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Surface and bulk passivation of GaAs solar cell on Si substrate
by H,+PH; plasma
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A promising passivation method for GaAs solar cell grown on Si subst@&daés/Si solar cellby
phosphine-added hydrogen (PMH,) plasma exposure has been envisaged. The
defect-hydrogenation and the surface-phosphidization effects of GaAs/Si solar cell are realized
simultaneously by this single passivation process. Consequently, surface recombination states are
reduced and the minority carrier lifetime is increased, resulting in a significant reduction in
saturation current densityl§) of the GaAs/Sp—n junction. High open-circuit voltagé.93 V) and

fill factor (80.9%9 are obtained for the PHplasma exposed GaAs/Si solar cells. As a result, the
conversion efficiency is increased from 15.9% to 18.6%. This approach provides a simple and
effective method to improve the photovoltaic properties of GaAs/Si solar cell20@0 American
Institute of Physicg.S0003-695(000)01106-3

In the past several years, even after putting extensivencreased from 15.9% for passivated one to 18.6% for
efforts on reducing the dislocation density to improve thePHs/H, plasma passivated one.
photovoltaic properties of GaAs/Si solar céllajgh density The p*—n GaAs single-junction solar cells with a 50-
of dislocation (exceeding 10 cm™2?) still persists and se- nhm-thick AIGaAs window layer on the top were fabricated
verely restricts practical application of this cell until nw. ©on (100 2° off towards thq011] Si substrate using conven-
Usually, dislocation in GaAs/Si solar cells degrades botHional atmospheric pressure metal organic chemical vapor
short-circuit current densityJ,) and open-circuit voltage 4€POSition(MOCVD). The detailed growth process and the

(V,), especially the open-circuit voltadelt suggests that solar hceII struct_ure are defscrib%d_ eIsewH’erAftebr the
the key to improving the efficiency of GaAs/Si solar cells growth, passivation was performed in a quartz tube at a re-

L . oo duced pressuré~0.1 Torp in the ambient of H or H,
lies in increasing the open-circuit voltage. Pearétral. re- . .

orted that hydrogefH) atoms incorporation is an effective *PHs (10%. The plasma was excited by radio-frequency
P yarog . P i (rf) wave via a copper coil encircling the quartz tube. The
way to passivate the electrical activity of defects and impu

. .  enilavd ‘samples were heated up to 250 °C during the passivation
rity states in GaAs/Si epilayérRecently, we have succeeded ) 5cess. The typical induced rf plasma power and time were

in increasing the conversion efficiency of GaAs/Si solar cellsgg \v and 1 h, respectively. The passivated samples were
through hydrogen plasma exposdr@ut exposure 1o H  annealed in blambient at 450 °C for 10 min. After passiva-
plasma also induced damages to GaAs surface, such @&gn, Auzn/Au and AuSb/Au electrodes were formed by
depletion of arsenic, which removes the beneficial effects ofacuum evaporation for th@*-GaAs contact layer and
H incorporatior® It is reported that phosphoru®) atoms n*-Si substrate, respectively. Finally, antireflection films
effectively passivate the GaAs surface and reduce the surfasgere made of Mgk/ZnS double layers. The total area of the
state density:® Therefore, one can expect that FH, GaAs solar cell was 85 mn?. Four kinds of GaAs/Si solar
plasma exposure would not only hydrogenate the defecgells were fabricatedi) without plasma and annealing treat-
states inside GaAs/Si solar cells, but also make the surfad@ent(cell A); (i) H, plasma exposectell B); (iii) PHs/H;
phosphidization and suppress the plasma-induced damageBlasma exposetcell C); and (iv) PH/H, plasma exposure
In this letter, we report the results of RHH, (PH;/H,  followed by annealing in Blambient at 450 °Gcell D).
=10% in ccm plasma passivation studies performed on PhotoluminescencéPL) spectra were recorded at 4.2 K

GaAs/Si solar cells. Both the surface phosphidization andSing a 514.5 nm Ar-ion lased5.07 Wicnf) as an excita-

defect hydrogenation effects of GaAs/Si solar cells were re'Elon source, and a GaAs photom_ulUpher WERMT) as a
. ; . . detector. Time-resolved photoluminescei€R®PL) was ex-
alized simultaneously in a single plasma exposure process

. e . Cited by a semiconductor laser puls&\=655 nm,
Very high open-circuit voltagey, (0.93 V), and fil factor, duration=50 p9 and the TRPL decay curves were measured

FF (80.999, have been obtained for such a cell and is attrib-using the photon counting method at room temperature. Au-
uted mainly to the drastic decrease in saturation current derb-er electron spectroscogpES) was used to investigate the
sity (Jo). The converse efficiencyF) of GaAs/Si solar cell - comnosition of both the untreated and plasma treated GaAs
surfaces. Forward dark current—voltage-¥) characteris-
3Electronic mail: wang@gamella.elcom.nitech.ac.jp tics of the GaAs/Si solar cells were measured at room tem-
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FIG. 1. PL spectra of GaAs epilayers grown on Si substrate recorded at 4.2

K; (a) as-grown,(b) H, plasma passivated¢) PH;/H, plasma passivated, L.

and(d) PH/H, plasma passivated followed by annealing ip ainbient at Auger Electron Kinetic Energy (eV)

450 °C. Peaks A(1.486 eV} and B (1.468 eV} represent heavy-hole-

associated free-exciton and carbon-impurity-bound exciton peaks, respeE!G. 2. Auger electron spectra for the surfaces of GaAs epilayers da)Si:

tively. as-grown,(b) H, plasma passivatedc) PH;/H, plasma passivated, arid)
PH;/H, plasma passivated followed by annealing inpdbient at 450 °C.

perature. The photovoltaic properties of these cells wer
measured undeAMO, 1 sun conditions at 27 °C using a
solar simulator. The values of the photovoltaic propertie
discussed are active-area values.

Figure 1 shows 4.2 K PL spectra of the unintentionally
dopedn-type GaAs(3 um thick) epilayers on Si substrate.
Two dominant peaks appear for the as-grown sample
heavy-hole-associated free-exciton peak1A485 eV}, and
carbon-bound exciton peak @.468 e\j. Whereas the inte-
grated PL intensity of K plasma passivated sample, Fig.

?he surface and induces some As-related deep damages.
SHowever, after PK/H, plasma exposure, phosphidization of
the GaAs surface results in decrease in intensity of the As
signal along with a significant decrease in O signal as well as
in the appearance of a phosphorus signal at around 119 eV
s(_spectrurrt:, Fig. 2. This can be attributed to replacement of
surface As atoms by P atoms, which forms a passivating
cover layer of gallium phosphide. Furthermore, P atoms

1(b), shows almost no increase. PL intensity of J#H, A s

plasma passivated sample shows a significant increase, as @ \\ '

shown in Fig. 1c), compared to that of the as grown sample, e Ty A ‘W‘,,.-.r\;‘-,,-.a,_,mpnw‘\

Fig. 1(a). It is attributed to a decrease in surface recombina- : w20

tion states caused by surface phosphidization due tg/IRH © . \

plasma exposure which protects the surface from oxidafion. ~ ’ PAon,

However, annealing the RifH, plasma passivated sample at ; (A, “'*"""q-\-""*"«,a‘ yar.o

450 °C in H, ambient decreases the PL intensity, Fi¢d)1 Zolt T 2 45ns )

which suggests that some of the plasma-induced damages are § ® :

activated at this annealing temperature thereby quenching the - N

PL efficiency!! 9 P v g é‘) ?‘»\;‘. avd ’\__ Nn St ‘,f““a»'r'\“,-\x“..
Figure 2 shows the differential Auger electron spectrum . T=2.08 ns

(AES) of as-deposited and plasma passivated GaAs epilayers @ ’

grown on Si. Strong O signal originating from oxygén) L e A \"-.'.n,q,.,-..m - __‘

impurity (at ~510 e\) can be observed for the as-deposited Dol VT RN s

sample(spectruma, Fig. 2, and is due to oxidation of the l' ) | | | ‘ |

GaAs surface which introduces free arsenic and results in 0 5 10 15 20 25

poor surface electronic properties. The plasma exposure

results in a decrease in intensity of the As signal, but no Time (us)

decrease in intensity of the O signal can be observed, as can

be seen in spectruin, Fig. 2, suggesting that hydrogen ter- FIG. 3. Time-resolved PL decay curves of GaAs epilayers on Si, measured
minated GaAs surface is not efficient in preventing the sur2t 00m temperature(@ as-grown, (b) H, plasma passivatedc) PH,

. . . PH;/H,=10%) plasma passivated, artd) PH; plasma passivated fol-
face oxidation. The decrease in As may be due to the rea dowed by annealing in blambient at 450 °C. The solid lines represents fitted

tion of H with GaAs, which depletes the As concentration inresults.
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TABLE I. The photovoltaic properties of GaAs solar cells on Si under 1ANM0D illumination at 27 °C. Cell
A: as-grown cell, cell B: passivated by,lglasma, cell C: passivated by PHH, (PH;/H,=10%) plasma, and
cell D: passivated by PHH, plasma then annealed in,teambient at 450 °C.

Sample No. Jo(Alcm?) Js{mAJcn?) Vol V) FF(%) E(%)
cell A 1.14x10°° 34.08 0.85 73.9 15.9
cell B 7.84x107 10 34.46 0.88 78.6 17.7
cell C 5.72x10° % 33.39 0.93 80.9 18.6
cell D 6.00x10°8 34.32 0.89 78.8 17.9

were reported to fill in the plasma-induced As vacancy andow value of J,, leading to further improvement it

suppress the generation of damatfeAnnealing the phos- (18.6%. However,J . of the PH/H, passivated cell is also
phidized sample at 450 °C for 10 min in,ldmbient reduced suppressed to some degree, which may be due to the forma-
the intensity of P signal to some extent, but the O signal stilkion of 11I-V/P compound thin layer over the AlGaAs win-
remains weaKspectrumd, Fig. 2 showing high stability of  dow layer which causes slightly more photons to be absorbed
the surface phosphidization. in the window layer and reducek,.*® In order to test the

In order to elucidate the passivation effect of nonradia-thermal stability, the PkfH, passivated cell was annealed in
tive recombination centers, we also measured the minority, ambient at 450 °C. The annealed dekll D) still showed
carrier lifetime of GaAs on Si using &-AlGaAs (50 nm/  a very highE¢ (17.9%, suggesting that PHH, plasma pas-
GaAs (1 um) DH structure which is least influenced by the sivation is very useful for practical application, as the pro-
surface conditiort’ The improvement of the slope of TRPL cess temperature of device fabrication is usually below
decay curve is due to the improvement of the bulk minority450 °C.
carrier lifetime of GaAs epilayer on Si. B#H, plasma ex- In summary, using PHH, plasma passivation, the sur-
posure[Fig. 3(c)] has been found to increase the minority face phosphidization and bulk hydrogenation effects of
carrier lifetime more effectively than Hplasma exposure. GaAs/Si solar cells are realized simultaneously. Conse-
This can only be attributed to the passivation of AlGaAs/quently, the saturation current density of the passivated cell
GaAs interfacial defects-related nonradiative recombinations significantly decreased due to reduction of surface recom-
centers by P atoms incorporation, as the P atoms are fourtsination velocity and increase of minority carrier lifetime,
almost concentrated in the surface regiorb0 A) by our  resulting in very highV,. (0.93 V) and FF(80.9 for GaAs/Si
AES depth profiles measurement. Furthermore, this increassolar cell. TheEg is improved from 15.8% to 18.6% with
in the minority carrier lifetime still persists to some extent this single passivation process. ThusaPH, plasma passi-
even after annealing at 450 °C, and is in good agreementation opens an interesting and promising way to improve
with our previous results where we found that the H passithe characteristics of GaAs on Si devices.

vation effect of some deep defects in GaAs/Si epilayer is
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