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Large deviation statistics of the energy-flux fluctuation in the shell model of turbulence
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The energy-flux fluctuation in the shell model of turbulence is numerically analyzed from the large deviation
statistical point of view. We first observe that the rate function defined in the inertial range is independent of
the Reynolds number. The rate function derived by the cascade model of the log-Poisson statistics turns out to
be in good agreement with the present numerical result in the region where strong singularity of fluctuation
exits. This fact may imply the universality as well as the robustness of the large deviation statistical quantities
in turbulence.
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The physical process of fully developed turbulence~Rey-
nolds number Re@1) is well established as the energy tran
fer process from the energy injection scaleL to the dissipa-
tion scaleh. The statistical property of turbulence in th
inertial range scalel (h! l !L) will be universal, which is
mainly measured by the two quantities, the longitudinal
locity differencedv l across a distancel and the energy dis
sipatione l averaged over a region of scalel. Much of the
experimental and theoretical research are concerned with
scaling exponentsz(q) andt(q) which characterize the sca
ing behaviors of the structure functions defined as

^udv l uq&;V0
qS l

L D z(q)

, ^e l
q&;e0

qS l

L D t(q)

, ~1!

where ^•••& being the ensemble average,V0 and e0(5eL)
represent the characteristic velocity and energy dissipa
rate with scaleL, respectively. By supposing thate l is spa-
tially uniform provided that the scalel is in the inertial range,
the relationz(q)5q/3 andt(q)50 are derived by Kolmog-
orov ~K41! @1#. However, it is widely known from experi
ments or direct numerical simulations that theq dependences
of z(q) and t(q) are different from the K41 law. This is
noticed as the intermittency problem, and the strong fluct
tions of the velocity field or energy dissipation field ha
been discussed in connection with the intermittent casc
dynamics@2#.

The Kolmogorov 1962 theory~K62! @3#, the first theoret-
ical approach to the intermittency problem, discussed the
tistics of e l in a concrete manner. The key idea is the se
similarity hypothesis on fluctuations of energy dissipatio
Namely, by introducing the ratio ofe l n

(5en) averaged over

the scalel n5l2nL (l.1) and that over the scalel n11,
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5expl~zn!, ~2!

where expl(u)[lu, the statistical property ofzn is supposed
to be random, and is free from the scale leveln. One should
note that Eq.~2! holds forn50,1, . . . , logl(L/h)([N). Let us
introduce the local average value ofzj by z̄n5( j 50

n21zj /n

5(loglen2logle0)/n, wheree05 ē is assumed to be constan
If the probability distribution function~PDF! of zj is sup-
posed to be identical and free fromj, PDF for z̄n , Qn(z)
5^d( z̄n2z)& may obey the normal distribution for a largen
because of the central limit theorem~CLT!. Namely, we sup-
pose that PDF ofen obeys the log-normal distribution. Thi
yields the intermittency exponent ast(q)52mq(q
21)/2 @m[2t(2)# and z(q)5q/32mq(q23)/18 is ob-
tained by using the refined similarity hypothesisdv l
; l 1/3e l

1/3.
The result of K62 is thus characterized by the quadra

curves ofz(q) andt(q). In fact, K62 is considered to be
good approximation for low order moments but not for hi
order ones. This is because the Gaussian characteristic
Qn(z) are limited to the weak fluctuation region, i.e
uz̄n2z* u;O(1/An) with the ensemble averagez* of zn .
Particularly, the statistics of the strong singularity of fluctu
tion cannot be described by the K62 approximation. In su
a case, instead of CLT, one can discuss the nature of PD
utilizing the large deviation theory~LDT!, which is a gener-
alization of CLT @2,4#. LDT insists that PDF ofz̄n asymp-
totically takes the form

Qn~z!}An expl@2S~z!n# ~3!

for n@nc , nc being the correlation step ofzn . The function
S(z), being independent ofn, is called the rate function@2#
or the fluctuation spectrum@4# and characterizes th
asymptotic form of PDF. Ergodicity ofzn requires thatS(z)
is a concave function and takes a minimum value 0 atz* .
Therefore, PDF foren5e0 expl(nz̄n) is written as Pn(e)

x
-
:

R1024 ©2000 The American Physical Society



ce

en

t

o

es

f

w-
r

pt
c

he
n
tis

an
w

ca
y

be
f

eled
e
is-

e
n-
c-

f

in
. So

n-

is

e

,

,
me

l if

e
he

to
urst
it-
re

elf-
s
ate

RAPID COMMUNICATIONS

PRE 61 R1025LARGE DEVIATION STATISTICS OF THE ENERGY- . . .
;expl@2nS„n21 logl(e/e0)…#/(Ane). Since PDF ofen for
small scalel is asymptotically characterized byS(z), S(z)
plays the central role of the fluctuation statistics ofen .
Moreover, the moments defined as^en

q&5e0
q^expl(nqz̄n)&

lead to the characteristic functiont(q) via ^expl(nqz̄n)&
}expl@2nt(q)# for largen. Using Eq.~3!, we get

^en
q&}E expl@2n$S~z!2qz%#dz. ~4!

The above integral is evaluated by the steepest des
method for largen by supposingS9(z).0. We obtain

t~q!5min
ź

@S~ ź!2qź#, ~5!

which is identical to the Legendre transform betwe
$z,S(z)% and$q,t(q)%. SinceS( ź)2qź has the unique mini-
mum at ź5z(q), Eq. ~5! yields t(q)5S„z(q)…2qz(q),
dS(z)/dz5q, z(q)52t8(q) and x(q)5z8(q)52t9(q).
From the data analysis point of view, when we can ge
large amount of data ensemble, the statistical analysis
PDF ofen may be better than calculating all the moments
en . Smallz describes a weak intermittency~laminarlike! sta-
tistics, and a strong intermittency~burst! is characterized by
largez-values. Therefore, the form ofS(z) is directly related
to the realization probability of various intermittent featur
of turbulent field.

When the local scaling exponenta is defined ase l /eL
;( l /L)a21 to discuss the multifractality of the fluctuation o
energy dissipation field, the Hausdorff dimensionf (a) of the
support with the valuea is related toS(z) as @2#

S~z!532 f ~12z!. ~6!

The treatment of intermittency from the present LDT vie
point is thus essentially consistent with the multifractal fo
malism of turbulence@2,5#. One should note that the conce
of the multifractal is not clearly used in the present approa
Namely, it should be stressed that the functionS(z) can be
defined as a self-similarity quantity without connection to t
multifractal structure in real turbulent field. In the prese
Rapid Communication, to analyze the intermittency sta
tics, we directly calculateS(z) by numerically integrating
the shell model of turbulence defined by the physical qu
tities in the wave number space, and compare the result
theories.

There are dynamical models based on the energy cas
picture to understand the turbulence from the dynamical s
tem viewpoint@6#. We take the so-called~GOY! shell model
@7#, which is the dynamical system composed of 2N dimen-
sional differential equations

dun

dt
5 iCn2nkn

2un1dn,4f , ~7!

where Cn5knun11* un12* 2kn21un21* un11* /2
2kn22un21* un22* /2 is the nonlinear term andkn52nk0 (n
51, . . . ,N) corresponds to the wave number of thenth
shell.un is the complex variable assigned to the shell num
n. These equations are regarded as the reduction model o
Navier-Stokes equation~NS!. One of the important differ-
nt
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ences between NS and GOY is the nonlinear terms mod
by the local interaction ofun in the wave number space. Th
intermittent properties of GOY have been extensively d
cussed, e.g., in@8,9# and the scaling exponentz(q) defined
by ^uunuq&;kn

2z(q) in the inertial range turns out to b
anomalous, i.e., different from the K41 law. This fact is co
sistent with the result in real turbulence. Physically, the flu
tuation of energy-flux function

Fn~ t !52kn ImS unun11un121
1

4
un21unun11D ~8!

is more relevant to the intermittency dynamics rather thanun
itself. In the inertial range scale, we expect that^uFnuq&
;kn

2t(q) and z(q)5q/31t(q/3) is established because o
the scaling relationuFnu;knuunu3. Moreover,uFnu is a physi-
cal quantity directly characterizing the cascade dynamics
the inertial range rather than the energy dissipation rate
we investigate the fluctuation property ofuFnu by calculating
S(z).

In GOY, e0 corresponds to the temporal average of e
ergy dissipation ratee(t)5n( i 51

N ki
2uui u2, which is equiva-

lent to ^Fn& in the inertial range. We takêuFnu& instead of
^Fn& to keep the equalityt(1)50, and calculate PDFQn(z)
for z̄n5(log2uFnu2log2^uFnu&)/n to evaluateS(z) by

S~z!.2
1

n
log2 Qn~z!. ~9!

For largen, i.e., in deeper shells in the inertial range, it
expected thatS(z) obtained from Eq.~9! is sufficiently con-
verged@10#. In the present study, we take 107 data points to
construct PDF from the numerical simulation of GOY. Th
parameters are chosen ask05224 and f 55.0(11 i )31023

with the total shell numberN522, n51027 ~RUN1! and
N527,n51029 ~RUN2!. For numerical integration scheme
the second order Adams-Bashforth scheme@6# with the time
increment ofDt55.031025 is used. Under this condition
the inertial range, which is defined as that where long-ti
average ofFn does not practically depend onn, is in n5
5 – 15 for RUN1 andn57220 for RUN2. GenerallyS(z)
obtained via Eq.~9! is not in agreement withS„z(q)… ob-
tained via Legendre transform oft(q) due to the finite size
effect ofn. SoS(z) evaluated fromQn(z) are slightly shifted
along the abscissa so that the minimum position ofS(z)
coincides withz* 5^z̄n& for largen, wherez* is numerically
determined by assuminĝlogluFnu&5z*n1C, C being a con-
stant, in the inertial range. This prescription is not crucia
we are interested in the functional form ofS(z) converged in
the finite inertial rangen.

The temporal evolutions ofFn(t) in the inertial range
shellsn512, 13, and 14 for RUN1 are shown in Fig. 1. Th
dynamics ofFn represents intermittent characteristics in t
process of the energy transfer from a large scale motion
small one, and consists of the two phases, laminar and b
phases. In addition, we observe that the intensity of interm
tent fluctuation is strong in high wave number shells mo
than low wave number ones, which may cause the s
similar statistical nature ofFn with respect to shell variable
with different shell numbers. Figure 2 represents the r
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function obtained by measuringQn(z) for energy-flux fluc-
tuation in Fig. 1. One clearly finds that each rate function
the inertial range shell is on the same curve, which may
the universal function characterizing the intermittent ene

FIG. 1. Time evolutions ofFn(t) in the inertial range shells~a!
n512, ~b! 13, and~c! 14 for RUN1.

FIG. 2. Rate function calculated from Eq.~9! for the data of Fig.
1. Dotted line represents the rate function derived by the S
Leveque model@Eq. ~11!# and the straight line represents the qu
dratic curve around the minimum of data@the Gaussian approxima
tion for Qn(z)].
e
y

cascade dynamics. Moreover we must notice thatS(z) is a
concave function in a wide region. Left edge ofS(z) ap-
proximately takes the formS(z)52a(z2zm) with a posi-
tive constanta and a constantzm . In this region, PDF ofuFnu
is represented asP(uFnu);uFnua21. Numerical result shows
a51, which implies that PDF is finite atuFnu50. This may
originate from the inverse energy cascade process. This
ture is quite different from the statistics of the energy dis
pation rate, which is a positive defined variable, and refle
the characteristics of fluctuation of energy-flux fluctuation.
great interest on the inertial range statistics is the Reyno
number dependence. The converged rate functions in the
ertial range are obtained for two different Re runs~RUN1
and RUN2!. We use the data of the shell numbersn514 and
19 for RUN1 and 2, respectively. Figure 3 clearly shows
converged rate functions are independent ofRe.

Noting the concavityS9(z).0 guaranteed from the nu
merical results, the rate function around its minimum can
approximated as

S~z!'
1

2x~0!
@z2z~0!#2. ~10!

This approximation is limited in the region where CLT ca
be applied. But if we apply the form of Eq.~10! to all the
regions ofz, the relationz(0)52x(0)/2 is required, which
is identical to the K62 theory. In this case, the intermitten
exponent is defined bym5x(0)52t(2) and the quadratic
curve is determined by the one parameterm. Let us give a
comment on the applicability of the asymptotic form of E
~10!. Although z(0) andx(0) have no interrelation in gen
eral, the K62 theory assumes the relationz(0)52x(0)/2
5t(2)/2. This implies that K62 is fitted around the neig
borhood ofz5z(2), not z(0) by defining the intermittency
exponentm[2t(2). Thepresent numerical study givesz*
5z(0)520.31 and 2x(0)/2521/@2S9(z* )#520.38
from Fig. 2, which are clearly different from the predictio
of K62. The quadratic curve obtained from the Gaussian

e-
-

FIG. 3. Rate functions converged in the inertial range for sh
numbersn514,19 for RUN1, 2, respectively.
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proximation around the minimum is shown in Fig. 2. As
natural result, the Gaussian approximation is valid arounz
5z(0) and the fluctuations are characterized by the form
S(z) which is generally different from the quadratic curv
except the neighborhood of the minimum.

If one discusses the statistical law for intermittency
fully developed turbulence from the LDT viewpoint, the fo
lowing two questions arise:~i! Are z(0) and x(0) really
constants in the high Reynolds number limit? and~ii ! how
does S(z) deviate from the quadratic curve predicted
CLT? The first question is connected to the Re depende
of applied region of CLT forS(z). Experimental results de
viate from the log-normal distribution as Re is increas
@11#. If S(z) is well-defined for Re→`, z(0) andx(0) must
be constants. The exponentm, well known as a universa
constant characterizing intermittency, has been investig
in detail, e.g., in@11#, but there is no particular reason wh
all statistics are determined only by one parameterm. We
insist thatz(0) andx(0) are important quantities to invest
gate universal features of intermittency in turbulence. T
point has not been pointed out so far. The second proble
related to the statistical nature of strong or weak singulari
of fluctuations. Various phenomenological cascade mod
are constructed forz(q) or t(q) to explain the experimenta
or numerical simulation results@2#. In this paper, the rate
function S(z) of GOY is compared with that obtained from
the Legendre transformation of the She-Leveque model~SL!
derived by applying the Log-Poisson statistics as the mu
plicative cascade@12#. The SL yields t(q)52gq1g(1
2bq)/(12b) @13#, which explains the results of exper
ments or intermittent scaling of shell models excellent
This is equivalent to
-

,
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S~z!5
z2g

logb F logS ~z2g!~12b!

g logb D21G1
g

12b
. ~11!

Two parameters,g and b, are chosen asg50.625 andb
50.58, which are numerically estimated fromz(q) of GOY
in @9#. The comparison with the present experimental res
is made in Fig. 2. The present result and SL are in go
agreement with each other in the right region ofS(z), i.e., in
the burst dominant region. Characteristics of strong singu
ity of fluctuation are thus excellently explained by SL. O
the other hand, the left region ofS(z) are extremely different
from SL, which implies that the weak singularity of fluctua
tions cannot be described by SL. The feature of SL poin
out above agrees with that from the direct numerical simu
tion of NS @14# or the data analysis of real turbulent flo
@15#.

In this Rapid Communication, we discussed the statist
nature of intermittency of energy-flux fluctuation with th
GOY shell model from the LDT point of view by calculatin
the rate functionS(z) from PDF. We found thatS(z) in the
inertial range is independent ofRe, and thatS(z) for the z
region reflecting the strong singularity of fluctuation agre
quite well with SL. This will support the result of@9# indi-
catingz(q) of GOY is in good agreement with SL. Howeve
SL cannot describe the correct statistics of GOY in a we
singularity region. K62 explains the weak fluctuation stat
tics around the minimum ofS(z) and the strong fluctuation is
described by SL quite well. It is quite natural that each c
cade model usually has its own applicability. It is surely
great challenge to construct a unified cascade model exp
ing all the statistical properties of energy-flux fluctuations
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work was partially supported by Grant-in-Aid for Scientifi
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