PHYSICAL REVIEW B VOLUME 61, NUMBER 8 15 FEBRUARY 2000-II
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The transmission and phase-shift spectra for millimeter electromagnetic waves are obtained for a two-
dimensional2D) square lattice array made of;8l, spheres of diameter 3.2 mm. The results are compared
with the theoretical 2D photonic-band structures that take account of the lifetime effect due to the radiative
energy decay. It is found that the incidence-angle dependence of the observed transmission spectra is in
excellent agreement with the calculated in-plane dispersion curves of the photonic bands and that the frequency
dependence of the phase shift agrees well with the calculated lifetime-broadened density of states. The radia-
tive lifetimes of the photonic bands are estimated to be about ten times longer than those of whispering gallery
modes of an isolated sphere, though the magnitudes depend rather strongly on the wave vector and band index.

. INTRODUCTION earlier 1980's’%-2° As this example shows, the optical prop-
erties of lattice of spheres are, with minor quantitative cor-

The band structures of photons in photonic crystals haveection, mostly common to more sophisticated types of arti-
attracted growing interest both theoretically andficial photonic crystal. In this sense, systems of arrayed
technologically* Although experimental endeavors have spheres are of fundamental importance to understand photo-
so far been concentrated on several urgent technologicaic crystals.
objectivest® such as the realization of all-directional stop  This paper deals with the photonic band effects in a
bands and the introduction of a gap mode in a stop B&nd, monolayer square lattice of dielectric spheres. Since the ex-
the future role of photonic crystals is not limited solely to the periments and applications of photonic crystals are usually
field of technology. They will provide us with new topics in made for a slab photonic crystal with thickness of a few or
basic science; the photon localization in an amorphous phoseveral periodicities, they are governed in many ways by the
tonic crystal and the photonic property worthy of the name two-dimensional2D), rather than 3D, properties of photonic
“heavy photon” are two such examples already familiar to bands. The study of the properties of a monolayer system of
us0 spheres, such as the density of states of photonic bands and

Among a number of types of photonic crystals, periodictheir radiative lifetime, thus provides us with good insight
arrays of dielectric spheres are a prototype of photonidnto actual photonic crystals of finite thickness. In a preced-
crystalst!'2 The photonic band effect in such systems hasng companion papef theoretical aspects of the near-field
been under active study both theoretichlf}® and properties of a monolayer of spheres were discussed. The
experimentally:"~?! They are a target of the recent extensivepresent paper treats the far-field properties of the same sys-
studies of the basic properties of photonic crystals, such a&m. We present the experimental results and their theoretical
orthonormality of eigenmode functiod$?? group-  analysis.
theoretical properties and energy flow and birefringené®. The first aim of the present paper is to examine how the
One important advantage of photonic crystals of this cattheory and experiment agree with respect to the dispersion
egory is that their physics is understood by using the ampleelation of photonic bands of the monolayer system. Due to
knowledge of electrons of ordinary solid-state systems, withthe lack of translational invariance, the treatment of the nor-
their dielectric spheres regarded as “optical” atoms. In fact,mal modes of a slab system is nontrivial. We will propose
with such an analogy in mind, the concept of photonic bandseveral theoretical methods to deal with the dispersion rela-
was introduced and formulated by Ohtaka in the latetion and show that the experimental results agree very well
1970's?® Peculiar resonant enhancement in optical pro-with the exact calculation. Another feature of a slab photonic
cesses, the confinement effect of electromagnéii) crystal is a finite lifetime of its normal modes due to the
waves in the terms of today, was already recognized in thenergy leakage out of the system through far-field channels.
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This feature is analogous to the radiative lifetime of whisper-
ing gallery (WG) modes in a spherical microcavity.The
second aim of the present study is to obtain information, both
experimentally and theoretically, on how lifetimes change
when microparticles are assembled together to form a mono-
layer periodic system.

In the experimental papers cited above and other earlier
publications> we find a number of pioneering experiments
for the dispersion relations of photonic crystal of spherical
particles. However, those optical data are all rather poor for
the comparison with the exact theoretical calculation. Our
experiment will be carried out using a monolayer lattice of
Si;N, beads of millimeter size to obtain transmission and
phase-shift spectra of EM waves of mm range. Because of
the scalability of the wavelength of EM fields, the conclu-
sions drawn for the millimeter range should apply to the
photonic band effect in the visible light range. As for the  FIG. 1. Photograph of the monolayer square lattice aN$i
experimental confirmation and analysis of other types okpheres used in the measurement.
photonic crystals, we refer the readers to the work of Rob-

ertsonet al** and a very recent work by Kaet al** _tion axis of the layer fixed in thg direction in the oblique
This paper is arranged as follows. In Sec. Il the experijncidence. An incident wave then excites a 2D photonic band

mental setup used to obtain the millimeter wave spectra ig,ode whose 20 vector is on the symmetry axI&-X of the

presented. The observed transmission and phase-shift spec§ig grillouin zone. Measurements were made for btand

are compared with calculations in Sec. Ill. Several characterp_p0|arized EM waves. The incider8(P) wave produces

istic quantities that are useful for studies on lifetime- only the S (P) polarized transmitted or reflected wave be-

broadened modes are presented in Sec. IV, and their frgm 56 of the mirror symmetry in thez plane of the entire
guency dependences are analyzed in Sec. V for our lattice eometry.

SizN,4 spheres. In Sec. VI, we present the theoretical disper- \yhen the frequencyw/27 of the incident wave is in-

sion curves of damped photonic bands together with the dissreased with a fixed angle of incidenée first-order Bragg

cussion on their lifetime. Section VIl is @ summary of OUr gifraction occurs at the critical frequenay,/2m given by
study. Supplementary description of the phase shifts in "ghbcl27r=c/{aL(1+sin0)}. This gives, for instancew /27
scattering in a monolayer lattice is given in the Appendix.

Il. EXPERIMENTAL PROCEDURES

The building blocks for the monolayer photonic crystal
we used are spherical balls of;Bj, (made by Toshiba Tun-
galoy Co., TD) with diameterd=1/8 inch. The SN, ball
has a fairly high dielectric constaat=8.67(n=2.95) in the
millimeter wavelength region investigated. We have checked
that the loss for the electric field is 48,0 3/mm in the
frequency range w/2m=40-60 GHz examined in the
present study. ThesegBl, balls are used for high-precision
ball bearings and are therefore guaranteed to possess a highly
perfect spherical shape and quite uniform size. Nonunifor-
mity of diameter is less than 0.0005 inches. A monolayer

E®) E(S)

k= (ks 0,k.)

square lattice of lattice constaat =d was made by using 300mm  400mm  400mm — 300mm

25% 25 spheres, as shown in Fig. 1. For the calculations, the

monolayer plane of the spheres was made inxhelane, H

with the x andy axes along the two sides of a square unit

cell. y g q Horn Antenna \ Sample/' Horn Antenna
The intensity and phase-shift spectra were measured si- Lens

multaneously for the transmitted wave, by using a network

analyzer(WILTRON 360B) as a function of the millimeter [
wave frequency for various angles of incidence. The experi- Network Analyzer
mental configuration of the measurement is shown in Fig. 2. WILTRON 360B
Two horn antennas were used to produce a probe EM wave
and to detect the transmission. We used two lendes ( F|G. 2. Experimental configuration to obtain the transmittance
=300 mm) to make a plane-wave incident EM wave and toand phase-shift spectr&(S) and E(P) represents the amplitudes
focus its transmitted component. The plane of incidence o0bf the incident EM wave forS and P polarizations, respectively.
the EM wave was kept in thez plane by keeping the rota- The incident plane is thez plane andd is the angle of incidence.
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frequency range ob/27m=40-60 GHz and the angle range

of #=0°-45°, scanned in the present study, first-order
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FIG. 5. Positions of dips in transmittance Bf wave in the

Bragg diffraction does not occur except in the frequenc)ﬁxperimentm result&a) and the theoretical resulfb). The horizon-

range very neat./27m=60 GHz of oblique incidence with _ : al :
6 above 35°. Therefore, we did not examine the diffractionSt_ep of@ is 3°. The dips are divided roughly into three classes and

effect in this study.

IIl. EXPERIMENTAL RESULTS AND COMPARISON
WITH CALCULATIONS

A. Transmission spectra

Typical experimental results fd*- and S-polarized trans-
mission spectra are shown as functions of frequent@yr in
Figs. 3a) and 4a), respectively, for three incidence angles, dence of the spectra in this region is much greater than that
#=0°,15°, and 30°. When we increagefrom zero, a re-
markable difference betwedhand S polarizations appears. hump appears above the main dip. Presumably, several small
Let us first examine the case Bf We note that the dips at fine structures are superposed upon it. Afcreases, this
6=0° change both in position and shape. &t 15°, differ-
ent structures appear at frequencies near 42 and 44 GHz. Théthe main dip. Atd=30°, a single broad peak is observed
structure of 42 GHz shifts with increasesérand goes out of

Transmittance

R A o AP B

0
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Frequency (GHz)

60 40
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FIG. 4. Transmittance ddwave.(a) and(b) show, respectively, . . . ST _
the experimental and theoretical results for the three incidencéespectively. The reason for plotting the dip positions will be

angles.

tal axis isw/27r, and the vertical axis is the incidence angleThe

given different marks according to their depilsee text

the examined range &= 30°. In contrast, the structure at 44
GHz is not so sensitive t@ and remains at rest &= 30°.

In the higher-frequency regionw{27w=50 GHz), the
spectral features are much more complicated. Due to the
overlapping of considerable background noises, it is no
longer possible to identify fine structures. Also, thelepen-

in the case of a lower-frequency region. &t 15°, a broad

hump becomes broader together with the shift in the position

at w/2m=50 GHz. On both sides of this peak, there are a
pair of dips atw/27w=47 and 53 GHz.

In the spectrum of thé& polarization shown in Fig. @),
the large dip at 49 GHz a#=0° is split into three narrow
dips atd=15°. At =30°, one of these three dips is found at
a low frequency, another at a slightly higher frequency, and
the third (located at the highest frequenagmains at rest at
wl27m=51 GHz. In the frequency range above 50 GHz,
where fine structures are hard to resolvedat0°, a small
dip is seen to develop ai=15° aroundw/2w=57 GHz,
and atd=30°, two small dips are clearly seen near 55 and
58 GHz. Comparing the spectra fé=0°,15°, and 30° in
Figs. 3a) and 4a), we can conclude that the fine structures
in the P and S spectra are quite independent of each other,
although they are identical @&=0°. In Figs. 5 and 6, we
summarize the observed angle dependences oflifein
transmittance, using solid circles, open circles, and crosses,
which stand for the deep, intermediate, and shallow dips,

given in Sec. V. A comparison of Fig.(& and Fig. &a)
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FIG. 6. Positions of dips in transmittance 8fwave in the ex- FIG. 7. Phase of the transmitted amplitude ®mwave. The
perimental result$a) and the theoretical resulfb). See the caption observed resultéa) and theoretical resulté) for incidence angles
of Fig. 5. of 0°,15°, and 30° are given. The vertical axis shows the phase in

units .

SB?CVI\(IF t:;ittt;fgsi:zgg:emeﬁﬁggffsipﬁfet;a \z/ivzzcgn :)Sbtai confine ourselves to th8 phase shift. In the experimental
'?h y 108 tab-k.. rel t for th 9 t', f i r]’esults, the phase decreases with increase of the frequency
€ experimentai-K, relations ior thé respective fineé struc- e g the reference delay of the network analyzer itself. And

tures(dip positions using the relation also the phase-shift signal has a step at eagrs8ift from
© —a to +m. These two factors make the analysis of the
k,=—sin 6. (3.1)  experimental data somewhat controversial. Some steplike
¢ changes in the phase are seefi-atl5° and 30°. It should be

According to Figs. 5 and 6, thie- and S-active dips degen- noted that these abrupt phase changes take place just at the

erate atk,=0, but they split into each component at off- frequency positions of the fine structures in the transmission
normal inxcidencel( £0) spectra, as seen in comparison with Figp)4At #=0°, the
" .

Now we compare these experimental results with theoretS!€ar Step in experiment at 50 GHz is not clearly observable
ical calculations. Calculations were done fa, =d because of the large vertical scale of 4n theoretical cal-

culation.

=3.2 mm ande =8.67. The calculated transmission spectra i , )
are shown in Figs. ®) and 4b) for the P- and Spolarized If the experimental and theoretical phase-shift spectra are

waves, respectively. The theoretical formalisms used in th&ompared carefully, one finds that the agreement is appar-
calculation will be given in Sec. IV. In the high-frequency €Nty not as impressive as the transmission spectra seen in

region (w/2m>55 GHz), several theoretically predicted fine S€C- !l A. However, this does not mean that the present
structures are et to be resolved experimentally. In spite of1€0retical approach involves any significant fault in the

these discrepancies, it is clear that most of the experiment@hase-shift spectra. To avoid the reference delay of network
features, including spectral shapes and angle dependencé‘galyzer’ we plot in Fig. 8 the derivatives of the phase-shift

are reproduced quite well by the theoretical results for bottpPeCtra with respect ta for the case o)=15°. The reso-
polarizations. For instance, the spectra shown in Figs) 5 [Ution is not so good in the frequency range above 55 GHz,

and @b), which display the calculated dip positions as gbut the four Lorentzian peaks pred.icted by thg calculation
function of #, confirm the validity of the present theoretical P€lOW 55 GHz are clearly observed in the experimental data.

analysis. The agreement is remarkable if we consider the fadf Particular, it should be noted that the width and height of

that we used only two material parameters of the diametel€ three peaks around=50 GHz are well reproduced by
d=a, and the dielectric constast the calculation, as far as the relative magnitudes are con-

cerned.
) To summarize the discussion presented in this section, the
B. Phase-shift spectra . .
agreement between the experimental and theoretical results

The observed phase shift of transmitted amplitude relativés good for both the magnitude and phase of the transmission

to that of the incident wave is shown in Fig. 7 for the EM wave. The remaining part of this paper is devoted to the

S-polarized wave, in comparison with the theoretical resultinterpretation of the above results in terms of the monolayer

Since the discussion for thepolarization is similar, we will  photonic band picture.
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0=15(S) ; Eipefimént_ The last e%uation defines two phase srgffs(ﬂz M andN).

K (a) Note thatt{ depends only ot through & -
=1, A The structure factoF' (k) causes the mixing between the
A 7 partial waves in the intersphere scattering. Let
Dbl VUi dd e 25 T'vn.Tam-T'wm » @andTyy describe the mixing with respect
3 ] to the indexB. We introduce a X 2 block matrix defined by

™M 0
t= 0 N
Theory  t
) Puw(K), Tyn(K)
Fym(K),  Tun(k)
where each block is composed of a matrix labeled_byhe
matricest™ andtN are diagonal, with the diagonal element
L L U L k tM or t) defined by Eq(4.3). In terms oft and I'(k), the

0 50 60 infinite series of EqQ.4.1) is now involved in the inverse
matrix B~ (k) defined by

R

d¢/dw (arb. units)

, (4.9

F(k)z(

dp/dw (arb. units)

Frequency (GHz)

FIG. 8. Phasep(w) of transmittedS wave differentiated with B’l(k)=[l —F(k)t]*l. (4.5
respect tow. (@) plots the experimentab derivative for §=15°, o 1
and (b) shows the theoretical results. The definition ¢fw) is It is important to note that the poles of d&t™ are complex

given by Eq.(A12). in general due to the finite lifetime effect.
The transmitted and reflected waves from the 2D lattice
IV. THEORETICAL APPROACHES have the 2D wave vectdk+h outside the system, where
OF FINITE LIFETIME MODES h=(h,,h,) is one of the reciprocal lattice vectors. If
>|k+ hT, channelh is open, that is, channél has an out-

In this section we propose several methods useful in deal-
ing with photonic bands of the present system. These met
ods are analyzed in the next section to examine their mutu
relationship. The quantities to appear are all defined in pre-
vious paper by one of the authdfsFor the notations not
explained fully here, we refer the readers to this reference. EO(r) =E%xdi (k- p+ 3 2)], (4.6)

In an array of spherical particles, the incident EM wave
suffers a sequential Mie scattering by individual particles. Awith  p=(x,y),vg = +(0?—k?) Y2 E;=(E} EJ E)) and
wave eventually going out of the system has rich information Eg| = 1, the transmitted and reflectbdvaves are then given
on the photonic bands specified by the 2D wave vektdne by >, T;.(h0)E) and =; R;.(hO)E',, respectively, with
lateral component of the wave vector of the incident wave. j’=x y z. Here,T;;,(h0) andR;;.(hO) are tensor transmis-

Two factors determine the series of the Mie scattertng; sjon and reflection amplitudes, which take account of the
the t matrix describing the Mie scatteringithin a single infinite series of Eq(4.1). For example,
individual scatterer and’(k), the structure factor for the
propagation of a photoamongthe scatterers in the lattice. a . N
Symbolically, the repetition of the multiple scattering from Tii/(h0)= & Shot+ — Y (k) 7i Y (Kg). (4.7
one sphere to another is represented by the following infinite Yh

series: The point of this explression is that the quantity is a key
B 1 quantity related tB~ ~(k). A rather lengthy relationship be-
{1+ Lkt L)(k)t+- - J=f 1-F(k)t] = 4.1 tween them as well as the definitions of other quantities is
' not reproduced here. The reflection amplitudg (h0) is
In the actual analysid,andI" are given their concrete rep- expressed similarly using; .
resentations in the basis functions of the transverse vector Finally, the transmittancd,, and reflectanceR;, associ-

spherical waves. They are specified by the index(l,m), ated with channeh are given by the following expressions:
which defines the spherical harmoni¢g, (8, ¢) in the usual

oing plane wave, while, itv<<|k+h|, channelh is closed,
1aving only an evanescent wave characterized by an imagi-
ary z component ok+h.

For an incident wavéthe 0 wave of unit amplitude,

o : . L 2
way, and the additional indeg, which specifies for each 2_ : 0
two vector spherical wave$) andN.3* These partial waves Tl 2,: 2‘ Tii (O
(B,L) are not mixed in the single-sphere scattering, that is
2
(BLIUB' L") =65 80t (4.2 IRu?=2 |2 Ri/(hO)E,, 4.9
I i’

with

) The diffracted waves, which arise only in extreme cases
—i . . . L )
B_ X 2i 5B) — 1V 4 in our experiments, are not examined in this study; we thus
i Zw{e p2ior)—1} (4.3 restrict ourselves t¢T,_¢|? and|R,q/? of Eq. (4.8. They
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are denoted hereafter simply B&|? and|Ro|?,|To|? being Here, one comment is in order on the nomenclature of
just the theoretical expression for the data shown in Figs. ®OS for the quantity defined by E@4.10. Strictly speak-
and 4. In what follows, we shall describe a number of theo4ing, N, (w) is theincrementof the density of states for pho-
retical approaches to examine photonic bands of finite lifetons per single sphere relative to that of the free space. Since
time. we are mainly concerned with the photonic bands originating
from the WG modes within the spheres, which is absent in
A. Method using the matrix B (DETB method) the free space, there is no practical problem in calipfw)

. _ , o simply DOS.
The (pqg) matrix element oB~1(k) in Eq. (4.5 is given

by C. Method using the features in|To|?
[B(K)~]pq=Agp/detB(K), 4.9 and |Ry|? spectra (TR method)

) The third method for examining 2D photonic bands is
using the cofactodq,. From Eqs(4.7) and(4.8), the trans-  pased on the transmittance, which exhibits a number of fea-
mittance| To|* and the reflectanckRo|? must exhibit a reso-  yres whose positions gradually changefagries, as shown
nant divergence when dBtk)=0. In other words, the zero iy sec. Il. These shifts are thought to be related to the dis-
points of deB(k) give the eigenfrequencies for the normal persion relation of the eigenphotonic band modes. Plotting
modes of the system. These zero-point frequencies are coifhedipsin transmittancéT,|2, as a function ok, we are able
plex in general, as noted above. The quantifies® and 1o obtain the theoretical band structures. Since the dips in
|Ro|? would otherwise diverge, whem is swept along the | T;|2 correspond to the peaks |Ro|2, we call this method
real axis of the complex frequency plane and crosses the ree TR method. The calculated dispersion relations of our 2D

pole. o monolayer system obtained by the TR method are shown in
The degree of the contribution of each complex pole torigs. gb) and Gb).

the transmitted light is determined by the magnitudes of the
matching quqp, in Eqs.(4.7) and(4.8), with the incoming _ D. Optical DOS method (ODOS method
and outgoing waves. Often there is a case where a certain

pole of 1/detB(k)| fails to survive in the|To|? or |Ro|? The last method is based on the use of the phase shift of
spectra, indicating that this specific mode is inactive to thean incident wave. Detailed analysis is given in the Appendix.
incident EM wave. Whether or not a pole is active to anFor an incident wave of wave vectd= (k,,0), we may
incident EM wave is determined by its group theoreticalsummarize the results as follows.

property(see Ref. 28 If we plot the frequency dependence  The optical density of stat®©DOS is obtained by diago-

of a peak of JdetB(k)| as a function of the wave vecter ~ nalizing the 2<2 matrix (S matrix) defined by using the

= (k¢ k,), we can obtain the theoretical dispersion curvedransmitted and reflected amplitudes of the incident EM
for the corresponding 2D photonic band with a finite life- wave. From the unitarity of th& matrix, two eigenvalues of
time. We refer to this method as the DETB method. Byit are expressed in terms of the eigenphase shifts, which we
means of this method, one is able to plot the dispersioall OPS(optical phase shifis They are classified according

curves forall possible photonic bands, whether optically ac-to the polarization and paritjeither even ¢) or odd (-)
tive or not. with respect to the mirror reflection in they layer] of the

eigenvectors of th& matrix. For a wave vectdk= (k,,0) of

the incident EM wave, directed along the high-symmetry

o ~axis of 2D Brillouin zone, we have four OPS{(k,,w)
The second method for determining the theoretical disperz,q 89(k, , ), since the lack of polarization mixing enables

sion relations is to consider the density of stdf@®©S) of the us to define and diagonalize tiSematrix for each of theP

complex solutions. The DOS of the eigenphotonic band, 4 5 cases. The ODOS of the modes belonging to each
modes is given by the following expressith; symmetry is then expressed by

B. Method using increase in DOS

N( )= (1/7)(dldw)Imlog det 844 8, +tansPAPE (k). 1 9
T g NP (0) == - 5P (ks ),
Here, AP (k) is the matrix element of a:22 block matrix 19
A(K), which is related to the matrik'(k) by the following N 2 ()= ——— 60k, 0), (4.12
relation:

Ni”., (@), for example, being the DOS of the parity pho-
A(k)=T(k)=1. (41D tonic bands, which are active toRxpolarized incident EM

From Egs.(4.3) and (4.11), we see that the determinant in Wave. The total ODOS of the 2D photonic bands is given by

Eq. (4.10 is essentially that for matri8(k) defined by Eq. the sum of these four ODOS..

(4.5). By plotting the peak positions in the DOS spectra for If we calculate (()P?S for a fixed value & and plot the

various values ok, the dispersion curves are again obtained.P€ak positions ofNy ., (w), as a functionw, we can trace

We refer to this method as the DOS method. The width ofthe dispersion curves for the 2D photonic bandstqgbarity

the DOS peak provides, as usual, information on the magniand active to thé& wave, along thd'-X axis of the Brillouin

tude of the lifetime of the corresponding mode. zone. The widths of the ODOS peaks again provide informa-
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FIG. 9. Theoretical frequency dependences tdetB| (a) and
photonic DOS(b) for the square lattice of §N, spheres. The pa-
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The horizontal axis iso/27, and DOS is shown in arbitrary units. ’ ! 9- produ

— _ comparison, which covers all possible photonic modes kof
The 2D wave vector is fixed &=(0.3,0). =(0.3,0).(b), (c), and(d) show, respectively, the frequency depen-

. o : dence of| To|2(0=<|To|?<1),6%") (in units ) and @/dw) & for
tion on their lifetime. We call this method the ODOS ;7 “° "t o "0 ector fixed &t=(0.3,0).(a) and (d) are

method. Note that the ODOS method can cover only thosg, o5, arbitrary units. Iric) and(d), the results fos'") are shown
modes that can be excited optically, because OPS are d.efméga solid curve and those @™ by a dashed curvén units ).
using the Sca}tter.lng data of incident EM waves. The point o he last figure(e) shows thew derivative of the phase of the
th!s method lies in the fact .that the combination of the transy . nsmitted amplitude, defined by E&12). The sum of the results
mitted and reflected amplitudes allows us to separate twg, (q) coincides with(e), verifying the relation given by Eq4.13.
modes of different parities. In this respect, it is interesting to
note that the phase of the transmitted amplitude has a The fine structures are more densely populated and sharper
relationship with OPS expressed tgee the Appendix in the higher-frequency region, in agreement with the obser-
P P vation reported in Sec. lll. Note that in Fig(e, the width of

¢= 80k ,0)+ 80 (ke ,0) (413 each peak is different. For example, the small peakoat
for the phase of the transmittell wave (the superscript =58.5 GHz is not as sharp as the peaks around 55 GHz.
should be changed in the case3)f Namely, the phase of This means that the lifetimes of 2D photonic bands depend
the transmitted amplitude has by itself the information on theon the band index. Also, the peak @t=44 GHz is asym-
sum and fails to distinguish the contributions of different metric, probably due to the overlapping of two Lorentzian
parities. This feature reflects the fact that once an EM wavéeaks. The doublet structure that appearswat47 GHz
comes in, the system no longer has mirror symmetry in thavould merge into a single peak at a value lgf that is
plane z=0. Therefore, the method used above to recoveslightly different from 0.3. This corresponds to a band cross-
mirror symmetry in introducing+ and — OPS is by no ing. Because of the damping effect, it becomes harder near

means ftrivial. the band crossing for the DETB method to distinguish be-
tween the behaviors of the two composite bands.
V. FREQUENCY DEPENDENCE In contrast, the resolution of the DOS method is much
OF VARIOUS QUANTITIES higher, as shown in Fig.(B). The structures at 44 GHz and

58.5 GHz discussed above are clearly resolved by this

The calculated frequency dependence ¢fiétB| in the  method. Also, the doublet structure at 47 GHz in Fi¢p)9
DETB method and that oN,(w) in the DOS method are appears as two distinct peaks ib® It is therefore con-
plotted in Figs. 9a) and 9b), respectively. To obtain them, cluded that the DOS method gives a higher resolution than
we have chosen the valle=(0.3,0) for the wave vectdk  the DETB method. However, the DETB method still works,
normalized by 2r/a_ . In these units, th& point of the first  in view of its general agreement with the results of the DOS
Brillouin zone is located ak=(0.5,0). In both the DETB method.
and DOS methods, the 2D band structure alongt#¢ axis A more extensive comparison of various methods is
is obtained by plotting the peak positions as a functiok,of ~ shown in Figs. 10 and 11 fd? and S polarizations, respec-
The corresponding-6 relations, as measured in Sec. lll, are tively. The DOS spectra shown in Figit9 are reproduced in
obtained by using Eq(3.1). Since the latter are not very Figs. 1Ga) and 11a) for comparison. We plot the depen-
different, we present only the band structures vetsus dence of To|? of the TR method in Fig. 1®), OPS in 1Qc),

A number of sharp fine structures in FigaDare related its w derivative(ODOS in 10(d), and thew derivative of the
to the eigenmode frequencies with a nonzero imaginary parphaseg of the transmitted wave in 18). When Fig. 10b) is
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(100) kz =0.3 (9) which must have been discarded as a false feature in the
sense discussed above.

From the peaks in the ODOS spectra shown in Figdjl0
it is clear that the overlapping doublet peaks in the DOS
spectrumFig. 10@)] at about 44 GHz can be resolved into
two definite peaks having different parities. Note that band
crossing can only occur between bands of different parities.
Thus, we can conclude that the ODOS method allows us to
make the most reliable estimation of bandwidths by resolv-
ing two overlapping bands of different parities.

The half-width of a photonic band is a measure of its
lifetime. The estimated values by the ODOS method are gen-
erally of the order of 0.1 GHz. The band showing the broad-
est half-width (0.5 GH2 of all in the range from 40 to
60 GHz is the one with the lowest frequency. The corre-
sponding Q value is of the order of 10

Figure 1Qe) shows thew derivative of the phase of the

40 45 50 55 60 complex transmitted amplitude f& incident wave. We find
Frequency (GHz) that the peak positions in Fig. () coincide precisely with
those of the DOS spectra given in Fig.(&0and those of the

FIG. 11. Plots for various quantities o& wave with k  ODOS spectra with the results of both parities combined
=(0.3,0). The DOS shown ifie) is the same as Fig. 10)~(€)  together. The latter fact confirms the relation given by Eq.
show the results o6 wave for the same quantities as those in Fig. (4.13.

10. Figure 11 shows the results f& polarization. The top-
most plot[Fig. 11(a)] again shows the DOS profile, as in Fig.
compared with 1@G), we find that some peaks in Fig. @  10. There are several important points worth noting here.
are missing in 1(). The doublet peak of DOS at 47 GHz is First, theS-active ODOS spectra shown in Fig. (L com-
a typical example. From group theory, we know that any 2Dbined with theP-active ODOS shown in Fig. 10) can duly
photonic band of nonzerk is active on thd'-X axis either ~ reproduce all of the whole features of the DOS spectra in
to a P- or Spolarized wavé® Thus, those photonic bands Fi9- 11@. For instance, the double DOS peaks located at
that are missing in the case Bfshould be observable in the 47—48 GHz, which were found to be ma_ctlv_eth:)ozlanzed
case ofS, as we will see shortly in Fig. 11. wave, manifest themselves as distinct dlpe |n|fﬁ'5$ spec-

The important point is that the peaks in the DOS spectrd'@ ©f Swave, showing that any 2D mode is active either to
[Fig. 10@] correspond to the sharp dips in the transmissiorfap or anSwave |n.the oblique case. Secon_d, note that there
spectraFig. 10b)]. Therefore, the plotting of dip positions Is a sharp Lorentziapeakat 52.5 GHz. This very narrow

in transmittance in the TR method, as was done to obtailﬁ)eak is. peculiar in the sense that it shows up not as a dip in
Fig. 5, is concluded to be the rigk;t way of obtaining thetransmlttance; the observation therefore leads us to conclude

di : lati f bhotonic bandé] for th that a DOS peak very often gives rise to a dip in transmit-
ispersion relations of photonic bandiowever, for the tance but sometimes induces a peak in transmittance. As for

broad dip observed at 58 GHz of the transmittance, see th@o other three spectra shown in Figs(d211(e), discus-
discussion below. Note that the corresponding structures giqn similar to the case @@ is possible. ’

. . . 2 3 . . )
show Up as peaks in the reflection spectra, sifit§®  To summarize, the combined use of information on phase
+|Ro|*=1 in the frequency range where there is no dif- and magnitude of a transmitted wave is important for a full
fracted wave. understanding of photonic bands. We can thereby resolve

Next, we turn to the spectra shown in Figs.(d0and  photonic bands of different parities and obtain, accordingly,
10(d), 10(c) for the frequency dependences of the two OPShigher resolution. The band parity is an important factor for
8P and 8™, and 1@d) for their derivatives with respect to determining the crossing or anticrossing effect between two
. There is a stepwise increasedff” at every dip in trans-  approaching bands.
mittance. Note that there is no peak in the ODOS spectra
[Fig. 10d)] at about 48 GHz, where a broad minimum is
seen in the transmission spectrum il)0This implies that  vI. DISPERSION RELATION OF 2D PHOTONIC BANDS
there is noP-active mode in the frequency range from
45-50 GHz, in spite of the apparent existence of a broad dip
in the transmission spectrum; therefore, one must be careful From the theoretical analysis given in the preceding sec-
to interpret the features in the TR spectra since some of thenion, we see that the DETB and DOS methods enable us to
do not correspond to real photonic bands. Such precautioplot the dispersion curves of all possible photonic bands,
should also be taken in the plot of dip positions in Fi(e5 whereas the TR method is able to cover only the modes that
The experimental points at around 50 GHz appear to spliare active to a specific polarization of the incident EM wave
into two branches a#=25°. However, looking at the spectra used. Furthermore, the ODOS method yields the highest
at #=30° in Figs. 3a) and 3b), we find that the lower resolution and enables us to identify the parity of photonic
branch just corresponds to the dip in t[i|? spectrum, bands.

A. Dispersion relation of damped bands
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FIG. 13. Examples of very broad bands with the marks of band-
width attached. The bands that are activeStwave and of odd-
parity symmetry are illustrated.

0.5

FIG. 12. Band structure of a monolayer square lattice @NSi 12 js shown on a magnified scale, where vertical bars are
spheres fok=(k,.,0). The ordinate shows the frequeney2m in  given to illustrate the lifetime-broadened bandwidth; one of

units of GHz and the abscissa is normalized so khat0.5 at theX the threeS_ bands becomes too broad to give the accurate
point of the Brillouin zone. The oblique lines show thek, rela- peak position

tions given by Eq(3.1) for several values of the incidence angle
The bands are classified into four categories according to symmetry o
(see text for the meaning of the four makks B. Lifetime of Bloch waves
_ _ ) ~ For the estimation of the lifetime of WG modes set up in

The dispersion curves of 2D photonic bands are plotted iry djelectric sphere, a well-established method is to differen-
Fig. 12 along thd’-X axis. The result% are obtained from the tjate, with respect te, the phase shifts () andsM(w) of
peak positions of the four ODO$\”/dw and 36'9/dw.  the single-sphere scatterifisee Eq(4.3]. The spectra thus
The solid circlegeven parity and solid trianglegodd parity  optained takes into account the energy leakage of ghe)(
represenP-active photonic bands, while the open circles andywG mode, whose decay constant is identified to be the half-
triangles show the even and o8eictive bands, respectively. \idth of its peak.
The w-k, relations given by Eq(3.1) are drawn for several The theoretical spectra fof! and for &' are shown in

incident angles for comparison with the observations giver]:igs_ 14 and 15, respectively, for a singlgj sphere used
in Figs. 3a) and 4a). Note that only the radiative region in i, the present experiment&) for the magnitudes ang) for
the (k,w) plane, i.e., the left side of the straight liné e frequency derivatives. The features found in the fre-

=k (the gisne for =90°) is accessible by plane-wave inci- guency range from 40 to 60 GHz are attributable to the WG
dent light> The points in the upper right corner, where dif-

fraction occurs due to channel opening, are scattered irregu-

larly because the present ODOS method, which neglects the Ho ‘;:; M <a>?

presence of diffracted light, is not correct théfe. 2a /o3 -//:_:
The experimental points shown in Figs. 3—6 can be well & ;----g=4 s ;1

identified with the theoretical plot of Fig. 12, except for the 3t i

high-frequency region above 55 GHz, where the band popu- =1 P ]

lation is too dense. Let us relate Figabof P wave with the . f P ]

theoretical bands indicated by the filled marks in Fig. 12. In A I ]

Fig. 5 (a), there is a branch that goes out of the measured e e ;'I e ——

lower-frequency limit when#=20°. This branch corre- 2t i (b))

sponds to the lowest band in Fig. 12. The branch next to it in E ': ]

Fig. 5@, whose position is almost independent éf is 8 i

caused by excitation of the two flatbands arouatls 3 i "I

=44 GHz in Fig. 12. These two bands approach each other = /\ t

in the range ofk,=0.2-0.3, which is consistent with the 3 A

experiment of Fig. &) or its theoretical fit of Fig. &). The %‘g . i

branch observed at 49 GHz @+ 0° in Fig. 5a) looks to be o(; — ; 80' i

aP_ (an even-parity-active branch of Fig. 12. It shifts to 0 FrecilgencyG?GHz)
a higher-frequency region with the increaselkqf, and at

about 53 GHz it crossesf_ branch that comes from ezlb_ove, FIG. 14. Calculated phase shifts due to Mie scattering of an
leading to overlapping that produces a single digTigl® i sj;N, single sphere. Th&1 phase shifts are given ite) units

Fig. 5. with their  derivatives in(b) an arbitrary linear scale. The calcu-
There are several branches in Fig. 12 that cannot be fullyation is given for the parameters af=3.1/2 mm ande=8.67

traced even by the ODOS method because of the large broadsed in the present experiment. The frequency range of 40 GHz
ening effect due to a short lifetime. In Fig. 13, a part of Fig. <w/2w<60 GHz is bound by the two bold vertical lines.
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d y ( ) FIG. 16. Band structure of a monolayer square lattice gNSi

FIG. 15. Phase shifts df-type waves and theio derivatives ~ SPheres, as compared with the photonic DOS of a singidl,Si
for an SiN, single sphere. See the caption of Fig. 14 sphere(a) Shows the band structure obtained by plotting the peaks
of 1//detB|. The horizontal axis ofb) shows thew derivatives of

_ . . __the phase shifts in arbitrary units as functionswd2 taken in the
modes of =1,2, and 3. The photonic bands of the 2D Iattlceordinate.(b) Reproduces the sum of tHd and N results[Figs.

we have examined so far are naturally considered to be thf4(b) and 13b)], respectively, for the range of 40 GHz/2m
superpositions of these lifetime-broadened WG modes, with-gq gHz.
their (21 +1)-fold degeneracy lifted partly. From Figs. (b3

and 1%b), the radiative half-widths of the WG modes are yosition and breadth. The observed half-widths of the fine

estimated to be about 5-10 GHz for thg(I=1,2,3) and  gyryctures also show that assembling the spheres into a
for theN modes (=1,2), one order of magnitude larger than jonolayer lattice generally makes the lifetime longer
the widths of the 2D band modes estimated in Sec. V. Thugyoyghly ten timesthan that in a single sphere. In contrast,
our conclusion is that due to the ordering into a 2D periodiGne pand widths due to spatial dispersion of 2D bands are of
lattice, the lifetime _of the WG modes generally becomesihe same order of magnitude as the FWHM of the DOS peak
longer. The reason is that a part of the energy-leakage chags \wG modes. These observations suggest that the dominant
nels is used in forming the 2D hopping of the WG modes orfgnergy-leakage channel is replaced in a periodic monolayer
the 2D dispersion relation of a Bloch wave. However, thepy the hopping motion between particles and that the radia-
lifetime of a 2D Bloch wave is considerably dependent on itsijye decay is greatly suppressed. However, several fine struc-
band index and wave vector. _ tures observed experimentally showed much broader widths
_To make a more detailed comparison of the band structurga, those obtained by calculation. This minor discrepancy is
with the WG modes of an isolated8l, sphere, we repro- |iely attributable to the nonuniformity in samples due to a
duced in Fig. 16 the band structure calculated by the DETPSIight mismatching in the arrangement. The qualitative

method. In contrast to Fig. 12, obtained by the ODOSyngiysis of the effect of the small randomness is difficult in
method, several bands could not be fully traced due to thg,, problem and will be an important future problem.

poorer resolution of the DETB method. In Fig. 16, it is worth Among the various quantities proposed for theoretical
noting that thebandwidthsdue to the full dispersion over the study, the most useful one was found to be the eigenphase
first Brillouin zone are nearly of the same order as theghifts derived by combining transmitted and reflected ampli-
FWHM of the WG peaks of a single sphere. Note also thatqes. By using them, we could identify each @Gpmetimes
the dispersion is quite large for the bands lying in the fre-peay in transmittance with the excitation of a specific 2D
quency range of lower-order modes such Bsl &1,2) and  ppotonic band. The important point of the present analysis is
(M,1=2) of an isolated sphere. In contrast, a group of bandghat various theoretical methods used can be straightfor-
with relatively small dispersion is seen in the higher fre-\yardly applied to a slab photonic crystal of arbitrary thick-
quency region, where a sharp WG modd,(=3) is lo-  pess. Therefore, the ODOS analysis when applied to a slab
cated. In this sense, the magnitudes of the energy leakage ghotonic crystal will play a crucial role in understanding,
the original WG modes are linked with the dispersion curvessay the lasing in it. Of course, the discussions and conclu-
of the 2D photonic bands. sions presented in this paper are equally applicable to optical
spectra obtained for smaller dielectric spheres such as a latex
polymers or SiQ@ particles of diameter in theem (or sub-
Mum) range.
The frequency and incidence-angle dependences of trans-
mission spectra were measured in a millimeter wave region
on the monolayer of periodically arrayed spheres aNgi
The observed results were compared with the theoretical cal- Considertwo plane-wave lights that are incident on a 2D
culations. It was found that the observed features in transarray of spheres simultaneously from above and below. Their
mission spectra coincide with the theoretical spectra, both immplitudes are taken to ba (from below and b (from

VIl. SUMMARY

APPENDIX
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b the case oP, bothe, ande_ lie within the xz plane, while
e_>\ e+>/ in the case of, they are in the direction. The second terms
Ta, Rb in Eq. (A1) represent the scattered waves. Denoting their
amplitudes a$s, andS_, we have

:(T R

m S 2 A2
S_ R T/\b) (A2)
Ra, Tb . .
e, So far, the amplitudea andb can be arbitrary. From now
a e. on, we choosa andb so that the column vectoa(b)' is an

eigenvector of the 2 matrix, theS matrix, of Eq.(A2).

FIG. 17. Two incident waves from= *« and their reflected Then we have
and transmitted components used in introducing the optical phase
shifts. The vectorg.. are unit vectors specifying the polarization of S a
wave. They are symmetric with respect to mirror reflection in the S =\ b
xy plane. The drawing is given for tHe-polarized waves to intro-
duce 5 and 5. In the case of,e. is in they direction, i.e., ~ Wwith an eigenvalue. of the S matrix, which, from the uni-
normal to the incidence plane. tarity of the S matrix, is expressed as

(A3)

. . . — A2i8
above. The plane of incidence of waves is assumed to be in A=e"’ (A4)
thexz plane, as in the text. Let the two waves have the samg gy a given set oT andR of the S matrix, two values are

polarization, eitherP or S, and 3D wave vectorsk(,0,  gptained for the eigen phase-shifts. Let us denote thef as

+Kk,) . Th(=T case for thé’.polarization is illustrated in Fig. 17.  andq s . which we call OPS in the text. They depend on the
For simplicity, we consider the frequency range where therg,cigent polarization through andR. It follows that
is no Bragg diffraction. Polarization is conserved in the

course of scattering for a lateral wave vedtan the mirror e?%=T+R forthe [+] eigenvector defined as
plane as in our case. Let tilsealarand complexcoefficients

of the transmission and reflection of the wavesThend R, 1

respectively. For the treatment of arbitrdnand w, where a (a,b)} :E(lil)t.

number of open diffraction channels are allowed to open and
the polarization mixing is taken into account, see the com-
ment given in Ref. 36. Far away from the 2D array, the field
is then expressed as

e?>-=T—R forthe [—] eigenvector defined as

(a,b)‘,zi(l,— 1)t (A5)

2

(ae.e*Z+(aR+bT)e_e *#)e** for z=—o,

(be_e "+ (bR+aT)e, e')e' for z= +;°1 When we put &,b)! of Eq. (A1) equal to &,b)". , we obtain

(AD) two standing waves from EgALl). The+ eigenvector yields
Here,e, ande_ are the unit vectors for the polarizations of a standing wave of even parity with respect to the mirror
the upward and downward incident waves, respectively. Imeflectionz— — z, which is expressed as

E(r)=

iei5+eikxx(e+ei(kzzf5+)+eie*i(kzzfﬁﬂ) for z=—oo,
2
E.(rn= . (AB)
—_aidrglkne gtz 4o g ik 51y for z=+oo,
2

Since €.),=(e )y (€.),= (e )y, and €,),=~(e ), its (e)(|2)sintiel2+5.)
three Cartesian components are written as E,(r):ei‘sfeikxx (e+)y(z/|z|)sin(kz|z| + 57) . (A8)
(e0)xcosklz]+8.) (&) codlkrfzl +o-)

E (r)=g'%+e/kx (es)ycogk,|z|+6.) : (A7) The above forms are equally valid for botR- and

i(e) (2/|2])sin(k,|z| + &) Spolarized waves: In the case & polarization, €.), is

zero, while in the case d® polarization, only they compo-

In the same way, the amplitude,p)'. gives the odd-parity nent remains, because e.(),=(e,),=0. Thus, the
solutionE_(r), which is expressed as S-polarized standing wave contains only the sine or cosine
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function of |z|, whereas theP-polarized one contains both This is just Eq(4.12. The explicitk, andw dependences of
the sine and cosine functions. This should be so becaus@DOS are thus expressed by those of OPS.
V-E.(r)=0 outside the array. Note that the parity refers Next, we relate the phases dandR with OPS. Since the
to the parity of the lateral components of the standing-wave> Matrix of Eq.(A2) is unitary, the quantityr R* is an imagi-
solutions. Note also that thB- and S-polarized standing- Nary quantity, showing thak andR are of the form

wave solutions involve different values of. . Let us clas-

sify them by the symbols'® and 5 ; there are accordingly T=|Tle'’,
four OPS for a giverk,, each giving rise to one standing
wave. R=*i|R|e'?, (A12)

Using these asymptotic forn{&7) and (A8), we can de-
termine the normal-mode frequency by confining the field tog being a real phase of the transmitted amplitddé=rom
the region bounded by two perfect mirrors, placed parallel teq. (A5), it holds that
thexy plane at, sayz= *+Z,Z denoting a point at infinity. At
the mirrors, the field components parallel to the mirror sur- @20 =T+R, (A13)
face must vanish. From E¢A7), we then have

—gi(=d0t )

k,= wlZ—5,1Z, (A9)

L
3

with the phasep, introduced through
for n=0,1,2.... From Eq.(A8), we obtain for the odd-

parity modes, |T|+i|R|=e""%, (A14)

Ke=nmlZ=0_1Z. (A0 \hich holds from the flux conservatiofiT|?+|R|?=1.
Then from the well-known procedure of obtaining the incre- Therefore we find
ment in DOS?” we can obtain the change in the density of

states per sphere due to the presence of the array. Using the p=56,+65_. (A15)
phase shiftss'™ (k,,w) and 6 (k,,w), for w, k, and the
symmetry P,=*) or (S,=), the result is This relation holds for bott and S polarizations. The con-
clusion is that the phase of T of the P wave is 5(f)
NP ()= 1 iﬁ(f)(kx,w), + 6% and that of thes wave is ¥+ 6 ; that is, the fre-
X mTiw ~ quency derivative ofp defined by Eq(A5) gives us thesum
w of + and —ODOS. This completes the derivation of Eq.
S _ s (4.13. The point of making= combinations oflT andR is
Nig) (@)= T £5(¢)(kx @) AL fhat we canpthereby singlegout one of the parities.
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