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SUMMARY The growth and saturation characteristics of an
electromagnetic (EM) wave in a Smith-Purcell free-electron laser
(FEL) with a Bragg cavity are investigated in detail with the
aid of numerical simulation based upon the fluid model of the
electron beam. To analyze the problem, a two-dimensional (2-
D) model of the Smith-Purcell FEL is considered. The model
consists of a planar relativistic electron beam and a parallel plate
metallic waveguide, which has a uniform grating carved on one
plate. For confinement and extraction of EM waves, a Bragg
cavity is formed by a couple of reflector gratings with proper
spatial period and length, which are connected at both ends of
the waveguide. The results of numerical simulation show that
a compact Smith-Purcell FEL can be realized by using a Bragg
cavity composed of metallic gratings.
key words: Bragg cavity, compact lasers, high-power lasers,

metallic gratings, Smith-Purcell FEL

1. Introduction

One of the major topics in recent research of FEL’s is
to realize compact FEL’s [1]–[3], which are desirable
for various applications such as space communications,
high-resolution radars, remote sensing, laser surgeries,
and so forth. In the previous work [4], it was shown that
a compact Cherenkov laser can be realized by using a
Bragg cavity composed of dielectric gratings. For one of
the problems encountered in the Cherenkov laser, how-
ever, it has been known that the slow wave structure
composed of a dielectric-loaded waveguide can cause
dielectric breakdown by being exposed to high inten-
sities of electric field. In addition, for proper opera-
tion, special attention must be paid to drain off elec-
tric charges accumulated on the dielectric surface. To
avoid the problems stated above, we propose in this pa-
per a compact Smith-Purcell FEL with a Bragg cavity,
which uses metallic gratings, instead of dielectrics, for
the slow wave structure. In recent years, it has been
reported that high-power radiation can be generated
at millimeter or submillimeter wavelengths in Smith-
Purcell FEL’s [5]–[10].

For the proposed model of a Smith-Purcell FEL
with a Bragg cavity, the growth and saturation charac-
teristics of the EM wave are investigated in detail with
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the aid of numerical simulation based upon the fluid
model of the electron beam. To analyze the problem,
a 2-D model of the Smith-Purcell FEL is considered.
The 2-D model consists of a planar relativistic electron
beam and a parallel plate waveguide, on one plate of
which a uniform grating is carved, and at both ends of
which a couple of reflector gratings with proper spatial
period and length are connected to form a Bragg cavity.

To prepare for the numerical simulation, we first
show in Sect. 2 the dispersion relation for the coupled
EM and space-charge waves propagated along a planar
relativistic electron beam drifting in a parallel plate
waveguide with a uniform metallic grating. From this
dispersion relation, we obtain the spatial growth rate
for the growing EM waves at a specified frequency.
Next, in Sect. 3, we give the power reflection and trans-
mission coefficients for metallic gratings which form a
Bragg cavity. In Sect. 4, by following the same proce-
dure as used in the previous work [4], taking into ac-
count the decrease in the drift velocity of the electron
beam based on the energy conservation law, we numer-
ically calculate the growing power extracted from the
Bragg cavity. From the numerical analysis, we find that
a compact Smith-Purcell FEL can be realized by using
a Bragg cavity composed of metallic gratings. A brief
conclusion is given in Sect. 5.

2. Dispersion Relation for Coupled Waves

The geometry of the problem is shown in Fig. 1, to-
gether with the coordinate system. The 2-D Smith-
Purcell FEL considered in this paper consists of a par-
allel plate waveguide, which has gratings carved on the

Fig. 1 Geometry of the problem.
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surface of the lower conducting plate, and a planar rela-
tivistic electron beam drifting with velocity V through
it. The separation between two conducting plates is
w, the thickness of a planar electron beam r − q, and
the beam-grating gap q. In the interaction region, the
grating carved on the lower conducting plate has the
period Λa, the slot width sa equal to Λa/2, and the
groove depth d. At both ends of the interaction region,
a couple of reflector gratings with the proper period Λb,
which approximately satisfies the Bragg condition over
a certain frequency range around the operating point,
are connected to form a Bragg cavity. The reflector
gratings are separated from each other by the distance
La. The lengths of the reflector gratings, Li and Lo are
adjusted to gain the required reflection and transmis-
sion coefficients. For simplicity, the electron beam is
assumed to be ion-neutralized, with no magnetostatic
field applied on it.

Let us consider the coupling between a negative-
energy space-charge wave propagated along a relativis-
tic electron beam and a slow EM wave propagated along
a parallel plate waveguide, which has a uniform grating
carved on the lower conducting plate. The basic equa-
tions for the analysis are the Maxwell equations, the
relativistic equation of motion for the electron, and the
equation of continuity for the electron flow [11]. On the
assumption that the slot width sa is much smaller than
the wavelength in free space, the fields in the slot can
be approximately expressed in terms of TEM standing
waves. On the other hand, the fields over the metallic
gratings (both in the vacuum and beam regions) can
be represented in terms of spatial harmonics [12] with
axial wave numbers kn given by

kn = kz +
2nπ
Λa

(n = 0,±1,±2, ...) (1)

kz being the wave number for the coupled wave of the
zeroth order spatial harmonic in the z direction.

By imposing the boundary conditions at the sur-
faces of the electron beam [11], the metallic grating [12],
and the conducting plate on the field components ob-
tained above, we have the following dispersion relation
for the coupled EM and space-charge waves of the TM
mode [10], [13]:
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where ω and c denote the angular frequency and the
speed of light in vacuum, ωp, β and γ being the angu-
lar plasma frequency, the relative drift velocity and the
relativistic factor of the electron beam. The symbols
hyn and kyn are the transverse wave numbers corre-
sponding to the nth spatial harmonic in vacuum and
beam regions, respectively. In a particular range of fre-
quencies, the dispersion relation (2) has two complex
roots for kz which are complex conjugate to each other,
corresponding to growing and decaying waves. The de-
caying wave decays rapidly within a few wavelengths,
while the growing one grows exponentially along the
propagating direction z by the spatial growth rate α
(the imaginary part of kz for the growing wave). The
coupling between the EM wave and the electron beam
is incorporated in the spatial growth rate. By numer-
ically solving the dispersion relation (2), we can find
the spatial growth rate and the longitudinal wave num-
ber for the growing wave in that particular range of
frequencies.

Instead of directly solving (2), however, we can
roughly find the relation between the operating fre-
quency and the longitudinal wave number for the cou-
pled wave in a more simplified manner. First, in the
absence of the electron beam (ωp = 0), the dispersion
relation for the TM polarized EM wave propagated in
a metallic grating waveguide reads

1 − ωsa

c
tan

(
ωd

c

)

·
∞∑

n=−∞

1
hynΛa tanh(hynw)

sinc2
(
knsn

2

)



2096
IEICE TRANS. ELECTRON., VOL.E82–C, NO.11 NOVEMBER 1999

= 0. (4)

On the other hand, the dispersion relation for the space-
charge wave propagated along a relativistic electron
beam in a smooth waveguide with no metallic gratings
takes a simplified form ω−kzV = ±ωp/

√
2γ, which can

be approximated, for the case ωp � ω, as

kz =
ω

V
. (5)

We find that the operating point (ω, kz) is located
around the intersection of the dispersion curves (4) and
(5) on the dispersion diagram. This approximate oper-
ating point is helpful as a starting point in numerically
solving (2) for the actual values of the spatial growth
rate and the longitudinal wave number. The concept
of energy conservation provides us a systematic scheme
to follow the growth of the EM wave and the decrease
in the kinetic energy of the electron beam along the
coupling process. The numerical results are discussed
in Sect. 4.

3. Reflection and Transmission Coefficients of
a Metallic Grating

As shown in Fig. 2, a section of a metallic grating wave-
guide is considered. In our analysis of the Smith-Purcell
FEL with a Bragg cavity, we need to know the power
reflection and transmission coefficients at z = 0 and
z = l. In the section of a metallic grating waveguide
illustrated in Fig. 2, we consider the coupling for the
forward and backward dominant TM modes. Let B+

and B− be the amplitudes of the forward and backward
dominant modes, respectively, which are slowly vary-
ing in the z direction. Then, solving the coupled-mode
equations relating B+ and B− under the assumptions
B+(0) = B(0) at z = 0, and B−(l) = 0 at z = l, we
find [1], [14], [15] that

B−(z) = B(0) · {jκe−j∆kzz sinh[S(z − l)]}/
{−∆kz sinh(Sl) + jS cosh(Sl)}

B+(z) = B(0) · {e+j∆kzz{∆kz sinh[S(z − l)]
+jS cosh[S(z − l)]}}/
{−∆kz sinh(Sl) + jS cosh(Sl)} (6)

Fig. 2 Reflection and transmission by a metallic grating.

with

κ = j
d

πw

(ω/c)2 + k2
z

kz

∆kz = kz − π/Λb

S =
√

|κ|2 − (∆kz)2 (7)

where B(0) is the initial amplitude of the forward wave
entering the metallic grating at z = 0, κ is the coupling
coefficient between the forward and backward dominant
modes, and ∆kz denotes the phase constant mismatch
from the Bragg condition.

From (6), we can define the power reflection coeffi-
cient at z = 0, R and the power transmission coefficient
at z = l, T as
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∣∣∣∣B

−(0)
B(0)
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2
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∣∣∣∣B

+(l)
B(0)

∣∣∣∣
2

, (8)

respectively. From the above equations, we find that
the reflection coefficient has its peak value when the
Bragg condition ∆kz = 0 is satisfied.

4. Growth and Saturation Characteristics

In the Smith-Purcell FEL considered in this paper,
growing waves are generated through the active cou-
pling of an EM wave (positive-energy wave) propagated
along a metallic grating waveguide and a slow space-
charge wave (negative-energy wave) propagated along
a relativistic electron beam. In other words, the growth
of the EM wave is compensated for by the growth of
the negative-energy space-charge wave, corresponding
to the decrease in the kinetic energy of the electron
beam. Thus, the kinetic energy of the electron beam
is transferred to the EM wave through the coupling of
the latter with the negative-energy space-charge wave.

At the time t = 0, let us inject a single EM wave
packet or pulse of fixed center frequency ω and longi-
tudinal length L, which is assumed, for simplicity, to
be shorter than 2La but much longer than the guide
wavelength λg(= 2π/kz), at the entrance of the Bragg
cavity, z = 0 in Fig. 1. Then, according to the pre-
scription of energy conservation and the corresponding
numerical treatment described in the previous work [4],
we numerically follow step by step the gradual growth
and saturation of the EM wave packet which gains en-
ergy from the electron beam while traveling back and
forth between the two metallic-grating mirrors. At the
same time, we also investigate how the EM wave packet
extracted from the Bragg cavity reaches a steady state.
In each transit, the EM wave makes one round trip be-
tween the two metallic-grating mirrors, taking the time
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Table 1 Values of parameters used in numerical simulation.

Waveguide and Bragg Cavity

Separation between Conducting Plates w 3.6 [mm]
Groove Depth of Grating d 0.36 [mm]
Spatial Period of Grating Λa 0.36 [mm]
Separation between Grating Mirrors La 12 [cm]
Spatial Period of Reflector Grating Λb 0.96 [mm]
Length of Reflector Grating 1 Li 1.2 [cm]
Length of Reflector Grating 2 Lo 0.5 [cm]
Electron Beam
Beam Thickness (r − q) 0.36 [mm]
Beam-Grating Gap q 0.36 [mm]
Electron Density N 4.93×109 [/cm3]
Initial Normalized Drift Velocity V0/c 0.82
Plasma Frequency ωp/2π 477 [MHz]
Initial Beam Voltage 382 [kV]
Initial Beam Current 0.7 [A/cm]
EM Wave
Frequency ω/2π 121 [GHz]
Guide wavelength λg 2.02 [mm]
Initial EM Power 10 [µW/cm]

approximately equal to t1 = 2La/V0. In the operation
regime considered in this paper, the EM wave travel-
ing in the forward direction interacts actively with the
electron beam and exponentially grows, gaining energy
from the latter. On the other hand, there is no net en-
ergy transfer from the electron beam to the EM wave
traveling in the backward direction. If we assume that
both the electron beam and the parallel plate waveguide
in Fig. 1 are nondissipative, then the EM wave travels
in the backward direction in the Bragg cavity, retain-
ing the average power. The time that the EM wave
reaches its saturation can be approximately calculated
from tn = (2n − 1)La/V0, where n is the number of
transit for the EM wave to reach its saturation. Thus,
if we wish to have a steady EM pulse extracted from
the Bragg cavity, the relativistic electron beam should
persist for a period of time longer than the saturation
time tn.

The values of parameters used in the numerical
simulation are listed in Table 1. The initial drift ve-
locity of the electron beam and the frequency of the
EM wave are appropriately chosen so that the velocity
matching between them can be satisfied. The operating
frequency picked out in the above manner is 121 GHz,
which corresponds to the guide wavelength of 2.02 mm.
In addition, we chose the length of the reflector grating
at the output side of the Bragg cavity in such a way
that the EM power extracted from it becomes maxi-
mum with the other parameters fixed.

First, we show in Fig. 3 the temporal variation of
the spatial growth rate for the growing wave α. As seen
from Fig. 3, the spatial growth rate gradually decreases
as the beam-wave interaction progresses, and it finally
reduces to zero at the end of the Bragg cavity. At the
initial stage of the interaction, when the level of the EM
power is very low, the spatial growth rate varies only
slightly. However, as the EM wave grows and gradually

Fig. 3 Temporal variation of the spatial growth rate.

Fig. 4 Temporal growth of the EM power in the Bragg cavity.

gets out of synchronism with the electron beam, which
has its drift velocity decreasing along the process, it
decreases more and more rapidly from transit to transit.
At the end of the Bragg cavity, when the spatial growth
rate drops down to zero, the EM wave stops growing
and the extracted EM power gets saturated.

Figure 4 illustrates the temporal growth of the EM
power confined in, and extracted from, the Bragg cav-
ity as the beam-wave interaction progresses. As is evi-
dent from Fig. 4, the growth of the EM wave gradually
slows down and eventually gets saturated with increas-
ing numbers of the transit between the grating mirrors.
With the parameters shown in Table 1, we have about
79 kW/cm and 160 kW/cm, respectively, for the satu-
rated values of the EM power extracted from the Bragg
cavity and the intracavity EM power. The time for the
EM wave to reach its 22nd transit, which is considered
near the saturation time, is about 21.1 µs (with a differ-
ence from the time predicted by tn = (2n−1)La/V0 less
than 0.5%). In the case of a single-pass Smith-Purcell
FEL, the numerical results show that the EM power
gets saturated at z = 0.9m, with the saturated value of
110 kW/cm and the consumed time 3.76 µs.
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Fig. 5 Temporal variation of the drift velocity.

The efficiency of energy transfer η can be calcu-
lated from the kinetic energy change in the relativistic
electron beam, which can directly be found from its
drift velocity, as

η =
W 0

p −Wp

W 0
p

, Wp = (γ − 1)m0c
2 (9)

where Wp denotes the kinetic energy of the electron at
the saturation time (m0 is the rest mass of the electron),
whileW 0

p is that at the initial stage. Figure 5 shows the
temporal variation of the drift velocity of the electron
beam, illustrating how the drift velocity of the electron
beam gradually decreases and finally approaches a sat-
urated value. Here, the efficiency of about 15% can be
achieved in this numerical simulation, where the initial
power of the electron beam is 267 kW/cm. From Figs. 4
and 5, we confirm that the growth of the EM wave is
compensated for by the decrease in the kinetic energy
of the electron beam.

Next, we consider how the power extracted from
the Bragg cavity temporally grows for various values
of the interval between the grating mirrors La. Figure
6 shows the relation between the EM power extracted
from the Bragg cavity and the number of transits. In
our numerical calculations in Fig. 6, the value of the
length of the reflector grating on the output side of the
Bragg cavity Lo is chosen for different values of La in
such a way that the extracted EM power becomes max-
imum in each case. At the output end of our model in
Fig. 1, we have a series of EM pulses separated by the
period of time nearly equal to 2La/V0 while the electron
beam persists if we initially inject a single EM wave
packet or pulse with longitudinal length shorter than
2La at the entrance of the Bragg cavity. Note that the
curves in Fig. 6 were obtained by connecting the peak
values of extracted EM pulses. As seen from Fig. 6, the
extracted EM power gets saturated more rapidly for
the larger values of La, due to the higher gain per tran-
sit. However, the saturated values of the extracted EM

Fig. 6 Temporal growth of the EM power extracted from the
Bragg cavity.

Fig. 7 EM power extracted from the Bragg cavity versus the
length L0 of the reflector grating at the output end.

power can no longer become so high for large values of
La, since in this case the spatial growth rate decreases
rapidly from transit to transit (see Fig. 3). On the other
hand, for a more compact device (for which La becomes
smaller), the gain per transit is pretty low, and this re-
quires much more transits for the EM wave to reach
saturation. As a matter of fact, for too short La, the
electron beam will pass the Bragg cavity before the EM
pulses can reach a steady state. Thus, we should avoid
over-shortening an interval between the grating mirrors
as well.

Finally, we discuss some aspects on the dimensions
for the Bragg reflectors. As the length of a reflector
grating becomes longer, the reflection coefficient be-
comes larger, too. Since there is no need to extract
the EM power from the Bragg cavity at the input end,
we can specify the value of Li such that the reflection
coefficient has its value close to unity. On the other
hand, there is a trade-off in selecting the value of Lo.
We need a large value of reflection coefficient in order
to reflect the EM wave back to be further amplified,
while it is also indispensable to have a sufficient value



THUMVONGSKUL et al: A COMPACT SMITH-PURCELL FEL WITH A BRAGG CAVITY
2099

Fig. 8 EM power extracted from the Bragg cavity versus the
ratio d/w of the reflector grating at the output end.

of transmission coefficient to allow a fraction of the EM
power to be extracted at the output end. In the simu-
lation, as shown in Fig. 7, we find that there is a certain
value of Lo which can overcome this trade-off and gives
us the maximum extracted EM power. Similarly, to
see how the depth d of the reflector grating affects the
output power level, we illustrate in Fig. 8 the relation
between the extracted EM power and the ratio d/w
of the reflector grating at the output end. The ratio
d/w is one of the parameter to specify the value of κ
as shown in (7), and hence its variation can be con-
sidered equivalent to changing κ. Here, the ratio d/w
can be varied only in a small range in order to keep
S = {|κ|2 − (∆kz)2}1/2 as a real number, and thus the
forward and backward waves can couple in the sense
shown in Fig. 2 along the reflector grating. From the
discussion in Sect. 3, we know that different values of
κ can affect the reflection and transmission coefficients
of the EM wave at the Bragg mirror, and hence the re-
sulted output power for the total system. However, we
can conclude from Fig. 8 that the extracted EM power
does not significantly depend on the parameter κ of the
reflector grating, compared with changing the value of
La or Lo (see Figs. 6 and 7).

5. Conclusion

With the aid of numerical simulation based upon the
fluid model of the electron beam, we discussed the
growth and saturation characteristics of the EM wave
in a Smith-Purcell FEL with a Bragg cavity composed
of metallic gratings. For the analysis of the problem,
we considered a 2-D model of the Smith-Purcell FEL.
The 2-D model consists of a planar relativistic electron
beam and a parallel plate waveguide, on one plate of
which a uniform grating is carved, and at both ends of
which reflector gratings with proper period and length
are connected to form a Bragg cavity for confinement
and extraction of the EM wave. In the model specified

above, we initially injected a single EM wave packet or
pulse of fixed frequency and longitudinal length shorter
than twice the interval between the grating mirrors, but
much longer than the guide wavelength of the EM wave,
at the entrance of the Bragg cavity. Then, we numer-
ically followed step by step the beam-wave interaction
process, and clarified how the EM wave packet gradu-
ally grew and finally reached a saturated level while
traveling back and forth between the two metallic-
grating mirrors. At the same time, we also investigated
how the EM wave power extracted from the Bragg cav-
ity reached a steady state. The results of the numerical
simulation demonstrate that a compact Smith-Purcell
FEL can be realized by using a Bragg cavity composed
of metallic gratings.
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