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Photonic band effects in a two-dimensional array of dielectric spheres
in the millimeter-wave region
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The transmission and phase-shift spectra for millimeter electromagnetic waves are obtained for a two-
dimensional~2D! square lattice array made of Si3N4 spheres of diameter.3.2 mm. The results are compared
with the theoretical 2D photonic-band structures that take account of the lifetime effect due to the radiative
energy decay. It is found that the incidence-angle dependence of the observed transmission spectra is in
excellent agreement with the calculated in-plane dispersion curves of the photonic bands and that the frequency
dependence of the phase shift agrees well with the calculated lifetime-broadened density of states. The radia-
tive lifetimes of the photonic bands are estimated to be about ten times longer than those of whispering gallery
modes of an isolated sphere, though the magnitudes depend rather strongly on the wave vector and band index.
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I. INTRODUCTION

The band structures of photons in photonic crystals h
attracted growing interest both theoretically a
technologically.1–3 Although experimental endeavors ha
so far been concentrated on several urgent technolog
objectives,4–6 such as the realization of all-directional sto
bands and the introduction of a gap mode in a stop ban7,8

the future role of photonic crystals is not limited solely to t
field of technology. They will provide us with new topics i
basic science; the photon localization in an amorphous p
tonic crystal9 and the photonic property worthy of the nam
‘‘heavy photon’’ are two such examples already familiar
us.10

Among a number of types of photonic crystals, period
arrays of dielectric spheres are a prototype of photo
crystals.11,12 The photonic band effect in such systems h
been under active study both theoretically13–16 and
experimentally.17–21They are a target of the recent extensi
studies of the basic properties of photonic crystals, such
orthonormality of eigenmode functions,10,22 group-
theoretical properties,23 and energy flow and birefringence.24

One important advantage of photonic crystals of this c
egory is that their physics is understood by using the am
knowledge of electrons of ordinary solid-state systems, w
their dielectric spheres regarded as ‘‘optical’’ atoms. In fa
with such an analogy in mind, the concept of photonic ba
was introduced and formulated by Ohtaka in the l
1970’s.25 Peculiar resonant enhancement in optical p
cesses, the confinement effect of electromagnetic~EM!
waves in the terms of today, was already recognized in
PRB 610163-1829/2000/61~8!/5267~13!/$15.00
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earlier 1980’s.26–29As this example shows, the optical prop
erties of lattice of spheres are, with minor quantitative c
rection, mostly common to more sophisticated types of a
ficial photonic crystal. In this sense, systems of array
spheres are of fundamental importance to understand ph
nic crystals.

This paper deals with the photonic band effects in
monolayer square lattice of dielectric spheres. Since the
periments and applications of photonic crystals are usu
made for a slab photonic crystal with thickness of a few
several periodicities, they are governed in many ways by
two-dimensional~2D!, rather than 3D, properties of photon
bands. The study of the properties of a monolayer system
spheres, such as the density of states of photonic bands
their radiative lifetime, thus provides us with good insig
into actual photonic crystals of finite thickness. In a prece
ing companion paper,30 theoretical aspects of the near-fie
properties of a monolayer of spheres were discussed.
present paper treats the far-field properties of the same
tem. We present the experimental results and their theore
analysis.

The first aim of the present paper is to examine how
theory and experiment agree with respect to the disper
relation of photonic bands of the monolayer system. Due
the lack of translational invariance, the treatment of the n
mal modes of a slab system is nontrivial. We will propo
several theoretical methods to deal with the dispersion r
tion and show that the experimental results agree very w
with the exact calculation. Another feature of a slab photo
crystal is a finite lifetime of its normal modes due to th
energy leakage out of the system through far-field chann
5267 ©2000 The American Physical Society
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This feature is analogous to the radiative lifetime of whisp
ing gallery ~WG! modes in a spherical microcavity.31 The
second aim of the present study is to obtain information, b
experimentally and theoretically, on how lifetimes chan
when microparticles are assembled together to form a mo
layer periodic system.

In the experimental papers cited above and other ea
publications,3 we find a number of pioneering experimen
for the dispersion relations of photonic crystal of spheri
particles. However, those optical data are all rather poor
the comparison with the exact theoretical calculation. O
experiment will be carried out using a monolayer lattice
Si3N4 beads of millimeter size to obtain transmission a
phase-shift spectra of EM waves of mm range. Becaus
the scalability of the wavelength of EM fields, the concl
sions drawn for the millimeter range should apply to t
photonic band effect in the visible light range. As for th
experimental confirmation and analysis of other types
photonic crystals, we refer the readers to the work of R
ertsonet al.32 and a very recent work by Kaoet al.33

This paper is arranged as follows. In Sec. II the expe
mental setup used to obtain the millimeter wave spectr
presented. The observed transmission and phase-shift sp
are compared with calculations in Sec. III. Several charac
istic quantities that are useful for studies on lifetim
broadened modes are presented in Sec. IV, and their
quency dependences are analyzed in Sec. V for our lattic
Si3N4 spheres. In Sec. VI, we present the theoretical disp
sion curves of damped photonic bands together with the
cussion on their lifetime. Section VII is a summary of o
study. Supplementary description of the phase shifts in li
scattering in a monolayer lattice is given in the Appendix

II. EXPERIMENTAL PROCEDURES

The building blocks for the monolayer photonic crys
we used are spherical balls of Si3N4 ~made by Toshiba Tun
galoy Co., TD.! with diameterd51/8 inch. The Si3N4 ball
has a fairly high dielectric constant«58.67(n52.95) in the
millimeter wavelength region investigated. We have chec
that the loss for the electric field is 4.531023/mm in the
frequency rangev/2p540–60 GHz examined in the
present study. These Si3N4 balls are used for high-precisio
ball bearings and are therefore guaranteed to possess a h
perfect spherical shape and quite uniform size. Nonuni
mity of diameter is less than 0.0005 inches. A monola
square lattice of lattice constantaL5d was made by using
25325 spheres, as shown in Fig. 1. For the calculations,
monolayer plane of the spheres was made in thexy plane,
with the x and y axes along the two sides of a square u
cell.

The intensity and phase-shift spectra were measured
multaneously for the transmitted wave, by using a netw
analyzer~WILTRON 360B! as a function of the millimeter
wave frequency for various angles of incidence. The exp
mental configuration of the measurement is shown in Fig
Two horn antennas were used to produce a probe EM w
and to detect the transmission. We used two lensesf
5300 mm) to make a plane-wave incident EM wave and
focus its transmitted component. The plane of incidence
the EM wave was kept in thexz plane by keeping the rota
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tion axis of the layer fixed in they direction in the oblique
incidence. An incident wave then excites a 2D photonic ba
mode whose 2Dk vector is on the symmetry axisG-X of the
2D Brillouin zone. Measurements were made for bothS- and
P-polarized EM waves. The incidentS(P) wave produces
only the S- ~P! polarized transmitted or reflected wave b
cause of the mirror symmetry in thexz plane of the entire
geometry.

When the frequencyv/2p of the incident wave is in-
creased with a fixed angle of incidenceu, first-order Bragg
diffraction occurs at the critical frequencyvc/2p given by
vc/2p5c/$aL(11sinu)%. This gives, for instance,vc/2p

FIG. 1. Photograph of the monolayer square lattice of Si3N4

spheres used in the measurement.

FIG. 2. Experimental configuration to obtain the transmittan
and phase-shift spectra.E(S) and E(P) represents the amplitude
of the incident EM wave forS and P polarizations, respectively
The incident plane is thexz plane andu is the angle of incidence
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PRB 61 5269PHOTONIC BAND EFFECTS IN A TWO-DIMENSIONAL . . .
596.7 GHz for u50° and 64.5 GHz foru530°. In the
frequency range ofv/2p540–60 GHz and the angle rang
of u50° –45°, scanned in the present study, first-or
Bragg diffraction does not occur except in the frequen
range very nearvc/2p560 GHz of oblique incidence with
u above 35°. Therefore, we did not examine the diffract
effect in this study.

III. EXPERIMENTAL RESULTS AND COMPARISON
WITH CALCULATIONS

A. Transmission spectra

Typical experimental results forP- andS-polarized trans-
mission spectra are shown as functions of frequencyv/2p in
Figs. 3~a! and 4~a!, respectively, for three incidence angle
u50°,15°, and 30°. When we increaseu from zero, a re-
markable difference betweenP andS polarizations appears
Let us first examine the case ofP. We note that the dips a
u50° change both in position and shape. Atu515°, differ-
ent structures appear at frequencies near 42 and 44 GHz
structure of 42 GHz shifts with increases inu and goes out of

FIG. 3. Transmittance ofP wave for a square lattice of Si3N4

spheres.~a! Shows the experimental results for the incidence ang
of 0°,15°, and 30°.~b! Shows the calculated results foruT0u2, in-
troduced after Eq.~4.9!. The horizontal axis represents frequency
the range 40 GHz,v/2p,60 GHz.

FIG. 4. Transmittance ofSwave.~a! and~b! show, respectively,
the experimental and theoretical results for the three incide
angles.
r
y

,

he

the examined range atu530°. In contrast, the structure at 4
GHz is not so sensitive tou and remains at rest atu530°.

In the higher-frequency region (v/2p>50 GHz), the
spectral features are much more complicated. Due to
overlapping of considerable background noises, it is
longer possible to identify fine structures. Also, theu depen-
dence of the spectra in this region is much greater than
in the case of a lower-frequency region. Atu515°, a broad
hump appears above the main dip. Presumably, several s
fine structures are superposed upon it. Asu increases, this
hump becomes broader together with the shift in the posi
of the main dip. Atu530°, a single broad peak is observe
at v/2p.50 GHz. On both sides of this peak, there are
pair of dips atv/2p.47 and 53 GHz.

In the spectrum of theS polarization shown in Fig. 4~a!,
the large dip at 49 GHz atu50° is split into three narrow
dips atu515°. At u530°, one of these three dips is found
a low frequency, another at a slightly higher frequency, a
the third~located at the highest frequency! remains at rest a
v/2p.51 GHz. In the frequency range above 50 GH
where fine structures are hard to resolve atu50°, a small
dip is seen to develop atu515° aroundv/2p.57 GHz,
and atu530°, two small dips are clearly seen near 55 a
58 GHz. Comparing the spectra foru50°,15°, and 30° in
Figs. 3~a! and 4~a!, we can conclude that the fine structur
in the P and S spectra are quite independent of each oth
although they are identical atu50°. In Figs. 5 and 6, we
summarize the observed angle dependences of thedips in
transmittance, using solid circles, open circles, and cros
which stand for the deep, intermediate, and shallow d
respectively. The reason for plotting the dip positions will
given in Sec. V. A comparison of Fig. 5~a! and Fig. 6~a!

s

e

FIG. 5. Positions of dips in transmittance ofP wave in the
experimental results~a! and the theoretical results~b!. The horizon-
tal axis isv/2p, and the vertical axis is the incidence angleu. The
step ofu is 3°. The dips are divided roughly into three classes a
given different marks according to their depths~see text!.
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5270 PRB 61K. OHTAKA et al.
shows that the similarity betweenP andSspectra atu50° is
quickly lost asu increases. From these figures, we can obt
the experimentalv-kx relations for the respective fine stru
tures~dip positions! using the relation

kx5
v

c
sinu. ~3.1!

According to Figs. 5 and 6, theP- andS-active dips degen-
erate atkx50, but they split into each component at of
normal incidence (kxÞ0).

Now we compare these experimental results with theo
ical calculations. Calculations were done foraL5d
53.2 mm and«58.67. The calculated transmission spec
are shown in Figs. 3~b! and 4~b! for the P- andS-polarized
waves, respectively. The theoretical formalisms used in
calculation will be given in Sec. IV. In the high-frequenc
region (v/2p.55 GHz), several theoretically predicted fin
structures are yet to be resolved experimentally. In spite
these discrepancies, it is clear that most of the experime
features, including spectral shapes and angle depende
are reproduced quite well by the theoretical results for b
polarizations. For instance, the spectra shown in Figs. 5~b!
and 6~b!, which display the calculated dip positions as
function of u, confirm the validity of the present theoretic
analysis. The agreement is remarkable if we consider the
that we used only two material parameters of the diam
d5aL and the dielectric constant«.

B. Phase-shift spectra

The observed phase shift of transmitted amplitude rela
to that of the incident wave is shown in Fig. 7 for th
S-polarized wave, in comparison with the theoretical res
Since the discussion for theP polarization is similar, we will

FIG. 6. Positions of dips in transmittance ofS wave in the ex-
perimental results~a! and the theoretical results~b!. See the caption
of Fig. 5.
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confine ourselves to theS phase shift. In the experimenta
results, the phase decreases with increase of the frequ
due to the reference delay of the network analyzer itself. A
also the phase-shift signal has a step at each 2p shift from
2p to 1p. These two factors make the analysis of t
experimental data somewhat controversial. Some step
changes in the phase are seen atu515° and 30°. It should be
noted that these abrupt phase changes take place just a
frequency positions of the fine structures in the transmiss
spectra, as seen in comparison with Fig. 4~a!. At u50°, the
clear step in experiment at 50 GHz is not clearly observa
because of the large vertical scale of 4p in theoretical cal-
culation.

If the experimental and theoretical phase-shift spectra
compared carefully, one finds that the agreement is ap
ently not as impressive as the transmission spectra see
Sec. III A. However, this does not mean that the pres
theoretical approach involves any significant fault in t
phase-shift spectra. To avoid the reference delay of netw
analyzer, we plot in Fig. 8 the derivatives of the phase-s
spectra with respect tov for the case ofu515°. The reso-
lution is not so good in the frequency range above 55 G
but the four Lorentzian peaks predicted by the calculat
below 55 GHz are clearly observed in the experimental d
In particular, it should be noted that the width and height
the three peaks aroundv.50 GHz are well reproduced b
the calculation, as far as the relative magnitudes are c
cerned.

To summarize the discussion presented in this section,
agreement between the experimental and theoretical re
is good for both the magnitude and phase of the transmis
EM wave. The remaining part of this paper is devoted to
interpretation of the above results in terms of the monola
photonic band picture.

FIG. 7. Phase of the transmitted amplitude forS wave. The
observed results~a! and theoretical results~b! for incidence angles
of 0°,15°, and 30° are given. The vertical axis shows the phas
units p.
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IV. THEORETICAL APPROACHES
OF FINITE LIFETIME MODES

In this section we propose several methods useful in d
ing with photonic bands of the present system. These m
ods are analyzed in the next section to examine their mu
relationship. The quantities to appear are all defined in p
vious paper by one of the authors.27 For the notations no
explained fully here, we refer the readers to this referenc

In an array of spherical particles, the incident EM wa
suffers a sequential Mie scattering by individual particles
wave eventually going out of the system has rich informat
on the photonic bands specified by the 2D wave vectork, the
lateral component of the wave vector of the incident wav

Two factors determine the series of the Mie scatteringt,
the t matrix describing the Mie scatteringwithin a single
individual scatterer andG(k), the structure factor for the
propagation of a photonamongthe scatterers in the lattice
Symbolically, the repetition of the multiple scattering fro
one sphere to another is represented by the following infi
series:

t@11G~k!t1G~k!tG~k!t1•••#5t@12G~k!t#21.
~4.1!

In the actual analysis,t and G are given their concrete rep
resentations in the basis functions of the transverse ve
spherical waves. They are specified by the indexL5( l ,m),
which defines the spherical harmonicsYlm(u,f) in the usual
way, and the additional indexb, which specifies for eachL
two vector spherical waves,M andN.34 These partial waves
(b,L) are not mixed in the single-sphere scattering, that

^b,Lutub8,L8&5dbb8dLL8tL
b , ~4.2!

with

tL
b5

2 i

2v
$exp~2id l

b!21%. ~4.3!

FIG. 8. Phasef(v) of transmittedS wave differentiated with
respect tov. ~a! plots the experimentalv derivative foru515°,
and ~b! shows the theoretical results. The definition off(v) is
given by Eq.~A12!.
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The last equation defines two phase shiftsd l
b (b5M andN).

Note thattL
b depends only onl throughd l

b .
The structure factorG(k) causes the mixing between th

partial waves in the intersphere scattering. L
GMN ,GNM ,GMM , andGNN describe the mixing with respec
to the indexb. We introduce a 232 block matrix defined by

t5S tM, 0

0, tND ,

G~k!5S GMM~k!, GMN~k!

GNM~k!, GNN~k!
D , ~4.4!

where each block is composed of a matrix labeled byL. The
matricestM and tN are diagonal, with the diagonal eleme
t l
M or t l

N defined by Eq.~4.3!. In terms of t and G(k), the
infinite series of Eq.~4.1! is now involved in the inverse
matrix B21(k) defined by

B21~k!5@ I2G~k!t#21. ~4.5!

It is important to note that the poles of detB21 are complex
in general due to the finite lifetime effect.

The transmitted and reflected waves from the 2D latt
have the 2D wave vectork1h outside the system, wher
h5(hx ,hy) is one of the reciprocal lattice vectors.
v.uk1hu, channelh is open, that is, channelh has an out-
going plane wave, while, ifv,uk1hu, channelh is closed,
having only an evanescent wave characterized by an im
nary z component ofk1h.

For an incident wave~the 0 wave! of unit amplitude,

E0~r!5E0exp@ i ~k•r1g0
1z!#, ~4.6!

with r5(x,y),g0
151(v22k2)1/2,E05(Ex

0 ,Ey
0 ,Ez

0) and
uE0u51, the transmitted and reflectedh waves are then given
by ( i 8Tii 8(h0)Ei 8

0 and ( i 8Rii 8(h0)Ei 8
0 , respectively, with

i ,i 85x,y,z. Here,Tii 8(h0) andRii 8(h0) are tensor transmis
sion and reflection amplitudes, which take account of
infinite series of Eq.~4.1!. For example,

Tii 8~h0!5d i i 8dh01
a

gh
1

Yt~ k̂h
1!ti i 8Y* ~ k̂0

1!. ~4.7!

The point of this expression is that the quantityti i 8 is a key
quantity related toB21(k). A rather lengthy relationship be
tween them as well as the definitions of other quantities
not reproduced here. The reflection amplitudeRii 8(h0) is
expressed similarly usingti i 8 .

Finally, the transmittanceTh and reflectanceRh associ-
ated with channelh are given by the following expressions

uThu25(
i
U(

i 8
Tii 8~h0!Ei 8

0 U2

,

uRhu25(
i
U(

i 8
Rii 8~h0!Ei 8

0 U2

. ~4.8!

The diffracted waves, which arise only in extreme cas
in our experiments, are not examined in this study; we th
restrict ourselves touTh50u2 and uRh50u2 of Eq. ~4.8!. They
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5272 PRB 61K. OHTAKA et al.
are denoted hereafter simply asuT0u2 and uR0u2,uT0u2 being
just the theoretical expression for the data shown in Fig
and 4. In what follows, we shall describe a number of th
retical approaches to examine photonic bands of finite l
time.

A. Method using the matrix B „DETB method…

The (pq) matrix element ofB21(k) in Eq. ~4.5! is given
by

@B~k!21#pq5Dqp /detB~k!, ~4.9!

using the cofactorDqp . From Eqs.~4.7! and~4.8!, the trans-
mittanceuT0u2 and the reflectanceuR0u2 must exhibit a reso-
nant divergence when detB(k)50. In other words, the zero
points of detB(k) give the eigenfrequencies for the norm
modes of the system. These zero-point frequencies are c
plex in general, as noted above. The quantitiesuT0u2 and
uR0u2 would otherwise diverge, whenv is swept along the
real axis of the complex frequency plane and crosses the
pole.

The degree of the contribution of each complex pole
the transmitted light is determined by the magnitudes of
matching ofDqp , in Eqs.~4.7! and~4.8!, with the incoming
and outgoing waves. Often there is a case where a ce
pole of 1/udetB(k)u fails to survive in theuT0u2 or uR0u2
spectra, indicating that this specific mode is inactive to
incident EM wave. Whether or not a pole is active to
incident EM wave is determined by its group theoretic
property~see Ref. 23!. If we plot the frequency dependenc
of a peak of 1/udetB(k)u as a function of the wave vectork
5(kx ,ky), we can obtain the theoretical dispersion curv
for the corresponding 2D photonic band with a finite lif
time. We refer to this method as the DETB method.
means of this method, one is able to plot the dispers
curves forall possible photonic bands, whether optically a
tive or not.

B. Method using increase in DOS

The second method for determining the theoretical disp
sion relations is to consider the density of states~DOS! of the
complex solutions. The DOS of the eigenphotonic ba
modes is given by the following expression;28

Nk~v!5~1/p!~]/]v!Im log detudbb8dLL81tand l
bALL8

bb8~k!u.
~4.10!

Here,ALL8
bb8(k) is the matrix element of a 232 block matrix

A(k), which is related to the matrixG(k) by the following
relation:

A~k!5G~k!2I . ~4.11!

From Eqs.~4.3! and ~4.11!, we see that the determinant
Eq. ~4.10! is essentially that for matrixB(k) defined by Eq.
~4.5!. By plotting the peak positions in the DOS spectra
various values ofk, the dispersion curves are again obtain
We refer to this method as the DOS method. The width
the DOS peak provides, as usual, information on the ma
tude of the lifetime of the corresponding mode.
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Here, one comment is in order on the nomenclature
DOS for the quantity defined by Eq.~4.10!. Strictly speak-
ing, Nk(v) is the incrementof the density of states for pho
tons per single sphere relative to that of the free space. S
we are mainly concerned with the photonic bands originat
from the WG modes within the spheres, which is absen
the free space, there is no practical problem in callingNk(v)
simply DOS.

C. Method using the features inzT0z2

and zR0z2 spectra „TR method…

The third method for examining 2D photonic bands
based on the transmittance, which exhibits a number of
tures whose positions gradually change asu varies, as shown
in Sec. III. These shifts are thought to be related to the d
persion relation of the eigenphotonic band modes. Plott
thedips in transmittanceuT0u2, as a function ofk, we are able
to obtain the theoretical band structures. Since the dips
uT0u2 correspond to the peaks inuR0u2, we call this method
the TR method. The calculated dispersion relations of our
monolayer system obtained by the TR method are show
Figs. 5~b! and 6~b!.

D. Optical DOS method „ODOS method…

The last method is based on the use of the phase shi
an incident wave. Detailed analysis is given in the Append
For an incident wave of wave vectork5(kx,0), we may
summarize the results as follows.

The optical density of state~ODOS! is obtained by diago-
nalizing the 232 matrix (S matrix! defined by using the
transmitted and reflected amplitudes of the incident E
wave. From the unitarity of theSmatrix, two eigenvalues of
it are expressed in terms of the eigenphase shifts, which
call OPS~optical phase shifts!. They are classified accordin
to the polarization and parity@either even (1) or odd (2)
with respect to the mirror reflection in thexy layer# of the
eigenvectors of theSmatrix. For a wave vectork5(kx,0) of
the incident EM wave, directed along the high-symme
axis of 2D Brillouin zone, we have four OPS,d6

(P)(kx ,v)
andd6

(S)(kx ,v), since the lack of polarization mixing enable
us to define and diagonalize theS matrix for each of theP
and S cases. The ODOS of the modes belonging to e
symmetry is then expressed by

Nkx ,6
(P) ~v!5

1

p

]

]v
d6

(P)~kx ,v!,

Nkx ,6
(S) ~v!5

1

p

]

]v
d6

(S)~kx ,v!, ~4.12!

Nkx ,1
(P) (v), for example, being the DOS of the1 parity pho-

tonic bands, which are active to aP-polarized incident EM
wave. The total ODOS of the 2D photonic bands is given
the sum of these four ODOS.

If we calculate OPS for a fixed value ofkx and plot the
peak positions ofNkx ,1

(P) (v), as a functionv, we can trace

the dispersion curves for the 2D photonic bands, of1 parity
and active to theP wave, along theG-X axis of the Brillouin
zone. The widths of the ODOS peaks again provide inform
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tion on their lifetime. We call this method the ODO
method. Note that the ODOS method can cover only th
modes that can be excited optically, because OPS are de
using the scattering data of incident EM waves. The poin
this method lies in the fact that the combination of the tra
mitted and reflected amplitudes allows us to separate
modes of different parities. In this respect, it is interesting
note that the phasef of the transmitted amplitude has
relationship with OPS expressed by~see the Appendix!

f5d1
(P)~kx ,v!1d2

(P)~kx ,v! ~4.13!

for the phase of the transmittedP wave ~the superscript
should be changed in the case ofS). Namely, the phase o
the transmitted amplitude has by itself the information on
sum and fails to distinguish the contributions of differe
parities. This feature reflects the fact that once an EM w
comes in, the system no longer has mirror symmetry in
plane z50. Therefore, the method used above to reco
mirror symmetry in introducing1 and 2 OPS is by no
means trivial.

V. FREQUENCY DEPENDENCE
OF VARIOUS QUANTITIES

The calculated frequency dependence of 1/udetBu in the
DETB method and that ofNk(v) in the DOS method are
plotted in Figs. 9~a! and 9~b!, respectively. To obtain them
we have chosen the valuek5(0.3,0) for the wave vectork
normalized by 2p/aL . In these units, theX point of the first
Brillouin zone is located atk5(0.5,0). In both the DETB
and DOS methods, the 2D band structure along theG-X axis
is obtained by plotting the peak positions as a function ofkx .
The correspondingv-u relations, as measured in Sec. III, a
obtained by using Eq.~3.1!. Since the latter are not ver
different, we present only the band structures versuskx .

A number of sharp fine structures in Fig. 9~a! are related
to the eigenmode frequencies with a nonzero imaginary p

FIG. 9. Theoretical frequency dependences of 1/udetBu ~a! and
photonic DOS~b! for the square lattice of Si3N4 spheres. The pa
rameters correspond to the spheres used in the present exper
The horizontal axis isv/2p, and DOS is shown in arbitrary units
The 2D wave vector is fixed atk5(0.3,0).
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The fine structures are more densely populated and sha
in the higher-frequency region, in agreement with the obs
vation reported in Sec. III. Note that in Fig. 9~a!, the width of
each peak is different. For example, the small peak av
.58.5 GHz is not as sharp as the peaks around 55 G
This means that the lifetimes of 2D photonic bands dep
on the band index. Also, the peak atv.44 GHz is asym-
metric, probably due to the overlapping of two Lorentzi
peaks. The doublet structure that appears atv.47 GHz
would merge into a single peak at a value ofkx that is
slightly different from 0.3. This corresponds to a band cro
ing. Because of the damping effect, it becomes harder n
the band crossing for the DETB method to distinguish b
tween the behaviors of the two composite bands.

In contrast, the resolution of the DOS method is mu
higher, as shown in Fig. 9~b!. The structures at 44 GHz an
58.5 GHz discussed above are clearly resolved by
method. Also, the doublet structure at 47 GHz in Fig. 9~a!
appears as two distinct peaks in 9~b!. It is therefore con-
cluded that the DOS method gives a higher resolution t
the DETB method. However, the DETB method still work
in view of its general agreement with the results of the DO
method.

A more extensive comparison of various methods
shown in Figs. 10 and 11 forP andS polarizations, respec
tively. The DOS spectra shown in Fig. 9~b! are reproduced in
Figs. 10~a! and 11~a! for comparison. We plot thev depen-
dence ofuT0u2 of the TR method in Fig. 10~b!, OPS in 10~c!,
its v derivative~ODOS! in 10~d!, and thev derivative of the
phasef of the transmitted wave in 10~e!. When Fig. 10~b! is

ent.
FIG. 10. Frequency dependence of various quantities foP

wave. In ~a!, the DOS shown in~b! of Fig. 9 is reproduced for
comparison, which covers all possible photonic modes ofk
5(0.3,0).~b!, ~c!, and~d! show, respectively, the frequency depe
dence ofuT0u2(0<uT0u2<1),d6

(P) ~in units p) and (d/dv)d6
(P) for

P wave with the wave vector fixed atk5(0.3,0). ~a! and ~d! are
given in arbitrary units. In~c! and~d!, the results ford1

(P) are shown
by a solid curve and those ofd2

(P) by a dashed curve~in units p).
The last figure~e! shows thev derivative of the phasef of the
transmitted amplitude, defined by Eq.~A12!. The sum of the results
in ~d! coincides with~e!, verifying the relation given by Eq.~4.13!.
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5274 PRB 61K. OHTAKA et al.
compared with 10~a!, we find that some peaks in Fig. 10~a!
are missing in 10~b!. The doublet peak of DOS at 47 GHz
a typical example. From group theory, we know that any
photonic band of nonzerok is active on theG-X axis either
to a P- or S-polarized wave.23 Thus, those photonic band
that are missing in the case ofP should be observable in th
case ofS, as we will see shortly in Fig. 11.

The important point is that the peaks in the DOS spec
@Fig. 10~a!# correspond to the sharp dips in the transmiss
spectra@Fig. 10~b!#. Therefore, the plotting of dip position
in transmittance in the TR method, as was done to ob
Fig. 5, is concluded to be the right way of obtaining t
dispersion relations of photonic bands.~However, for the
broad dip observed at 58 GHz of the transmittance, see
discussion below.! Note that the corresponding structur
show up as peaks in the reflection spectra, sinceuT0u2

1uR0u251 in the frequency range where there is no d
fracted wave.

Next, we turn to the spectra shown in Figs. 10~c! and
10~d!, 10~c! for the frequency dependences of the two OP
d1

(P) andd2
(P) , and 10~d! for their derivatives with respect to

v. There is a stepwise increase ind6
(P) at every dip in trans-

mittance. Note that there is no peak in the ODOS spe
@Fig. 10~d!# at about 48 GHz, where a broad minimum
seen in the transmission spectrum in 10~b!. This implies that
there is noP-active mode in the frequency range fro
45–50 GHz, in spite of the apparent existence of a broad
in the transmission spectrum; therefore, one must be car
to interpret the features in the TR spectra since some of t
do not correspond to real photonic bands. Such precau
should also be taken in the plot of dip positions in Fig. 5~a!.
The experimental points at around 50 GHz appear to s
into two branches atu525°. However, looking at the spectr
at u530° in Figs. 3~a! and 3~b!, we find that the lower
branch just corresponds to the dip in theuT0u2 spectrum,

FIG. 11. Plots for various quantities ofS wave with k
5(0.3,0). The DOS shown in~a! is the same as Fig. 10.~b!–~e!
show the results ofS wave for the same quantities as those in F
10.
a
n

in

he

,

ra

ip
ful
m

on

lit

which must have been discarded as a false feature in
sense discussed above.

From the peaks in the ODOS spectra shown in Fig. 10~d!,
it is clear that the overlapping doublet peaks in the DO
spectrum@Fig. 10~a!# at about 44 GHz can be resolved in
two definite peaks having different parities. Note that ba
crossing can only occur between bands of different parit
Thus, we can conclude that the ODOS method allows u
make the most reliable estimation of bandwidths by reso
ing two overlapping bands of different parities.

The half-width of a photonic band is a measure of
lifetime. The estimated values by the ODOS method are g
erally of the order of 0.1 GHz. The band showing the broa
est half-width ~0.5 GHz! of all in the range from 40 to
60 GHz is the one with the lowest frequency. The cor
sponding Q value is of the order of 102.

Figure 10~e! shows thev derivative of the phasef of the
complex transmitted amplitude forP incident wave. We find
that the peak positions in Fig. 10~e! coincide precisely with
those of the DOS spectra given in Fig. 10~a! and those of the
ODOS spectra with the results of both parities combin
together. The latter fact confirms the relation given by E
~4.13!.

Figure 11 shows the results forS polarization. The top-
most plot@Fig. 11~a!# again shows the DOS profile, as in Fi
10. There are several important points worth noting he
First, theS-active ODOS spectra shown in Fig. 11~d! com-
bined with theP-active ODOS shown in Fig. 10~d! can duly
reproduce all of the whole features of the DOS spectra
Fig. 11~a!. For instance, the double DOS peaks located
47–48 GHz, which were found to be inactive toP-polarized
wave, manifest themselves as distinct dips in theuT0u2 spec-
tra of S wave, showing that any 2D mode is active either
a P or anSwave in the oblique case. Second, note that th
is a sharp Lorentzianpeakat 52.5 GHz. This very narrow
peak is peculiar in the sense that it shows up not as a di
transmittance; the observation therefore leads us to conc
that a DOS peak very often gives rise to a dip in transm
tance but sometimes induces a peak in transmittance. As
the other three spectra shown in Figs. 11~c!–11~e!, discus-
sion similar to the case ofP is possible.

To summarize, the combined use of information on ph
and magnitude of a transmitted wave is important for a f
understanding of photonic bands. We can thereby reso
photonic bands of different parities and obtain, according
higher resolution. The band parity is an important factor
determining the crossing or anticrossing effect between
approaching bands.

VI. DISPERSION RELATION OF 2D PHOTONIC BANDS

A. Dispersion relation of damped bands

From the theoretical analysis given in the preceding s
tion, we see that the DETB and DOS methods enable u
plot the dispersion curves of all possible photonic ban
whereas the TR method is able to cover only the modes
are active to a specific polarization of the incident EM wa
used. Furthermore, the ODOS method yields the high
resolution and enables us to identify the parity of photo
bands.

.
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PRB 61 5275PHOTONIC BAND EFFECTS IN A TWO-DIMENSIONAL . . .
The dispersion curves of 2D photonic bands are plotte
Fig. 12 along theG-X axis. The results are obtained from th
peak positions of the four ODOS,]d6

(P)/]v and ]d6
(S)/]v.

The solid circles~even parity! and solid triangles~odd parity!
representP-active photonic bands, while the open circles a
triangles show the even and oddS-active bands, respectively
The v-kx relations given by Eq.~3.1! are drawn for severa
incident angles for comparison with the observations giv
in Figs. 3~a! and 4~a!. Note that only the radiative region i
the (kx ,v) plane, i.e., the left side of the straight linev
5kx ~the line foru590°) is accessible by plane-wave inc
dent light.35 The points in the upper right corner, where d
fraction occurs due to channel opening, are scattered irre
larly because the present ODOS method, which neglects
presence of diffracted light, is not correct there.36

The experimental points shown in Figs. 3–6 can be w
identified with the theoretical plot of Fig. 12, except for th
high-frequency region above 55 GHz, where the band po
lation is too dense. Let us relate Fig. 5~a! of P wave with the
theoretical bands indicated by the filled marks in Fig. 12.
Fig. 5 ~a!, there is a branch that goes out of the measu
lower-frequency limit whenu520°. This branch corre-
sponds to the lowest band in Fig. 12. The branch next to
Fig. 5~a!, whose position is almost independent ofu, is
caused by excitation of the two flatbands aroundv/2p
544 GHz in Fig. 12. These two bands approach each o
in the range ofkx50.2–0.3, which is consistent with th
experiment of Fig. 5~a! or its theoretical fit of Fig. 5~b!. The
branch observed at 49 GHz atu50° in Fig. 5~a! looks to be
a P1 ~an even-parityP-active! branch of Fig. 12. It shifts to
a higher-frequency region with the increase ofkx , and at
about 53 GHz it crosses aP2 branch that comes from above
leading to overlapping that produces a single dip inuT0u2 in
Fig. 5.

There are several branches in Fig. 12 that cannot be f
traced even by the ODOS method because of the large br
ening effect due to a short lifetime. In Fig. 13, a part of F

FIG. 12. Band structure of a monolayer square lattice of Si3N4

spheres fork5(kx,0). The ordinate shows the frequencyv/2p in
units of GHz and the abscissa is normalized so thatkx50.5 at theX
point of the Brillouin zone. The oblique lines show thev-kx rela-
tions given by Eq.~3.1! for several values of the incidence angleu.
The bands are classified into four categories according to symm
~see text for the meaning of the four marks!.
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12 is shown on a magnified scale, where vertical bars
given to illustrate the lifetime-broadened bandwidth; one
the threeS2 bands becomes too broad to give the accur
peak position.

B. Lifetime of Bloch waves

For the estimation of the lifetime of WG modes set up
a dielectric sphere, a well-established method is to differ
tiate, with respect tov, the phase shiftsd l

M(v) andd l
N(v) of

the single-sphere scattering@see Eq.~4.3!#. The spectra thus
obtained takes into account the energy leakage of the (b,L)
WG mode, whose decay constant is identified to be the h
width of its peak.

The theoretical spectra ford l
M and for d l

N are shown in
Figs. 14 and 15, respectively, for a single Si3N4 sphere used
in the present experiments:~a! for the magnitudes and~b! for
the frequency derivatives. The features found in the f
quency range from 40 to 60 GHz are attributable to the W

try

FIG. 13. Examples of very broad bands with the marks of ba
width attached. The bands that are active toS wave and of odd-
parity symmetry are illustrated.

FIG. 14. Calculated phase shifts due to Mie scattering of
Si3N4 single sphere. TheM phase shifts are given in~a! units p
with their v derivatives in~b! an arbitrary linear scale. The calcu
lation is given for the parameters ofa53.1/2 mm and«58.67
used in the present experiment. The frequency range of 40 G
,v/2p,60 GHz is bound by the two bold vertical lines.
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5276 PRB 61K. OHTAKA et al.
modes ofl 51,2, and 3. The photonic bands of the 2D latti
we have examined so far are naturally considered to be
superpositions of these lifetime-broadened WG modes, w
their (2l 11)-fold degeneracy lifted partly. From Figs. 14~b!
and 15~b!, the radiative half-widths of the WG modes a
estimated to be about 5 – 10 GHz for theM ( l 51,2,3) and
for theN modes (l 51,2), one order of magnitude larger tha
the widths of the 2D band modes estimated in Sec. V. Th
our conclusion is that due to the ordering into a 2D perio
lattice, the lifetime of the WG modes generally becom
longer. The reason is that a part of the energy-leakage c
nels is used in forming the 2D hopping of the WG modes
the 2D dispersion relation of a Bloch wave. However, t
lifetime of a 2D Bloch wave is considerably dependent on
band index and wave vector.

To make a more detailed comparison of the band struc
with the WG modes of an isolated Si3N4 sphere, we repro-
duced in Fig. 16 the band structure calculated by the DE
method. In contrast to Fig. 12, obtained by the ODO
method, several bands could not be fully traced due to
poorer resolution of the DETB method. In Fig. 16, it is wor
noting that thebandwidthsdue to the full dispersion over th
first Brillouin zone are nearly of the same order as
FWHM of the WG peaks of a single sphere. Note also t
the dispersion is quite large for the bands lying in the f
quency range of lower-order modes such as (N,l 51,2) and
(M , l52! of an isolated sphere. In contrast, a group of ba
with relatively small dispersion is seen in the higher fr
quency region, where a sharp WG mode (M ,l 53) is lo-
cated. In this sense, the magnitudes of the energy leakag
the original WG modes are linked with the dispersion curv
of the 2D photonic bands.

VII. SUMMARY

The frequency and incidence-angle dependences of tr
mission spectra were measured in a millimeter wave reg
on the monolayer of periodically arrayed spheres of Si3N4.
The observed results were compared with the theoretical
culations. It was found that the observed features in tra
mission spectra coincide with the theoretical spectra, bot

FIG. 15. Phase shifts ofN-type waves and theirv derivatives
for an Si3N4 single sphere. See the caption of Fig. 14
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position and breadth. The observed half-widths of the fi
structures also show that assembling the spheres in
monolayer lattice generally makes the lifetime long
~roughly ten times! than that in a single sphere. In contra
the band widths due to spatial dispersion of 2D bands ar
the same order of magnitude as the FWHM of the DOS p
of WG modes. These observations suggest that the domi
energy-leakage channel is replaced in a periodic monola
by the hopping motion between particles and that the ra
tive decay is greatly suppressed. However, several fine st
tures observed experimentally showed much broader wid
than those obtained by calculation. This minor discrepanc
likely attributable to the nonuniformity in samples due to
slight mismatching in the arrangement. The qualitat
analysis of the effect of the small randomness is difficult
our problem and will be an important future problem.

Among the various quantities proposed for theoreti
study, the most useful one was found to be the eigenph
shifts derived by combining transmitted and reflected am
tudes. By using them, we could identify each dip~sometimes
peak! in transmittance with the excitation of a specific 2
photonic band. The important point of the present analysi
that various theoretical methods used can be straight
wardly applied to a slab photonic crystal of arbitrary thic
ness. Therefore, the ODOS analysis when applied to a
photonic crystal will play a crucial role in understandin
say, the lasing in it. Of course, the discussions and con
sions presented in this paper are equally applicable to op
spectra obtained for smaller dielectric spheres such as a
polymers or SiO2 particles of diameter in themm ~or sub-
mm) range.

APPENDIX

Considertwo plane-wave lights that are incident on a 2
array of spheres simultaneously from above and below. T
amplitudes are taken to bea ~from below! and b ~from

FIG. 16. Band structure of a monolayer square lattice of Si3N4

spheres, as compared with the photonic DOS of a single Si3N4

sphere.~a! Shows the band structure obtained by plotting the pe
of 1/udetBu. The horizontal axis of~b! shows thev derivatives of
the phase shifts in arbitrary units as functions ofv/2p taken in the
ordinate. ~b! Reproduces the sum of theM and N results @Figs.
14~b! and 15~b!#, respectively, for the range of 40 GHz,v/2p
,60 GHz.
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PRB 61 5277PHOTONIC BAND EFFECTS IN A TWO-DIMENSIONAL . . .
above!. The plane of incidence of waves is assumed to be
thexz plane, as in the text. Let the two waves have the sa
polarization, eitherP or S, and 3D wave vectors (kx,0,
6kz). The case for theP polarization is illustrated in Fig. 17
For simplicity, we consider the frequency range where th
is no Bragg diffraction. Polarization is conserved in t
course of scattering for a lateral wave vectork in the mirror
plane as in our case. Let thescalar andcomplexcoefficients
of the transmission and reflection of the waves beT andR,
respectively. For the treatment of arbitraryk andv, where a
number of open diffraction channels are allowed to open
the polarization mixing is taken into account, see the co
ment given in Ref. 36. Far away from the 2D array, the fie
is then expressed as

E~r!5H ~ae1eikzz1~aR1bT!e2e2 ikzz!eikxx for z.2`,

~be2e2 ikzz1~bR1aT!e1eikzz!eikxx for z.1`.
~A1!

Here,e1 ande2 are the unit vectors for the polarizations
the upward and downward incident waves, respectively

FIG. 17. Two incident waves fromz56` and their reflected
and transmitted components used in introducing the optical ph
shifts. The vectorse6 are unit vectors specifying the polarization
wave. They are symmetric with respect to mirror reflection in
xy plane. The drawing is given for theP-polarized waves to intro-
duced1

(P) and d2
(P) . In the case ofS,e6 is in the y direction, i.e.,

normal to the incidence plane.
in
e

e

d
-

n

the case ofP, bothe1 ande2 lie within the xz plane, while
in the case ofS, they are in they direction. The second term
in Eq. ~A1! represent the scattered waves. Denoting th
amplitudes asS1 andS2 , we have

S S1

S2
D 5S T R

R TD S a

bD . ~A2!

So far, the amplitudesa and b can be arbitrary. From now
on, we choosea andb so that the column vector (a,b) t is an
eigenvector of the 232 matrix, theS matrix, of Eq. ~A2!.
Then we have

S S1

S2
D 5lS a

bD ~A3!

with an eigenvaluel of the S matrix, which, from the uni-
tarity of theS matrix, is expressed as

l5e2id. ~A4!

From a given set ofT andR of the S matrix, two values are
obtained for the eigen phase-shifts. Let us denote them ad1

andd2 , which we call OPS in the text. They depend on t
incident polarization throughT andR. It follows that

e2id15T1R for the @1# eigenvector defined as

~a,b!1
t 5

1

A2
~1,1! t,

e2id25T2R for the @2# eigenvector defined as

~a,b!2
t 5

1

A2
~1,21! t. ~A5!

When we put (a,b) t of Eq. ~A1! equal to (a,b)6
t , we obtain

two standing waves from Eq.~A1!. The1 eigenvector yields
a standing wave of even parity with respect to the mir
reflectionz→2z, which is expressed as

se
E1~r!55
1

A2
eid1eikxx~e1ei (kzz2d1)1e2e2 i (kzz2d1)! for z.2`,

1

A2
eid1eikxx~e2ei (kzz2d1)1e1e2 i (kzz2d1)! for z.1`.

~A6!
ine
Since (e1)x5(e2)x ,(e1)y5(e2)y , and (e1)z52(e2)z , its
three Cartesian components are written as

E1~r!5eid1eikxxS ~e1!xcos~kzuzu1d1!

~e1!ycos~kzuzu1d1!

i ~e1!z~z/uzu!sin~kzuzu1d1!
D . ~A7!

In the same way, the amplitude (a,b)2
t gives the odd-parity

solutionE2(r), which is expressed as
E2~r!5eid2eikxxS ~e1!x~z/uzu!sin~kzuzu1d2!

~e1!y~z/uzu!sin~kzuzu1d2!

i ~e1!zcos~kzuzu1d2!
D . ~A8!

The above forms are equally valid for bothP- and
S-polarized waves: In the case ofP polarization, (e1)y is
zero, while in the case ofS polarization, only they compo-
nent remains, because (e1)x5(e1)z50. Thus, the
S-polarized standing wave contains only the sine or cos
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5278 PRB 61K. OHTAKA et al.
function of uzu, whereas theP-polarized one contains bot
the sine and cosine functions. This should be so beca
“•E1(r)50 outside the array. Note that the6 parity refers
to the parity of the lateral components of the standing-w
solutions. Note also that theP- and S-polarized standing-
wave solutions involve different values ofd6 . Let us clas-
sify them by the symbolsd6

(P) andd6
(S) ; there are accordingly

four OPS for a givenkx , each giving rise to one standin
wave.

Using these asymptotic forms~A7! and ~A8!, we can de-
termine the normal-mode frequency by confining the field
the region bounded by two perfect mirrors, placed paralle
thexy plane at, say,z56Z,Z denoting a point at infinity. At
the mirrors, the field components parallel to the mirror s
face must vanish. From Eq.~A7!, we then have

kz5S n1
1

2Dp/Z2d1 /Z, ~A9!

for n50,1,2, . . . . From Eq. ~A8!, we obtain for the odd-
parity modes,

kz5np/Z2d2 /Z. ~A10!

Then from the well-known procedure of obtaining the inc
ment in DOS,37 we can obtain the change in the density
states per sphere due to the presence of the array. Usin
phase shiftsd6

(P)(kx ,v) and d6
(S)(kx ,v), for v, k, and the

symmetry (P,6) or (S,6), the result is

Nkx ,6
(P) ~v!5

1

p

]

]v
d6

(P)~kx ,v!,

Nkx ,6
(S) ~v!5

1

p

]

]v
d6

(S)~kx ,v!. ~A11!
s.

EE
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This is just Eq.~4.12!. The explicitkx andv dependences o
ODOS are thus expressed by those of OPS.

Next, we relate the phases ofT andR with OPS. Since the
Smatrix of Eq.~A2! is unitary, the quantityTR* is an imagi-
nary quantity, showing thatT andR are of the form

T5uTueif,

R56 i uRueif, ~A12!

f being a real phase of the transmitted amplitudeT. From
Eq. ~A5!, it holds that

e2id65T6R, ~A13!

5ei (6f01f),

with the phasef0 introduced through

uTu6 i uRu5e6 if0, ~A14!

which holds from the flux conservationuTu21uRu251.
Therefore we find

f5d11d2 . ~A15!

This relation holds for bothP andS polarizations. The con-
clusion is that the phasef of T of the P wave is d1

(P)

1d2
(P) and that of theS wave isd1

(S)1d2
(S) ; that is, the fre-

quency derivative off defined by Eq.~A5! gives us thesum
of 1 and 2ODOS. This completes the derivation of E
~4.13!. The point of making6 combinations ofT and R is
that we can thereby single out one of the parities.
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