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THz-radiation power from femtosecond-pulse-irradiated InAs is found to be saturated at the
magnetic field around 3 T. Additionally, we find that this saturation magnetic field strongly depends
on geometrical layout. Interesting magnetic-field dependence of the center frequency for THz
radiation is also observed. @000 American Institute of Physid$S0003-695(00)03311-§

There have been numerous necessities for intense, comear

pact, and simple THz-radiation sourceéwhich can be ap-
plied for sensing, imaging, and

2 T,

the THz-radiation power shows quadratic
magnetic-field dependené& Moreover, in the case of the
time-resolved magnetic field parallel to the surface and the laser incident

spectros_co_p?.‘lo Zhang et al. reported enhancement of angle 45° to the surface norméG-1), the saturation at
THz-radiation power due to quadratic magnetic-field depenyyourg 3 T and the reduction of the radiation power above 3

dence of THz-radiation poweutp to 0.3 T from GaAs irra-
diated with a femtosecond lasérPreviously, we also re-
ported the significant enhancement of THz-radiation poweg
from InAs in a magnetic field irradiated with femtosecond
optical pulses, owing to quadratic magnetic-field and qua-
dratic excitation intensity dependence of THz-radiation
power'213From the practical point of view, the advantage of
using InAs as a THz emitter is approximately one order

T are observed. On the contrary, clear saturation is not ob-
served in the case of the G{6-5: the magnetic field parallel
o the THz-radiation propagation direction and the laser in-
cident angle 45° to the surface normahs shown in Fig.
2(b). In the case of the G-5 geometrical layout, the polariza-

higher efficiency of THz-radiation power compared with the Geometr Maf?;gﬁc Saturation  Relative
GaAs case due to its smaller effective m&s3o design y direction field (T) power
useful THz-radiation sources, it is strongly required to exam-
ine the scalability of THz-radiation power with this G-1
magnetic-field enhancement scheme. In this letter, we report Laser @ +3.2 1 (max )
saturation of THz-radiation power from femtosecond-laser- M ® 3.0 0.77
irradiated InAs in a high magnetic field and magnetic-field B®inAs
dependence of THz-radiation spectra. We also present G2
magnetic-field direction dependence of THz-radiation power B N—S 132 0.11
and spectra. InAs

The experimental setup is almost similar to that of Ref. Lasi'r“z S-a—N 3.1 0.10

12. An 82 MHz repetition-rate mode-locked Ti:sapphire la-
ser delivers nearly transform-limited 70 fs pulses at 800 nm.
The sample is undoped bulk InAs with(400 surface. The
average power for excitation is about 700 mW with 3 mm
spot size in diameter on the sample. A spilt-coil supercon-
ducting magnet with cross-room-temperature bores can pro-

-

aEInAs
B
Lase THz

No radiation was observed.

- ]
vide a magnetic field up to 5 T. With this specially designed G: ser N4 +4.8 0.67
magnet, five different optical geometries, as illustrated in B,| THz N a7 0.67
Fig. 1, are compared by changing the magnetic field, N InAs S* ) )
magnetic-field direction, and excitation laser incident angle.
A liquid-helium-cooled silicon bolometer is provided for de- G-5
tecting the power of the total radiation and a wire-grid po- Lgser N—=-S +5.0> 0.70
larizer is placed in front of the bolometer as shown in the T SN 50> 0.68
insets of Fig. 2. The THz radiation polarizes almost horizon- p=%= InAs

tally, as shown in Fig. @). From lower magnetic field to

FIG. 1. Geometry dependence of THz-radiation power. The saturation of

THz-radiation power is observed in the upper two cases. The magnetic field

3E|ectronic mail: ohtake@ims.ac.jp is parallel to the/011) crystal axis in the G-1, G-2 geometrical layouts, and

YScience University of Tokyo, Kagurazaka 1-3, Shinjuku, 162-8601, Japanthe (100 axis in the G-3 geometrical layout, respectively. In the case of the

9Also at: Kanagawa Academy of Science and Technology, Takatsu-kuG-4 and G-5 geometrical layouts, the magnetic field is 45° to the surface
Kawasaki 213-0012, Japan. normal.
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0.1 2 3 45078 1 2 % 4 FIG. 3. Time-domain measurement for THz radiatitm.Delay dependence
Magnetic Field (T) of electric field from InAs in 1.0 T magnetic field. The direction of the

magnetic field is described in the insets. The phases are completely different
from each other(b) THz-radiation spectra. The interference patterns are due
to the dipole antenna, in which the substrate is transparent in the tarahertz
region.

FIG. 2. Magnetic-field dependence of THz-radiation power. The inset indi-
cates the experimental setup for the G-1 and the G-5 geometrical lag@uts.
for the G-1 and(b) for the G-5 geometrical layouts, respectively. Clear
saturation is observed at around magnetidfi@IT in thecase of the G-1

geometrical layout. tered to the_ valley by Lorentz acceleration of electrons due
to the magnetic field, as observed in the electric-field

i : :
tion of the THz radiation changed dramatically with increas-case-‘This process will reduce the number of electrons in
ing magnetic field. Photoexcited electrons are accelerated g€ I valley contributing to generating THz radiation.
the plane that is perpendicular to the propagation direction of ~Detailed THz-radiation spectra have been also obtained

the THz radiation in the G-5 geometrical layout. Since thePY @ polarizing Michelson interferometer. To extract the fea-
polarization of THz radiation reflects the projection of the tures of the THz-radiation spectra in various cases, the center

carrier accelerating direction to each direction, both compofredauency and the spectral width of the THz radiation is de-

nents of polarization should be observed. Figure 3 illustratefin€d as the average and the standard deviation of the fre-
the time-domain measurement of the THz-radiation electri@Uency between 0.05 and 5 THz by integration. Both the
field from InAs in the G-1 geometrical layout with a 1-T center frequency and the spectr_al W'dlfh _S_hOW mte_restmg
permanent magnet. A dipole antenna is used as a receiver fB}a_gnetlc-fleId dependen_ce that dlffers_ significantly with the
THz radiation. There is a very clear difference between thos@Ptic@! layout, as shown in Fig. 4. In Figs(b} and 4c), for
two cases. In Fig. @), the phase of the field oscillation is "€ G-5 geometrical layout, the center frequency shows sym-
completely opposite, because the photoexcited electrons are
accelerated to the opposite directions by the magnetic field
Thus, the spectral shapes in FigbBshow a clear difference.
The five geometrical layouts are schematically illustrated in
the first column of Fig. 1. The saturation of THz-radiation 5
power is observed only in the G-1 and G-2 geometrical lay-E
outs (G-2: the magnetic field parallel to the THz-radiation g
[N

(H-pol)

propagation direction and the laser incident angle perpen
dicular to the surfage Additionally, in the G-1 geometrical
layout, we have observed the remarkable magnetic-field di-
rection dependence of the THz-radiation power. This result 05
also originates from the difference of the electron accelera-
tion direction. We are currently working to clarify the satu-
ration mechanism with a combination of time-resolved spec- Magnetic field (T)

troscopy and complicated magnetic direction dependence ofG i onal olots 1 it it

Tz radiation power and spectia. One possible explanatioflS, . o Sevsens e for T ruon specte or, e o
for this saturation is as follows. Under this eXpe”mental Con'Open circles and bars show the center frequency and spectral bandwidth,

dition, photoexcited electrons in tHé valley may be scat- respectively. H-pol and V-pol indicate horizontal and vertical polarization.
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