds. Therefore, the de-
tail of the square-root in Eq. (32) consists of �m2 � + 1
terms. Here, coefficient of κ2p is the subtraction of the
number of code words with (−1)wH(k·l) = −1 from that
with (−1)wH(k·l) = 1 in code words of Hamming weight
wH(j) = 2p.

Since execution of AND operations between k and
l are performed at the range: l = 0, 1, · · · , 2m−1 − 1,
the square-roots in Eq. (32) are classified by Hamming
weight wH(k) of k in binary notation. Besides, that
is the same between Hamming weight wH(k) = i and
wH(k) = m − i, i = 0, 1, · · · , �m2 � + 1. As a result, the
number of classes of square-root in Eq. (32) is �m2 �+1.

On the other hand, x
(n)
j is also classified by the

Hamming weight of code words by performing AND
operation between j and k(= 0, 1, · · · , 2m−1 − 1). So
the square-root of the Gram matrix consists of only
�m2 �+ 1 elements.

As a result, the mutual information Im(X ;Y ) by
the srm for parity check code with code word length m
is

Fig. 1 The mutual information per letter Im(X; Y )/m for par-
ity check codes (for code word length m = 3,10, and 30) and C1

and C as functions of κ.

Im(X ;Y ) = m − 1 +

m

2 �∑
i=0

(m−1C2i−1 + m−1C2i)

×fm,i(κ) log fm,i(κ)

= m − 1 +

m

2 �∑
i=0

mC2i

×fm,i(κ) log fm,i(κ), (34)

where

fm,i(κ) =

{
1

2m−1

(m−1∑
j=0

(
m−1Cj

−2
i−1∑
k=0

(
2i−1C2k+1 × m−2iCj−2k−1

))

×rm,min(j,m−j)(κ)
)}2

, (35)

rm,j(κ) =

{ 
m
2 �∑

p=0

(
mC2p − 2

j≥2q+1∑
q=0

jC2q+1

×m−jC2p−2q−1

)
κ2p

} 1
2

, (36)

iC−j , iCi+j = 0, j > 0. (37)

Here, the channel matrix relates to fm,i as

P (j|0) = f
m,wH(j)

2 �(κ). (38)

Equation (34) is the analytical solution of the mu-
tual information for parity check codes.

Figure 1 shows the mutual information per letter
for parity check codes Im(X ;Y )/m in comparison with
the capacity C1 without coding and the quantum ca-
pacity C. It can be seen that Im(X ;Y )/m > C1 if κ is
larger than a certain value which depends on the code
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Fig. 2 The ratios of the mutual information per letter for par-
ity check codes to the channel capacity without coding C1 (for
code word length m=3,5,10,20, and 30) as functions of κ.

Fig. 3 Achievement factors (Im(X; Y )/m − C1)/(C − C1) of
superadditivity as functions of κ.

word length m. We call it a threshold point. This en-
sures the strict superadditivity. The longer code word
length is, the smaller threshold point becomes. Con-
cerned with κ, superadditivity is achieved in wide range
when the code word length is long.

Figure 2 shows the ratios Im(X ;Y )/m/C1 of the
mutual information per letter to channel capacity with-
out coding C1 for various length of parity check codes as
functions of the inner product κ. According to Fig. 2,
once the ratio exceeds 1, the ratio never fall below 1
to what kind of large κ in any length. Moreover, the
longer code word length becomes, the more the peak of
the ratio approaches 1 asymptotically.

Figure 3 shows achievement factors (Im(X ;Y )/m−
C1)/(C − C1) for parity check codes with code word
lengths m=3,5,10,20, and 30 as functions of κ. Differ-
ences the mutual information per letter from C1 rep-
resents an amount of the superadditivity. Since the
capacity C is the upper bound for any Im(X ;Y )/m,
Im(X ;Y )/m − C1 never exceed C − C1 and it is equal
to C − C1 in the limit of infinite length of the code.
So C − C1 can be regarded as the target value of the
amount of the superadditivity. Therefore, Fig. 3 de-

scribes how much is the superadditivity achieved to the
“full quantum gain.” According to Fig. 3, the longer
code word length is, the larger achievement factor is.
But the longer code word length is, the faster the mu-
tual information approaches to C1. So the achievement
factor approaches to 0 rapidly when the code word
length is long.

As a result, we must decide the code word length
depending upon the inner product κ of the letter states
when parity check code is employed in order to show the
superadditivity. A parity check code is a single error-
detecting code in classical coding theory. We should
employ a code which has higher error-detecti on and
correction capabilities in order to show higher superad-
ditivit y.

6. Conclusion

In this paper, we have shown the simplification al-
gorithm to calculate mutual information by quantum
combined measurement such as square-root measure-
ment of a binary linear code. The simplification is
based on group covariancy of linear codes. As a result,
we can calculate the square-root of the Gram matrix
without calculating eigenvalues and eigenvectors. This
gives a useful tool to derive an analytical solution of
the mutual information. Then, we applied the algo-
rithm to derive the analytical solution of the mutual
information for parity check codes with any length and
show properties of it.

We will derive the analytical solution of the mu-
tual information for any other code, such as BCH code,
by applying our formula and study a relation between
superadditivity in capacity and error-correction capa-
bility in classical channel of the codes.
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