
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.3 MARCH 2000
519

INVITED SURVEY PAPER Special Issue on Algorithm Engineering: Surveys

Parallel Algorithms for Convex Hull Problems and Their

Paradigm

Wei CHEN†, Koji NAKANO†, and Koichi WADA†, Members

SUMMARY A convex hull is one of the most fundamen-
tal and interesting geometric constructs in computational geom-
etry. Considerable research effort has focused on developing algo-
rithms, both in serial and in parallel, for computing convex hulls.
In particular, there are few problems whose parallel algorithms
are so thoroughly studied as convex hull problems. In this paper,
we review the convex hull parallel algorithms and their paradigm.
We provide a summary of results and introduce several interesting
topics including typical techniques, output-size sensitive meth-
ods, randomized approaches, and robust algorithms for convex
hull problems, with which we may see the highlights of the whole
research for parallel algorithms. Most of our discussion uses the
PRAM (Parallel Random Access Machine) computational model,
but still we give a glance at the results of the other parallel com-
putational models such as mesh, mesh-of-trees, hypercube, re-
cofigurable array, and models of coarse grained multicomputers
like BSP and LogP.
key words: convex hulls, parallel algorithms, randomized al-
gorithms, output-size sensitive algorithms, robust computational
geometry

1. Introduction

Given a set G of geometrical objects in Rd, d ≥ 2, the
convex hull of G, denoted as CH(G), is the smallest
convex region containing all the elements of G. Con-
vex hulls are one of the most fundamental geometric
constructs. Its position in computational geometry is
very similar (but not exactly equal) to that of sorting
in ordinary computation. In addition to considerable
interest in their own right, convex hulls are often useful
in solving a lot of problems which are apparently unre-
lated at a glance. Much research effort has focused on
developing algorithms, both in serial and parallel, for
computing convex hulls. Especially, convex hull prob-
lems are one of few problems whose parallel algorithms
are thoroughly studied, therefore a survey of them may
help us to know the outline of the whole research of
parallel algorithms.

1.1 Sequential Algorithms

Let S be a set of n points in Rd, d ≥ 2, the size of
the convex hull (the number of the vertices which con-
stitutes the boundary of the convex hull) of n points

Manuscript received June 29, 1999.
Manuscript revised October 20, 1999.

†The authors are with the Department of Electrical
and Computer Engineering, Nagoya Institute of Technol-
ogy, Nagoya-shi, 466–8555 Japan.

is Θ(n�d/2�) in the worst case, and its construction re-
quires Ω(n logn + n�d/2�) time [31], [61]. Optimal de-
terministic sequential algorithms for computing CH(S)
have been long known for the cases d = 2, 3 [41], [60].
When d = 2 and the points of S are sorted, say, sorted
by x coordinate, CH(S) can be solved in O(n) time by
Graham scan [41]. In higher dimensions, d ≥ 4, Seidel
proposed two deterministic algorithms. His first algo-
rithm [65] runs in O(n log n + n�d/2�) time, which is
optimal for even d, and later he gave an O(n�d/2� logn)
solution [66]. For some time, the only solutions optimal
in higher dimensions were the randomized incremental
algorithms of Clarkson and Shor [25], and the subse-
quent randomized method of Seidel [67]. Chazelle [15]
gave the first optimal deterministic algorithm in higher
dimensions, which was simplified by Brönnimann et al.
[13]. The optimality of the above algorithms is mea-
sured with respect to the worst-case complexity for the
size of the resulting convex hull.

On the other hand, when the size of the output
is considered, it may be possible to beat the worst-
case lower bounds since the size of the convex hull
may range from O(1) to O(n�d/2�). Accounting for
output size, the lower bound becomes Ω(h + n log h),
where h is the size of the convex hull of points in Rd.
The first output-sensitive algorithm, due to Kirkpatrick
and Seidel [47], computed the convex hull in R2 in
O(n log h) time. For 3-dimension, Edelsbrunner and
Shi [32] gave an O(n log2 h) time output-sensitive algo-
rithm, and Clarkson and Shor [25] gave an optimal ran-
domized output-size sensitive solution, which was op-
timally derandomized by Chazellel and Matous̆ek [16].
In higher dimensions, the only known deterministic
output-size sensitive method, due to Seidel [66], runs
in time O(n2 +h logn), which can be slightly improved
to O(n2−(2/(�d/2�+1))+ε + h logn), for any fixed ε > 0,
using a technique of Matous̆ek [51].

Much work has focused on developing robust al-
gorithms. Given a simple polyhedron P of Rd, the
following concepts are used to describe the convexity
of P and the degree of approximation of P to CH(S):
(1) P is a δ-hull of S (δ ≥ 0) if all the vertices of P
are taken from S and no point of S lies farther than
δ outside P , (2) P is a δ-superhull of S (δ ≥ 0) if P
contains all the points of S and P has at most O(n)
vertices which lie no farther than δ outside CH(S), (3)
P is ε-weakly convex (ε ≥ 0) if there exists some way of

520
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.3 MARCH 2000

perturbing each vertex of P no farther than ε so that
P becomes convex, and (4) P is ε-strongly convex if
P is convex and remains convex even after each vertex
of P is perturbed as far as ε. Using imprecise compu-
tations, Fortune [35] gave an O(n log n) time algorithm
for computing an cα-weakly cα-hull in R2 for the error
unit α of primitive operations and constant c > 0, which
turns to be the correct convex hull if properly perturb-
ing each vertex at most cα. Li and Milenkovic [50] pre-
sented the algorithm for computing an ε-strongly con-
vex (12ε+288

√
2µ)-hull in R2 with rounded arithmetic

inO(n logn) time, where µ is the rounded unit. Guibas,
Salesin and Stolfi [39] showed an O(n3 logn) time algo-
rithm for finding an ε-strongly convex (6ε+7α)-hull in
R2 with imprecise computations, where α is the error
unit of primitive operations. Chen, Deng, Wada and
Kawaguchi [18] gave an O(n log n) time (O(n) time if S
is sorted) algorithm for finding an ε-convex (2+4

√
2)ε-

superhull in R2 with correct computation, and they are
considering to generalize it into the algorithm using im-
precise computations.

The convex hull algorithms for the geometric ob-
jects other than points have been also developed. The
convex hull of a simple polygon is found in linear
time [11], [42], [48], [52], [68], and the same method can
be extended to a linear time algorithm for finding the
convex hull of a splinegon which consists of piecewise-
smooth Jordan curved-segments [30], [64]. To compute
the convex hull of a planar curve which consists of alge-
braic curved-segments, Bajaj and Kim [9] proposed an
algorithm whose running time is linear in the number of
algebraic curved-segments, and is a small polynomial in
the maximal degree d of the algebraic curves. Rappa-
port [62] gave an O(n logn) time algorithm for finding
the convex hull of n discs in R2, and later Devillers and
Golin [29] presented an O(n log n) time incremental al-
gorithm for the same problem. Nielsen and Yvinec [57]
gave an O(n log h) output-size sensitive algorithm for
computing the convex hull of discs, convex homoth-
ets, non-overlapping objects. Boissonnat, Cérézo, Dev-
illers, Duquesne and Yvinec [12] proposed an O(n�d/2�

+ n logn) time algorithm for finding the convex hull of
n spheres in dimension Rd, which is optimal when d
< 3 or d is even. It can be also used to compute the
convex hull of n homothetic convex objects of Rd in
O(k(n�d/2� + n logn)) time, if the combinatorial com-
plexity of each object is k.

1.2 Parallel Algorithms for PRAM

The construction of the convex hull has received great
attention in almost all of parallel computational mod-
els. PRAM (Parallel Random Access Machine) is a
synchronous parallel computational model employing a
number of processors which share a common memory.
For exclusive-write PRAMs (the CREW and EREW
models) it is known that Ω(logn) time is required to

compute the convex hull of a set S of n points in
Rd, d ≥ 2 [26]. Optimal deterministic 2-dimensional
convex hull algorithms running in O(log n) time using
O(n log n) work (the product of the time and the num-
ber of processors) for the CREW PRAM were given by
Atallah and Goodrich [7], [8] and Aggarwal et al. [1],
and for the EREW PRAM by Miller and Stout [53].
For sorted planar points, optimal convex hull algo-
rithms running in O(log n) time using O(n) work for
the CREW PRAM were proposed by Goodrich [37] and
for the EREW PRAM by W. Chen, Nakano, Masuzawa
and Tokura [20] and D. Z. Chen [17]; and for the CRCW
PRAM an algorithm running in O(log n/ log logn) time
using O(n) work was given by Fjällström et al. [34],
optimal algorithms running in O(log logn) time using
O(n) work were given by Chen et al. [20] and Berkman
et al. [10], and an O(1) time and O(n1+ε) work algo-
rithm was proposed by Chen et al. [20]. Chen et al. [19]
also showed that the prefix convex hulls of sorted pla-
nar points can be found optimally in the CREW PRAM
in O(log n) time using O(n) work. For 3-dimensional
convex hulls, using n processors in the CREW PRAM,
O(log3 n) time was achieved by Chow [24] and Aggarwal
et al. [1], O(log2 n log∗ n) time was obtained by Dadoun
and Kirkpartrick [27], and O(log2 n) time was achieved
by Amato and Preparata [2]. For some time, the only
solution to the 3-dimensional convex hull problem op-
timal with respect to time or work was the O(log n)
time and O(n logn) work randomized algorithm for the
CREW PRAM by Reif and Sen [63]. By derandom-
izing Reif and Sen’s algorithm Goodrich obtained an
O(log2 n) time work-optimal method for the EREW
PRAM. Amato and Preparata [4] gave a time-optimal
method using O(n1+ε) work for the CREW PRAM,
where ε > 0 is any fixed constant. In higher dimen-
sions, Amato, Goodrich and Ramos [3] showed algo-
rithms for the EREW PRAM running in O(log n) time
using O(n�d/2� logc(�d/2�−�d/2�) n) work for d ≥ 4, where
c > 0 is a constant, which is optimal for even d. They
also gave an O(log n) time and O(n log n+n�d/2�) work
randomized algorithm for d ≥ 3.

With standard parallel techniques, one can obtain
output-size sensitive algorithms in the CRCW PRAM
by implementing the method of Kirkpatrick and Sei-
del [47] for finding the convex hull of planar points
in O(log2 n) time using O(n log h) work, and that of
Edelsbrunner and Shi [32] for finding the convex hull of
points in R3 in O(log3 n) time using O(n log h) work.
Using a randomized CRCW PRAM model, Ghouse
and Goodrich [36] gave an O(log n) time and O(n log h)
work method for R2, and an O(log2 n) time and
O(min{n log2 h, n logn}) work method for R3. Gupta
and Sen [40] improved the results to O(log h log logn)
time and O(n log h) work in the same model.

There are also some parallel robust algorithms.
Chen, Wada and Kawaguchi [22] gave a parallel ro-

CHEN et al.: PARALLEL ALGORITHMS FOR CONVEX HULL PROBLEMS AND THEIR PARADIGM
521

bust algorithm for the EREW PRAM which finds an
ε-strongly convex O(ε + β)-hull of n planar points
with imprecise computations in O(log3 n) time using
O(n log3 n) work, where β is the error unit of primitive
operations. Recently, Castanho, Chen and Wada [14]
give a parallel algorithm for the EREW PRAM which
finds a (2 + 8

√
2)ε-superhull of n planar points with

correct computation in O(log n) time using O(n log n)
work (O(n) work if the points are sorted), and they are
considering to generalize it into the algorithm using im-
precise computations. Parallel convex hull algorithms
for other geometric objects have been also developed.
Chen et al. [20] and Wagener [70] showed that the con-
vex hull of a simple polygon can be found in O(log logn)
time using O(n) work for the CRCW PRAM. They also
showed that the convex hull of a simple polygon can be
found in O(log n) time using O(n) work for the EREW
PRAM or in O(1) time using O(n1+ε) work for the
CRCW PRAM. Their algorithms can be extended eas-
ily for computing the convex hull of a splinegon which
consists of piecewise-smooth Jordan curved-segments
and for computing the convex hull of a curve which
consists of algebraic curved-segments. Chen, Wada and
Kawaguchi [23] proposed parallel algorithms for find-
ing the convex hull of n discs in R2, which runs in
O(log1+ε n) time using O(n/ logε n) processors or in
O(log n log logn) time using O(n log1+ε n) processors
for any positive constant ε in the EREW PRAM. The
algorithms also work for more general curves in R2.

1.3 Parallel Algorithms for Other Parallel Computa-
tional Models

Convex hull algorithms have been also considered in
mesh, mesh-of-trees, hypercube, and models of coarse
grained multicomputers like BSP and LogP. Jeong and
Lee [46] and Miller and Stout [54] gave O(

√
n) time al-

gorithms for computing the convex hull of n points of
R2 or R3 for a

√
n ∗

√
n mesh. For planar points, Lee

and Jou [49] proposed an O(log n) time algorithm for
n ∗ n mesh-of-trees, Stojmenovic [69] and Holey and
Ibarra [44] proposed O(log2 n) time and n processors
algorithms for hypercube. When n planar points are
given ordered one per processor on a machine with n
processors, Miller and Stout [53] proposed an O(log n)
time algorithm for hypercube, an O(log3 n/(log logn)2)
time algorithm for pyramid, tree, and mesh-of-trees,
and an O(log2 n) time algorithm for reconfigurable
mesh; Atallah and D. Z. Chen [5] provided an O(log n)
time algorithm for constructing the convex hull of a
simple polygon chain in hypercube. In addition, many
other randomized and deterministic convex hull algo-
rithms have been given for the models of coarse grained
multicomputers like BSP and LogP [6], [28], [33], [38],
[71]. Among the deterministic algorithms, Ferreira et
al. [33] introduced a convex hull algorithm in R2 using
a constant number of communication phases and local

computation time O(n logn/P) for n points and P pro-
cessors, where n ≥ P 1+ε. Zhou et al. [71] gave a new
parallel convex hull algorithm in R2 using a constant
number of communication phases for all values of P ≤
n while maintaining optimal local computation time.

1.4 Configuration of Other Sections

Since so many researches have been done so far for con-
vex hull problems, it is impossible to explain all the
results and the methods. In the following sections, we
focus only on several interesting topics including typi-
cal techniques used for convex hull algorithms, output-
size sensitive methods, randomized approaches and ro-
bust algorithms. For the reason of space, we neither
give exclusive section for output-size sensitive methods
nor for randomized approaches. Instead, we describe
an output-size sensitive convex hull algorithm based
on randomized approaches to show the basic ideas of
both in Sect. 3. Readers can find more details from the
papers we have referred. Except the last section, our
discussion is based on PRAM. We contribute the last
section to other parallel computational models.

2. Typical Techniques for Convex Hull Prob-
lems

Divide-and-conquer is perhaps the most important
technique used in parallel algorithms. A traditional d-
way divide-and-conquer divides a given problem into d
subproblems, recursively solves the subproblems in par-
allel, and then combines the solutions of the subprob-
lems into the solution of the given problem. However,
the traditional divide-and-conquer fails if the given
problem is difficult to be divided or the solutions of the
subproblems are difficult to be combined. A generalized
divide-and-conquer technique called multi-level divide-
and-conquer which combines more than one divide-and-
conquer processes together is useful in these cases. In
this section, we introduce the d-way divide-and-conquer
with the convex hull algorithms of points in R2 and in
R3, and introduce the multi-level divide-and-conquer
with the convex hull algorithms of curved-segments in
R2.

2.1 Traditional Divide-and-Conquer

Let S be a set of n points. An n1/2-way divide-and-
conquer can be used to compute the convex hull of pla-
nar points optimally in the CREW PRAM [1]. Using
the pair of points of S with the maximum and the min-
imum x-coordinate CH(S) can be partitioned into two
parts: the upper hull UH(S) and the lower hull LH(S).
By symmetry, it is sufficient to show how to compute
UH(S). By sorting S according to x-coordinate of the
points in O(log n) time using n processors, UH(S) can
be found as follows.

522
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.3 MARCH 2000

Outline of the Convex Hull Algorithm in R2

1. Divide S into n1/2 subsets S1, S2, . . ., Sn1/2 each
with n1/2 points according to x-coordinate, and
recursively find UH(Si) for each i (1 ≤ i ≤ n1/2)
in parallel.

2. Find UH(S) by merging UH(Si) (1 ≤ i ≤ n1/2)
as follows.

a. Find the common tangent tij of UH(Si) and
UH(Sj) for each pair of i and j (1 ≤ i < j ≤
n1/2) such that UH(Si) and UH(Sj) lie under
it.

b. For each i (1 ≤ i ≤ n1/2), find the com-
mon tangents rti and lti such that rti has the
largest slope in {tij , i < j ≤ n1/2}, and lti
has the smallest slope in {tji, 1 ≤ j < i},
respectively. Assuming that lti and rti con-
tact UH(Si) at vertices u and v, respectively,
if u = v or u lies in the left of v, the ver-
tices of UH(Si) lie between u and v belong
to UH(S), otherwise no vertex of UH(Si) be-
longs to UH(S).

c. Concatenate the vertices of UH(Si) which be-
long to UH(S) from i = 1 to n1/2. ✷

The common tangent of UH(Si) and UH(Sj) can be
find in O(log n) time with single processor, therefore,
the common tangents for all pairs of i and j can be
found in O(log n) time by using n processors. The com-
mon tangents rti and lti can be found by maximum and
minimum computation in O(log n) time using n/ logn
processors. The vertices of UH(S) can be concate-
nated by using prefix computing in O(log n) time using
n/ logn processors. Therefore, UH(S) can be found in
T (n) = T (n1/2) + O(log n) (= O(log n)) time using n
processors in the CREW PRAM. Just as we see in the
above algorithm, nε-way divide-and-conquer, where 0
< ε < 1, is widely used for most convex hull problems.
In the following, we give another algorithm which time-
optimally computes the convex hull of points in R3 in
O(log n) time using n1+α processors for any constant α
> 0 in the CREW PRAM [4].

Outline of the Convex Hull Algorithm in R3

1. Partition S, by z-coordinate, into nα subsets each
of size n1−α; letm = nα and denote the ith subsets
by Si.

2. Recursively compute CH(Si) (1 ≤ i ≤ m) in par-
allel.

3. Merge CH(Si), 1 ≤ i ≤ m, to form CH(S) =
CH(∪1≤i≤mCH(Si)). ✷

It is easily seen that if the merging process can be done
in O(log n) time using n1+α processors in the CREW
PRAM, CH(S) can be found in T (n) = O(log n) +
T (n1−α) (= O(log n)) time using n1+α processors in
the CREW PRAM. In the following, we consider the
merging process.

Consider two separable convex hulls CH(P) and
CH(Q), and the convex hull of their union CH(P ∪Q).
A vertex v is external if it is a vertex of CH(P ∪ Q),
and otherwise it is internal. In addition, a vertex v ∈
CH(P) is said to be a seam vertex if it is an external
vertex and it is incident to some vertex w ∈ CH(Q) on
CH(P ∪ Q), i.e., one of its neighbors on CH(P ∪ Q)
is a vertex of CH(Q). External vertices that are not
seam vertices are referred to as e-external vertices and
external vertices that are seam vertices are referred to
as s-external vertices.

Outline of the Merging Process

1. For all i, 1 ≤ i < j ≤ n, compute CH(CH(Si) ∪
CH(Sj)).

2. Let S∗ denote the set of all vertices that resulted
external in all pairwise merges in Step 1, and s-
external in at least one pairwise merge. For each
v ∈ S∗, construct the set Av, which consists of all
vertices that were adjacent s-external vertices to
v in some pairwise merge, i.e., if v ∈ CH(Si) and
w in Av, then w belongs to v’s neighborhood on
CH(CH(Si) ∪ CH(Sj)), where w ∈ CH(Sj) for
some 1 ≤ j ≤ m and j
=i.

3. Consider vertex v ∈ S∗; assume that v ∈ CH(Si)
and let ni(v) denote v’s neighborhood on CH(Si).
For each such vertex v, classify if v is external or
internal to Av ∪ ni(v).

4. Adjoin to the set {v| v ∈ S and v has been clas-
sified external in Step 3 }, the set of points that
resulted e-external in all pairwise merges, these are
the vertices of CH(S). ✷

The above merging process can be done in O(log n)
time using n1+α processors in the CREW PRAM. The
details can be found in [4].

2.2 Multi-Level Divide-and-Conquer

Traditional divide-and-conquer does not always work.
In this section, we consider the problem of finding the
convex hull of a set S of n discs in the plane [23]. Since
the boundary of the discs are arcs, CH(S) consists of
the portions of the arcs. Let CH(S) be represented by
the sequence of the arcs listing in counter-clockwise or-
der. It is known that CH(S) consists of at most 2n− 1
arcs. A straight line passing through the leftmost and
the rightmost points separates CH(S) into two hulls:
the upper one UH(S) and the lower one LH(S). Like
the case of points, only UH(S) is constructed in the
following. Two sets of arcs are separated if the arcs of
them lie on different sides of a vertical line. A tradi-
tional m-way divide-and-conquer computes UH(S) in
the following two methods: (1) dividing the n discs into
m equally-sized subsets of discs, recursively finding the
upper hull of each subset in parallel, and then merging
these m upper hulls into UH(S), and (2) partitioning

CHEN et al.: PARALLEL ALGORITHMS FOR CONVEX HULL PROBLEMS AND THEIR PARADIGM
523

Fig. 1 Finding the convex hull of discs with mulit-level divide-
and-conquer.

the n discs intom equally-sized separate sets withm−1
vertical lines, recursively computing the upper hull of
each subset in parallel, and then merging the m upper
hulls into UH(S). To make the presentation simple,
in the following, we let that a traditional divide-and-
conquer consists of two steps and call the part before
the merge step the recursive step. What makes the first
method inefficient is that the m upper hulls obtained
in the recursive step may intersect with each other and
they may have altogether Θ(mn) intersections, and in
order to merge the upper hulls, we may have to find
these Θ(mn) intersections. In the second method, the
m upper hulls obtained in the recursive step do not
intersect with each other, but they may contain alto-
gether Θ(mn) arcs, hence it is also inefficient.

Multi-level divide-and-conquer (MDC) is similar
to a traditional one except it contains more than one
recursive step. Without using MDC, the most effi-
cient algorithm finds UH(S) in O(log2 n) time using
O(n/ logn) processors. With MDC, the problem can
be solved by combining the above two methods as fol-
lows:

Outline of the convex hull algorithm for discs
with MDC

1. (First recursive step) Divide the set S of n discs
into δ subsets such that each subset contains n/δ
discs, and then recursively construct the upper hull
of each subset in parallel (Fig. 1 (a)). (Note that
these upper hulls may intersect with each other.)

2. (Second recursive step) Using n/δ − 1 verti-
cal lines, partition the δ upper hulls which are ob-
tained in the first step and have at most 2n−1 arcs
totally into n/δ separated parts, and then recur-
sively find the upper hull of each part in parallel
(Fig. 1 (b)).

3. (Merge step) Merge the n/δ upper hulls obtained
in the second recursive step into the upper hull of
S. ✷

In the second recursive step, partitioning δ upper hulls
by n/δ−1 lines increases at most n−δ arcs, i.e., the to-
tal size of the subsets does not exceed 3n; furthermore,
the n/δ upper hulls produced in the second division

step are separated, therefore they can be merged into
UH(S) easily by computing the common tangents of
the hulls. When δ = n1/2, the merge step can be done in
O(log n) time using n/ logn processors. Therefore, the
upper hull of n discs in the plane can be found in T (n)
= T (n1/2) + T (3n1/2) + O(log n) (= O(log n log log n))
time using P (n) = max{n1/2P (n1/2), n1/2P (3n1/2),
O(n/ logn)} (= O(n logn)) processors. By adjusting
the parameter δ, the algorithm can be developed into
a work optimal one which runs in O(log1+ε n) time us-
ing O(n/ logε n) processors. The algorithm can be also
generalized into one for constructing the convex hull of
curved-segments in R2. Readers can find the details in
[23]. It is shown that the MDC technique has many
other applications [21].

3. Output-size Sensitive Algorithms Based on
Randomized Approaches

In this section, we introduce an output-size sensitive
convex hull algorithm. It is a Las Vegas randomized
one which finds the convex hull of a set S of n pla-
nar points in O(log n) time using O(n log h) work with
high probability [36], where h is the size of the con-
vex hull. In the following, we show how to compute the
upper hull. The algorithm is similar in structure to ran-
domized quicksort, picking a point at random from the
input, then splitting the input about that point and
recurring. However, the upper hull edge lying above
the splitting point called bridge is found before recur-
sion. That is, after finding the bridge, S is divided
into three subsets S1, S2 and S3 whose points lie in
the left, in the right and under the bridge, respectively,
then the process is executed for S1 and S2 recursively.
In this sense, the algorithm uses the “marriage-before-
conquest” paradigm. If the subsets S1 and S2 had the
same size, in general, if the subproblems had the same
size at each level of recursion, 2i−1 bridges (edges of
the convex hull) would be found in the ith recursive
step, therefore the algorithm would finish in O(log h)
recursive steps. Usually, the subproblems have differ-
ent sizes, therefore the algorithm and the analysis of
complexity are much more complecated. In the follow-
ing, the outline of the algorithms for finding the bridge
of a splitting point, and furthermore finding the upper
hull is given. The further details of the algorithms and
analysis should be found in [36].

Outline of Bridge-Finding-Procedure

1. Find a random sample of size Θ(k) from the given
set S of n planar points, in constant time using
n processors, where k is sufficiently small and the
sample is uniformaly random with probability ≥
1− 2(e/2)−k.

2. Solve the base problem, i.e., finding the edge of the
upper hull of the sample which lies above the given
splitting point, deterministically, in constant time

524
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.3 MARCH 2000

using k3 processors.
3. Check for each point whether it violates the so-

lution just found, i.e., whether it can be the can-
dicate of the endpoins of the requested bridge, in
constant time using n processors. If so, it remains
as a survivor to be in the next base problem.

4. Repeat Steps 1-3 such that the survivors can be
compressed into a problem of size O(k). The solu-
tion to this problem is the bridge sought.

Lemma 1: With probability ≥ 1 − e−Ω(kr), where r
(0 < r < 1) is a constant, the upper hull edge through
the splitting point can be found in a constant number
of iterations, of solving base problems.

Outline of the Convex Hull Algorithm

The algorithm consists of O(log n) steps with high prob-
ability. At the begining of the algorithm, all the points
of S are set to be active. After executing the ith phase,
n(i) bridges (edges of the upper hull) of S have been
found in left to right order, where n(0) is considered as
0, and the problem is reduced to find the upper hulls
of S1, S2, . . ., Sn(i)+1, respectively, where Sj (1 ≤ j ≤
n(i) + 1) and Sj+1 are subsets of S and their points lie
in the left and the right of jth bridge, respectively. Let
A = {Sj | Sj
= ∅, and 1 ≤ j ≤ n(i) + 1 } = {St1 ,St2 ,
. . ., Sti }, where tv > tu if v > u. If A is empty, it
completes the algorithm, else let S′

j = Stj and do the
i+ 1 phase as follows.

(i) If i ≥ logn/32, add the number ti of the subprob-
lems to the number n(i) of the hull edges (bridges)
found thus far to get l, which is a lower bound on
the size h of the convex hull of S. If l ≥ n1/32, solve
the problem using any optimal non-outputsize-size
sensitive parallel algorithm. It completes the algo-
rithm. Else do the following step.

(ii) For each S′
j (1 ≤ j ≤ ti), choose a random split-

ting point p from S′
j , and find a bridge above p by

applying the bridge-finding-procedure. If the pro-
cedure for subset S′

j has not naturally terminated
after a certain constant α steps, then terminate the
procedure and say that subset S′

j has failed.
(ii) Use failure sweeping to compact those problems

that failed in the previous step, so that each prob-
lem can be assinged n3/4 processors (it is proved
that the failed problems is less than n1/4) with high
probability, and use the bridge-finding-procedure
to find bridges.

(v) For each j (1≤ j ≤ ti), regard the points of S′
j lying

under the bridge as dead, and divide the remaining
points of S′

j into two subsets which are numbered
as 2j − 1 and 2j, whose points lie in the left and
the right of the birdge, resepctively.
The algorithm then continues at recursion level
i+1, with above actions, until all points are dead,
or until switch to using the other optimal non-
outputsize-size sensitive parallel algorithm. ✷

Theorem 1: With probability 1 − n−b, the convex
hull inR2 can be found in O(log n) time with O(n log h)
work, where b is a constant and h is the size of the
convex hull.

4. Robust Algorithms

Although many geometric algorithms have been devel-
oped so far, they cause surprising problems in practice.
The major reason is that the basic geometric tests are
unreliable or inconclusive when being implemented by
imprecise computations such as ordinary floating point
arithmetic. This uncertainty makes the solutions in-
accuracy or even not satisfying the proposed geomet-
ric properties. Therefore, robust geometric algorithms
whose correctness is not spoiled by numerical errors
have attracted increasing attention recently. In this
section, we show parallel methods for designing robust
convex hull algorithms. Considering the situation that
the output of one robust convex hull algorithm may be-
come the input of another robust algorithm, we desire
that the solution is not just weakly convex, even not
just convex, but strongly convex so that many of the
desirable properties are preserved in some fashion even
they are tested with imprecise computations. We find
a strongly convex approximate hull in two steps: (1)
find a convex approximate hull of S, and (2) make it
strongly convex. In the following we give some neces-
sary concepts and the outline of the algorithms. The
further details can be found in the original paper [22].

4.1 Primitive Operations

Let l(pq) denote the straight line passing through seg-
ment pq, and X(p) and Y(p) denote the x and y coordi-
nates of point p, respectively. Two primitive operations
are considered:

OPI computing d(z, pq), the signed distance from point
z to line l(pq), where d(z, pq) > 0 if z, p and q are
in counter-clockwise, d(z, pq) < 0 if they are in
clockwise, or d(z, pq) = 0 if they are collinear, and

OPII computing sin(θ(pq, p′q′)), where θ(pq, p′q′) equ-
als the change in orientation from l(pq) to l(p′q′)
in counter-clockwise.

The slope of a line is usually defined by function
tangent. To avoid large numerical errors caused by
tangent whose value may reach ∞, sine is used to
measure the slope. Let points o = (0, 0) and o1 =
(1, 0). The slope of line l(pq) is defined to be slop(pq)
= sin(θ(oo1, pq)).
Let β1 > 0 and κ > 0 be the error units caused by
operation OPI and OPII , respectively. Inequalities
|d(z, pq) − (d(z, pq))I | ≤ β1 and | sin(θ(pq, p′q′)) −
(sin(θ(pq, p′q′)))I | ≤ κ hold, where the subscript I de-
notes the imprecise computations. A general error unit

CHEN et al.: PARALLEL ALGORITHMS FOR CONVEX HULL PROBLEMS AND THEIR PARADIGM
525

is defined as β= max{β1,β2}, where β2 = κT and T is
a bound on the magnitude of the coordinates in the
inputs. It is easily seen that β2 represents the dis-
tance error caused by κ. Except operations OPI and
OPII , comparison operation is used. As most related
researches, a pure comparison operation is assumed to
cause no numerical error.
Let P be a convex polygon, and u, v and w be any three
contiguous vertices of P listing in counter-clockwise.
Vertex v is said to be ε-convex in P if d(v, uw) ≥ 2ε. It
is easily seen that if each vertex of P is ε-convex, then
P is ε-strongly convex.

4.2 Finding A Convex Approximate Hull

Given two points p and q with X(p) < X(q), let lp
and lq be the vertical lines passing through points p
and q, respectively. Lines lp and lq divide point set S
into three subsets: SL(pq), SM (pq) and SR(pq) which
consist of the points located in the left of lp, between
lp and lq (including the points on lp and lq), and in the
right of lq, respectively. In the following, the point sets
S1 and S2 are assumed to be separated by a vertical
line. The points of S1 lie in the left of any points of S2,
and S = S1 ∪ S2.

A line l is the upper bridge of S1 and S2, if l passes
at least one point of each S1 and S2 and no point of S1

and S2 lies above l. The concept can be generalized as
follows.

Definition 1: 1. Line l is a δ-upper support line of
S1, if l passes through at least one point of S1 and
any point of S1 located above l lies at most δ away
from l.

2. Line l(pq) is a δ-upper bridge of S1 and S2, denoted
as UB(S1, S2, δ), if points p ∈ S1 and q ∈ S2, and
l(pq) is a δ-upper support line of both S1 and S2.

3. A δ-upper bridge l(pq) of S1 and S2 is ν-bounded,
denoted as BUB(S1, S2, δ, ν), if for each point u ∈
S located above l(pq) (i) sin(θ(uq, pq)) ≤ ν holds
if u ∈ SL(pq), and (ii) sin(θ(pq, pu)) ≤ ν holds if u
∈ SR(pq) (Fig. 2). ✷

Symmetrical concepts of δ-lower support lines, δ-lower
bridge, and δ-lower bridge bounded by ν can be defined
similarly. We discuss the upper ones only. The follow-
ing procedure FindBridge-Or-DeletePoints(S1 , S2) ei-
ther finds a segment pq such that l(pq) is a BUB(S1, S2,
δ, 4κ), where δ = max{β1 + 3β2, 4β2}, or deletes
about n/4 points of S which lie properly under the
BUB(S1, S2, 0, 0) in O(log n) time using n processors
with imprecise computations in the EREW PRAM.
Since the BUB(S1, S2, 0, 0) exists and the points of
S1 or S2 located on the BUB(S1, S2, 0, 0) are never
deleted, a BUB(S1, S2, δ, 4κ) can be finally found by
calling the procedure O(log n) times.

Fig. 2 A δ-upper bridge l(pq) of S1 and S2 is ν-bounded.

Fig. 3 Findig a BUB(S1, S2, δ, 4κ).

Procedure FindBridge-Or-DeletePoints(S1, S2)

(Step 1) If S1 = {p} and S2 = {q}, then l(pq) is
BUB(S1, S2, 0, 0). This completes the procedure. Else
do the following steps.

(Step 2) (Decide whether deleting the points of
S or finding a BUB(S1, S2, δ, 4κ))
(1) Find point u∗ and line L such that L is a β1-upper
support line of S passing through u∗ as follows (Fig. 3).
Construct �n/2� pairs e = (p, q), where X(p) ≤ X(q),
by matching every two points of S in any way (if n is
odd, the last point is matched twice). Let E denote
the set of these pairs. Use operation OPII to compute
(slop(e))I for each e ∈ E, and then find segment e∗ such
thatM = (slop(e∗))I is the median of {(slop(e))I | e ∈
E}. Use operation OPI to compute (d(u, e∗))I for each
u ∈ S, and then find point u∗ such that (d(u∗, e∗))I
= max{(d(u, e))I | u ∈ S}. Let L be the line passing
through u∗ with slope M .
In the following, assume that u∗ ∈ S1. The case that
u∗ ∈ S2 can be treated symmetrically by exchanging
the roles of the sets S1 and S2, the sets P and Q, the
points p and q , p∗ and q∗, and p and q in the following,
respectively.
(2) Use operation OPII to compute (slop(u∗q))I for
each q ∈ S2, and then let Q = { q | q ∈ S2 and
(slop(u∗q))I ≥M − 2 κ}. If Q is empty, execute Step 3
else find q∗ in Q such that q∗ has the largest x coordi-
nate and then execute Step 4.

(Step 3) (Delete one fourth points of S)
Find E′ = {e = (a, b) | (a, b) ∈ E and (slop(e))I ≥
M} and delete point a from S for each e = (a, b) ∈ E′.

526
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.3 MARCH 2000

This completes the procedure.

(Step 4) (Find a BUB(S1, S2, δ, 4κ))
Use operation OPII to compute (slop(pu∗))I for each p
∈ S1. Find p∗ such that it has the smallest x coordinate
in P = {p | p ∈ S1, X(p) < X(u∗) and (slop(pu∗))I
≤ M + κ}. If P is empty, set p∗ = u∗. Use operation
OPII to compute (slop(p∗q∗))I .
[Case 1] (slop(p∗q∗))I ≤ M .
Use operation OPII to compute (sin(θ(p∗q∗, p∗q)))I for
each q ∈ S2. Find U = {q | q ∈ S2, X(q) ≥
X(q∗) and (sin(θ(p∗q∗, p∗q)))I ≥ κ}, and find q such
that (sin(θ(p∗q∗, p∗q)))I = max{(sin(θ(p∗q∗, p∗q)))I |
q ∈ U }. If U is empty set q = q∗. Output line l(p∗q).
This completes the procedure.
[Case 2] (slop(p∗q∗))I > M .
Using operation OPII to compute (sin(θ(pq∗, p∗q∗)))I
for each p ∈ S1. Find V = {p | p ∈ S1, X(p) ≤
X(p∗) and (sin(θ(pq∗, p∗q∗)))I ≥ κ}. Find p such that
(sin(θ(pq∗, p∗q∗)))I = max {(sin(θ(pq∗, p∗q∗)))I | p ∈
V }, if V is empty set p = p∗. Output line l(pq∗). This
completes the procedure. ✷

Now it is ready to construct a convex δ-upper hull
of S. Let u and v be the leftmost and rightmost ver-
tices of S. First we sort S in x-coordinate, and then
construct a convex δ′-upper hull of S which contains
u and v by the following algorithm MakeConvexUpper-
Hull(S), where δ =max{β1+9β2, 10β2}. The algorithm
is based on two-way divide-and-conquer. It (i) divides
S into two separated subsets S1 and S2, (ii) finds an
approximate bridge b of S1 and S2, i.e., a BUB(S1, S2,
δ, 4κ), (iii) recursively finds F1 and F2, convex δ′-upper
hulls of the points lie in the left and in the right of b
respectively, in parallel, and (iv) combines F1 and F2

with bridge b into a convex upper δ′-hull of S. Since
b can be found in O(log2 n) time using n processors,
the convex δ′-upper hull of S can be found in O(log3 n)
time using n processors with imprecise computations
in the EREW PRAM. A convex δ′-lower hull of S con-
taining u and v can be constructed similarly. A convex
δ-hull of S is obtained by putting them together.

Algorithm MakeConvexUpperHull (S)
(Input) S = (u1, u2, . . ., un), a sequence of n points
in the plane sorted by x coordinate in increasing order.
(Output) A convex δ′-upper hull of S, where
δ′=max{β1 + 9β2, 10β2}, which contains the leftmost
point u1 and the rightmost point un of S.

(Step 1) Divide S into two separated subsequences
S1 = (u1, u2, . . . , u�n/2�) and S2 = (u�n/2�+1,
u�n/2�+2, . . . , un). Find a line l(usut) which is a
BUB(S1, S2, δ, 4κ), where us ∈ S1 and ut ∈ S2. Let
S1= (u1, u2, . . . , us) and S2 = (ut, ut+1, . . . ,un), where
S1 is a prefix of S1 and S2 be a suffix of S2.

(Step 2) Recursively construct F1 and F2, the convex
δ′-hulls of S1 and S2, respectively, in parallel. Notice

Fig. 4 Finding a convex approximate hull with two-way divide-
and-conquer.

that F1 contains vertices u1 and us, and F2 containing
vertices ut and un (Fig. 4).

(Step 3) Use Operation OPII to compute set B1 =
{u | (sin(θ(usut, uut)))I ≥ 5κ, u ∈ F1} and find the
rightmost vertex ua of B1. Similarly, compute B2=
{u | sin(θ(usu, usut)))I ≥ 5κ, u ∈ F2} and find the
leftmost vertex ub of B2. Let u∗ be the right neighbor
of ua in F1 and u∗∗ be the left neighbor of ub in F2,
and let F1 be the left part of F1 from u1 to u∗ and F2

be the right part of F2 from u∗∗ to un. Concatenate
F1,u∗u∗∗ and F2. The resulting polygon F is a convex
δ-upper hull of S which contains the leftmost point u1

the rightmost point un of S. ✷

4.3 Making a Convex Polygon Strongly Convex

Let P be a convex polygon with m vertices.

Definition 2: Let P ′ be a subpolygon of P , i.e., the
vertices P ′ are taken from P . Polygon P is an (ε, δ)-
ridge-ring of P , denoted as r(P, ε, δ), if P ′ satisfies the
following conditions: (i) at least one vertex is ε-convex
in every three contiguous vertices of P ′, and (ii) P ′ is
a δ-hull of P . ✷

An r(P, ε, 2ε+2β1) can be found in O(logm) time using
m processors in the EREW PRAM with imprecise com-
putation. Let R be the resulted r(P, ε, 2ε + 2β1). By
deleting the vertices which are not ε-convex from R, the
resulted R′ is ε-convex. From Definition 2, between any
two adjacent ε-convex vertices of R, there are at most
two vertices which are not ε-convex. It is easily proved
that deleting these vertices make them lie at most 4ε
+ 4β1 + 4β2 outside of R′. Therefore, An ε-strongly
convex (6ε+ 6β1 + 4β2)-hull of a convex m-gon can be
computed in O(logm) time usingm processors with im-
precise computations in the EREW PRAM. Combining
with the result of the previous subsection, an ε-strongly
convex (6ε + max{7β1 + 13β2, 6β1 + 14β2})-hull (i.e.,
an ε-strongly convex (6ε + 20β)-hull) of n points can
be constructed in imprecise computations in O(log3 n)
time using n processors in the EREW PRAM.

CHEN et al.: PARALLEL ALGORITHMS FOR CONVEX HULL PROBLEMS AND THEIR PARADIGM
527

5. Approaches on Other Models

Convex hull construction has been also considered in
mesh, mesh of trees, hypercube, recofigurable mesh (ar-
ray) and models of coarse grained multicomputers like
BSP and LogP. Except reconfigurable mesh, the convex
hull algorithms in these models are basically similar to
those in the PRAM but the time used for communi-
cation is considered. In coarse grained multicomputers
like BSP and LogP, super-steps are used to decrease
the frequency of communication. In an ordinary mesh
or its variants such as mesh of trees and hypercube, a
routing strategy of choosing short but not busy paths
is nessary for efficiently transmitting messages between
processors. Readers can find more details from the pa-
pers we referred in Sect. 1. In the following, we intro-
duce the convex hull algorithms only for recofigurable
mesh.

In essence, a reconfigurable mesh consists of a
mesh-connected multiprocessor augmented by the ad-
dition of a dynamic bus system whose configuration
changes in response to computational and communica-
tion needs. More precisely, a reconfigurable mesh of
size n × m consists of nm identical SIMD processors
positioned on a rectangular array with n rows and m
columns. As usual, it is assumed that every processor
knows its own coordinates within the mesh.

Each processor is connected to its four neighbors
provided by they exist local connections between these
ports can be established at run time, under program
control, creating a powerful bus system whose config-
uration changes dynamically to accommodate various
computational needs.

In general, the bus system established as a result
of setting local connections involves a number of dis-
joint subbuses. As it turns out, these subbuses can be
used, in parallel, as powerful communication or compu-
tational devices.

On the reconfigurable mesh, the convex hull prob-
lem has been addressed in two different contexts: for
sparse input and for dense input. While the sparse case
allows one to use more processors than input points,
in the dense case the number of processors and the
number of input points are, essentially, the same. For
sparse input, Olariu et al. [58] and Jang et al. [45]
proposed O(1) time algorithms to compute the convex
hull of a set of

√
n points on a reconfigurable mesh of

size
√
n×√

n. The algorithm is as follows. First, sort
the

√
n points by x-coordinate in O(1) time. Then,

partition the reconfigurable mesh into n1/4 submeshes
of size

√
n × n1/4 each. On each submesh, the convex

hull of consecutive n1/4 points can be computed in O(1)
time, because it has (n1/4)3 = n3/4 processors. After
that, n1/4 sub convex hulls are merged in O(1) time.
Nakano [56] extended this algorithm and showed that
if the

√
n points are sorted beforehand, then, for every

fixed ε > 0, the convex hull can be computed in O(1)
time on a reconfigurable mesh of size

√
n× nε.

In the dense case, Miller and Stout [53], and Olariu
et al. [59] proposed an O(log2 n) time algorithm com-
puting the convex hull of a sorted set of n points,
pretiled in proximity order on a reconfigurable mesh of
size

√
n ×

√
n. The idea of the algorithm is as follows.

Partition the input into two subsets of n/2 consecutive
points each. The convex hull of each subsets are com-
puted recursively, and they are merged into one convex
hull by finding the common tangent. Since the binary
search can be used to find the common tangent, this
merge can be done in O(log n) time. Thus, the total
computing time is O((log n)2). Nakano [56] showed that
the convex hull of a set of

√
mn points sorted in col-

umn major order can be computed in O(log2 n
log m +log2 m)

time on a reconfigurable mesh of size
√
m×

√
n. In par-

ticular, for m = 2log
2
3 n the computing time becomes

O(log
4
3 n). In this algorithm, the convex hull of the

points pretiled on each column is computed indepen-
dently in O((logm)2) time. After that, the n convex
hulls are merged into one in O(log2 n

log m) time.
Hayashi et al. [43] showed that the convex hull of

n points can be computed in O((log logn)2) time on
a reconfigurable mesh of size

√
n ×

√
n if the input is

sorted by proximity order. The idea of this algorithm
is as follows: First, partition the input into

√
n subsets

of
√
n consecutive points, and find the convex hull re-

cursively. After that, they are merged in O(log logn)
time. This merge is done by iteration of picking sample
points and finding the convex hull of the sample points.
They also proved that Ω(log logn) time is necessary to
compute the convex hull for the dense input.

References

[1] A. Aggarwal, B. Chazelle, L. Guibas, C. Ó’Dúnlaing, and
C. Yap, “Parallel computational geometry,” Algorithmica,
vol.3, pp.163–173, 1988.

[2] N.M. Amato and F.P. Preparata, “The parallel 3D convex
hull problem revisited,” Comput. Geom. Appl., vol.2, no.2,
pp.163–173, 1992.

[3] N.M. Amato, M.T. Goodrich, and E.A. Ramos, “Parallel
algorithms for higher-dimensional convex hulls,” Proc. of
the 36th Annual Symposium on Foundations of Computer
Science, pp.683–694, 1995.

[4] N.M. Amato and F.P. Preparata, “A time-optimal paral-
lel algorithm for three-dimensional convex hulls,” Algorith-
mica, vol.14, no.2, pp.169–182, 1995.

[5] M.J. Atallah and D.Z. Chen, “Optimal parallel hypercube
algorithms for polygon problems,” IEEE Trans. Comput.,
vol.44, no.7, pp.914–922, 1995.

[6] M.J. Atallah and D.J. Chen, “Parallel geometric algorithms
in coarse-grain network models,” Proc. of 4th Annual Inter-
national Computing and Combinatorics Conference, pp.55–
64, 1998.

[7] M.J. Atallah and M.T. Goodrich, “Efficient parallel so-
lutions to some geometric problems,” J. Parallel Distrib.
Comput., vol.3, pp.492–507, 1986.

528
IEICE TRANS. INF. & SYST., VOL.E83–D, NO.3 MARCH 2000

[8] M.J. Atallah and M.T. Goodrich, “Parallel algorithms for
some functions of two convex polygons,” Algorithmica,
vol.3, pp.535–548, 1988.

[9] C. Bajaj and M.S. Kim, “Convex hull of objects bounded
by algebraic curves,” Algorithmic, vol.6, pp.533–553, 1991.

[10] O. Berkman, B. Schieber, and B. Vishkin, “A fast paral-
lel algorithm for finding the convex hull of a sorted point
set,” Comput. Geom. Theory Appl., vol.6, no.2, pp.231–
241, 1996.

[11] B. Bhatacharya and J.E. Gindy, “A new linear convex hull
algorithm for simple polygons,” IEEE Trans. on Informa-
tion Theory, vol.30, no.1, pp.85–88, 1984.

[12] J.D. Boissonnat, A. Cérézo, O. Deviller, J. Duquesne, and
M. Yvinec,“An algorithm for constructing the convex hull
of a set of spheres in dimension d,” Comput. Geom., Theory
Appl., vol.6, pp.123–130, 1996.

[13] H. Bröonnimann, B. Chazellel, and J. Matous̆ek, “Prod-
uct range spaces, sensitive sampling, and derandomiza-
tion,” Proc. 34th Annu. IEEE Sympos. Found. Comput.
Sci., pp.400–409, 1993.

[14] C.D. Castanho, W. Chen, and K. Wada, “A parallel
algorithm for constructing strongly convex superhulls of
points,” to appear in IEICE Trans. Fundamentals, vol.E83-
A, no.4, April 2000.

[15] B. Chazellel, “An optimal convex hull algorithm in any fixed
dimension,” Discrete Comput. Geom., vol.10, pp.377–409,
1993.

[16] B. Chazellel and J. Matous̆ek, “Derandomizing an output-
sensitive convex hull algorithm in three dimensions,” Tech-
nical Report, Dept. Comput. Sci., Univ. Illinois, Urbana,
IL, 1980.

[17] D.Z. Chen, “Efficient geometric algorithms on the EREW
PRAM,” IEEE Trans. Parallel and Distributed Systems,
vol.6, pp.41–47, 1995.

[18] W. Chen, X.W. Deng, K. Wada, and K. Kawaguchi, “Con-
structing a strongly convex superhull of points,” Third An-
nual International Computing and Combinatorics Confer-
ence, Lecture Notes in Computer Science, no.1276, pp.4–51,
1997.

[19] W. Chen, K. Nakano, T. Masuzawa, and N. Tokura, “A par-
allel method for the prefix convex hulls problem,” IEICE,
Trans. Fundamentals, vol.E77-A, no.10, pp.1675–1683, Oct.
1994.

[20] W. Chen, K. Nakano, T. Masuzawa and N. Tokura, “Op-
timal parallel algorithms for finding the convex hull of
a sorted point set,” IEICE, Trans., vol.J74-D-I, no.12,
pp.814–825, Dec. 1991.

[21] W. Chen and K. Wada, “Multi-level divide-and-conquer: A
method for designing efficient parallel algorithms,” Proc. of
2nd International Conference on Parallel and Distributed
Computing and Networks, 1998.

[22] W. Chen, K. Wada, and K. Kawaguchi, “Parallel robust
algorithms for constructing strongly convex hulls,” Proc.
of the 12th Annual ACM Symposium on Computational
Geometry, pp.133–140, 1996.

[23] W. Chen, K. Wada, K. Kawaguchi, and D.Z. Chen, “Find-
ing the convex hull of discs in parallel,” J. of Computational
Geometry and Applications, vol.8, no.3, pp.305–319, 1998.

[24] A.L. Chow, “Parallel algorithms for geometric problems,”
Ph.D. Thesis, Dept. Comput. Sci., Univ. Illinois, Urbana,
IL, 1980.

[25] K.L. Clarkson and P.W. Shor, “Application of random sam-
pling in computational geometry, II,” Discrete Comput.
Geom., vol.4, pp.387–421, 1986.

[26] S.A. Cook, C. Dwork, and R. Reischuk, “Upper and lower
time bounds for parallel random access machines without
simultaneous writes,” SIAM J. Comput., vol.15, pp.87–97,

1986.
[27] N. Dadoun and D.G. Kirkpatrick, “Parallel construction

of subdivision hierarchies,” Comput. Syst. Sci., vol.39,
pp.153–165, 1989.

[28] F. Dehne, X. Deng, P. Dymond, A. Fabri, and A.A.
Khokhar, “A randomized parallel three-dimensional convex
hull algorithm for coarse-grained multicomputers,” Theory
Comput. Syst., vol.30, no.6, pp.547–558, 1997.

[29] O. Devillers and M.J. Golin, “Incremental algorithms for
finding the convex hulls of circles and the lower envelopes
of parabolas,” Proc. of the 6th Canadian Conference on
Computational Geometry, pp.153–158, 1994.

[30] D.P. Dobkin and D.L. Souvaine, “Computational geometry
in a curved world,” Algorithmica, vol.5, pp.421–457, 1990.

[31] H. Edelsbrunner, “Algorithms in combinatorial geometry,”
vol.10 of EATCSMonographs on Theoretical Computer Sci-
ence, Springer Verlag, Heidelberg, West Germany, 1987.

[32] H. Edelsbrunner and W. Shi, “An O(n log2 h) time al-
gorithm for the three-dimensional convex hull problem,”
SIAM J. on Computing, vol.20, pp.259–269, 1991.

[33] A. Ferreira, A. Rau-Chaplin, and S. Ueda, “Scalable 2d
convex hull and triangulation algorithms for coarse grained
multicomputers,” Proc. of 7th IEEE Symposium on Parallel
and Distributed Processing, pp.561–568, 1995.

[34] P-O. Fjällström, J. Katajainen, C. Levcopoulos, and O.
Petersson, “A sublogarithmic convex hull algorithm,” Bit,
vol.30, pp.378–384, 1990.

[35] S. Fortune,“ Stable maintenance of point set triangulations
in two dimensions,” Proc. of the 30th Annu. Sympos. on
Foundations of Computer Science, pp.494–499, 1989.

[36] M. Ghouse and M.T. Goodrich, “In-place techniques for
parallel convex hull algorithms,” in Proc. 3rd ACM Sympos.
Parallel Algorithms Architect., pp.192–203, 1991.

[37] M.T. Goodrich, “Finding the convex hull of a sorted point
set in parallel,” Information Processing Letters, vol.26,
pp.173–179, 1987.

[38] M.T. Goodrich, “Randomized fully-scalable BSP tech-
niques for multi-searching and convex hull construction,”
Proc. of the 8th Annual ACM-SIAM Symposium on Dis-
crete Algorithms, pp.767–776, 1997.

[39] L. Guibas, D Salesin, and J. Stolfi,” Constructing strongly
convex approximate hulls with inaccurate primitives,” Al-
gorithmica, vol.9, pp.534–560, 1993.

[40] N. Gupta and S. Sen, “Optimal output-sensitive algorithms
for constructing planar hulls in parallel,” Comput. Geom.
Theory Appl., vol.8, no.3, pp.151–166, 1997.

[41] R.L. Graham, “An efficient algorithm for determining the
convex hull of a finite planar set,” Inform. Process. Lett.,
vol.1, pp.73–82, 1972.

[42] R.L. Graham and F. Yao, “ Finding the convex hull of a
simple polygon,” J. of Algorithms, vol.4, pp.324–331, 1983

[43] T. Hayashi, K. Nakano, and S. Olariu, “An O((log logn)2)
time convex hull algorithm for sorted points on reconfig-
urable meshes,” IEEE Trans. on Parallel and Distributed
Systems, vol.9, no.12, pp.1167–1179, 1998.

[44] J.A. Holey and O.H. Ibarra, “Iterative algorithms for the
planar convex hull problem on mesh connected arrays,”
Parallel Comput., vol.18, no.3, pp.281–296, 1992.

[45] J. Jang, M. Nigam, V.K. Prasanna, and S. Sahni, “Con-
stant time algorithms for computational geometry on the
reconfigurable mesh,” IEEE Trans. Parallel and Distributed
Systems, vol.8, pp.1–12, 1997.

[46] C.S. Jeong and D.T. Lee, “Parallel convex hull algorithms
in 2D and 3D on mesh-connected computers,” Parallel Pro-
cessing for Computer Vision and Display, pp.66–76, 1989.

[47] D.G. Kirkpatrick and R. Seidel, “The ultimate planar con-
vex hull of algorithm?” SIAM J. Comput., vol.15, pp.287–

CHEN et al.: PARALLEL ALGORITHMS FOR CONVEX HULL PROBLEMS AND THEIR PARADIGM
529

299, 1986.
[48] D.T. Lee, “On finding the convex hull of a simple poly-

gon,” International Journal of Computer and Information
Sciences, vol.12, no.2, pp.87–98, 1983.

[49] D.T. Lee and R. Jou, “Efficient parallel geometric algo-
rithms on a mesh of trees,” Proc. of the 33rd Annual South-
east Conference, pp.213–218, 1995.

[50] Z. Li and V.J. Milenkovic, “Constructing strongly convex
hulls using exact or rounded arithmetic,” Algorithmica,
vol.8, pp.345–364, 1992.

[51] J. Matous̆ek, “ Linear optimization queries,” J. Algorithms,
vol.14, pp.432–448, 1993.

[52] D. McCallum and D. Avis, “ A linear algorithm for finding
the convex hull of a simple polygon,” Information Process-
ing Letters, vol.9, no.5, pp.201–206, 1979.

[53] R. Miller and Q.F. Stout, “Efficient parallel convex
hull algorithms,” IEEE Trans. Comput., vol.C-37, no.12,
pp.1605–1618, 1988.

[54] R. Miller and Q.F. Stout, “Mesh computer algorithms for
computational geometry,” IEEE Trans. Comput., vol.C-38,
no.3, pp.321–340, 1989.

[55] K. Nakano, “A bibliography of published papers on dy-
namically reconfigurable architectures,” Parallel Processing
Letters, vol.5, pp.111–124, 1995.

[56] K. Nakano, “Computing the convex hull of a sorted set of
points on a reconfigurable mesh,” Parallel Algorithms and
Applications, vol.8, pp.243–250, 1996.

[57] F. Nielsen and M. Yvinec, “An output-sensitive convex
hull algorithm for planar objects,” Comput. Geom., Theory
Appl. vol.8, no.1, pp.39–65, 1998.

[58] S. Olariu, J.L. Schwing, and J. Zhang, “Time-optimal con-
vex hull algorithms on enhanced meshes,” BIT, vol.33,
pp.396–410, 1993.

[59] S. Olariu, J.L. Schwing, and J. Zhang, “Fast component
labeling and convex hull computation on reconfigurable
meshes,” Image and Vision Computing Journal, vol.11,
pp.447–455, 1993.

[60] F.P. Preparata and S.J. Hong, “ Convex hulls of finite sets
of points in two and three dimensions,” Commun. ACM,
vol.20, pp.87–93, 1977.

[61] F.P. Preparata and M.L. Shamos, Computational Geome-
try: An Introduction, Springer-Verlag, New York, 1985.

[62] D. Rappaport, “A convex hull algorithm for discs, and ap-
plications,” Computational Geometry: Theory and Appli-
cations, vol.2, pp.171–187, 1992.

[63] J.H. Reif and S. Sen, “Optimal parallel randomized algo-
rithms for three-dimensional convex hulls and related prob-
lems,” SIAM J. Comput., vol.21, no.3, pp.466–485, 1992.

[64] A. Schäffer and C. Van Wyk, “Convex hulls of piecewise-
Smooth Jordan curves,” J. Algorithms, vol.8, no.1, pp.66–
94, 1987.

[65] R. Seidel, “A convex hull algorithm optimal for point sets in
even dimensions,” M.Sc. Thesis, Dept. Comput. Sci., Univ.
British Columbia, Vancouver, BC, 1981.

[66] R. Seidel, “Constructing higher-dimensional convex hulls at
logarithmic cost per face,” Proc. 18th. Annu. ACM Sympos.
Theory Comput., pp.404–413, 1986.

[67] R. Seidel, “Small-dimensional linear programming and con-
vex hulls made easy,” Discrete Comput. Geom., vol.6,
pp.423–434, 1991.

[68] S. Shin and T. Woo, “Finding the convex hull of simple
polygon in linear time,” Pattern Recognition, vol.19, no.6,
pp.453–458, 1986.

[69] I. Stojmenovic, “Computational geometry on a hypercube,”
Proc. of 1988 International Conference on Parallel Process-
ing, vol.3, pp.100–103, 1988.

[70] H. Wagener, “Optimal parallel hull construction for simple

polygons in O(log log n) time,” Proc. 33rd Annual Sym-
posium on Foundations of Computer Science, pp.593–599,
1992.

[71] J. Zhou, X. Deng, and P. Dymond, “A 2-D parallel con-
vex hull algorithm with optimal communication phases,”
Proc. of 11th International Parallel Processing Symposium,
pp.596–602, 1997.

Wei Chen received the B.A. degree in
mathematics from Shanghai Marine Uni-
versity in 1982, and received M.E., and
Ph.D. degrees from the Department of In-
formation Engineering, Faculty of Engi-
neering Science, Osaka University in 1991
and 1994, respectively. Since 1994 she has
been working at the Department of Elec-
trical and Computer Engineering, Nagoya
Institute of Technology. She is now an as-
sociate professor of that university. Her

research interests include parallel and distributed algorithms,
computational geometry and graph theory. She is a member of
ACM, IEEE, LA Symposium and IPSJ.

Koji Nakano received the B.E., M.E.
and Ph.D degrees from Osaka University,
Japan in 1987, 1989, and 1992 respec-
tively. In 1992–1995, he was a research
scientist at Advanced Research Labora-
tory, Hitachi Ltd. Since 1995, he has
worked at Nagoya Institute of Technology,
Japan. He is currently an associate pro-
fessor with the Department of Electrical
and Computer Engineering. His research
interests includes parallel algorithms and

architectures, mobile computing, computational complexity, and
graph theory.

Koichi Wada graduated in 1978
from the Department of Information En-
gineering, Faculty of Engineering Science,
Osaka University, and received his M.S.
and Ph.D. degrees both from the same
university in 1980 and 1983, respectively.
He was a research associate at Osaka Uni-
versity during 1983–1984. In 1984 he
joined Nagoya Institute of Technology,
where he is currently a professor in the
Department of Electrical and Computer

Engineering. He was a visiting associate professor at University
of Minnesota, Duluth and University of Wisconsin, Milwaukee
during 1987–1988. His research interests include graph theory,
parallel/distributed algorithms and VLSI theory. Dr. Wada is a
member of IEEE, ACM, LA Symposium, Japan SIAM and IPSJ.

