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SUMMARY Let S be a set of n points in the plane and
CH(S) be the convex hull of S. We consider the problem of
constructing an approximate convex hull which contains CH(S)
with strong convexity. An ε-convex δ-superhull of S is a convex
polygon P satisfying the following conditions: (1) P has at most
O(n) vertices, (2) P contains S, (3) no vertex of P lies farther
than δ outside CH(S), and (4) P remains convex even if its ver-
tices are perturbed by as much as ε. The parameters ε and δ
represent the strength of convexity of P and the degree of ap-
proximation of P to CH(S), respectively. This paper presents
the first parallel method for the problem. We show that an ε-
convex (8 + 4

√
2)ε-superhull of S can be constructed in O(log n)

time using O(n) processors, or in O(log n) time using O(n/ log n)
processors if S is sorted, in the EREW -PRAM model. We im-
plement the algorithm and find that the average performance is
even much better: the results are more strongly convex and much
more approximate to CH(S) than the theoretical analysis shows.
key words: computational geometry, convexity, strongly convex

superhull, parallel algorithm, divide-and-conquer

1. Introduction

In computational geometry the convex hull problem of
points in the plane is one of the oldest and most-studied
problems. The task is to determine the smallest con-
vex polygon that contains all the given points. Over
the past two decades a number of algorithms have been
proposed [1]–[3], [5], [8], [9], [12]. Due to the nice prop-
erties of convexity, convex hulls have applications in a
variety of problem domains including computer vision,
computer graphics, and statistics [10]. Consequently,
it is natural that we may desire that the solution has
strong tolerance for convexity so that in the further
computations, many properties from the convexity can
be preserved in some fashion even if they are tested
with imprecise computations.

Let S be a set of n points in the plane. The concept
of strongly convex approximate hull of S first appeared
in the problem of finding an ε-convex δ-hull of S [11]
which is a simple polygon P satisfying the following
conditions: (i) the vertices of P are taken from S, (ii)
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no point of S lies farther than δ (δ ≥ 0) outside P and
(iii) P is convex and remains convex even if the vertices
of P are perturbed by as much as ε (ε ≥ 0). The param-
eters ε and δ are used to describe the tolerance of P for
the convexity and the approximation of P to CH(S),
respectively. According to the definition, the 0-convex
0-hull of S is the convex hull of S. Clearly, for a given
ε, the smaller the value of δ is, the better an ε-convex
δ-hull would be. Li and Milenkovic present the first
algorithm for the problem which computes an ε-convex
12ε-hull in O(n logn) time [11]. Guibas, Salesin and
Stolfi propose another algorithm which computes an ε-
convex 6ε-hull in O(n3 log n) time [9]. Recently, Chen,
Wada and Kawaguchi have developed a parallel algo-
rithm for constructing an ε-convex 6ε-hull which runs in
O(logn) time using n processors in the EREW PRAM
or in O(n logn) time if it is implemented sequentially
[5]∗∗.

In many applications, approximate hulls are re-
quired to contain all the points of S [12]. A major
drawback of an ε-convex δ-hull is the fact that the
points of S may lie outside of the hull. A recent work
has been developed to solve this problem. Chen, Deng,
Wada, and Kawaguchi have introduced a new concept,
strongly convex approximate superhull of S [6]. A sim-
ple polygon P is an ε-convex δ-superhull of S if P sat-
isfies the following conditions: (i) P has at most O(n)
vertices, (ii) P contains all the points of S, (iii) no ver-
tex of P lies farther than δ outside the convex hull of
S, and (iv) P is convex and remains convex even if its
vertices are perturbed by as much as ε. Obviously, the
0-convex 0-superhull of S is the convex hull of S. Note
that according to the definition, the vertices of a super-
hull are not necessary to be the points of S, in fact, it
is impossible.

It is worth to notice the relation between strongly
convex hulls and strongly convex superhulls. Let Q be
an ε-convex δ1-hull of S. An ε-convex δ2-superhull of
S can be constructed directly by expanding the bound-
ary of Q as follows: draw lines outside Q such that the
lines are parallel to the edges ofQ with distance δ1. The
polygon Q′ consisting of the intersections of the lines is
an ε-convex δ2-superhull of S, where δ2 is the maximum
distance from the intersections to Q (Fig. 1). However,

∗∗These algorithms also consider imprecise computations.
We only list the results relating to exact arithmetic.
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Fig. 1 δ2 may be very large.

δ2 may be much larger than δ1, i.e., Q′ may not be a
good approximation of Q. Therefore, a strongly con-
vex approximate hull cannot be used for constructing a
strongly convex approximate superhull. Moreover, the
algorithms developed for constructing Q depend on the
technique of deleting the points of S, therefore, they
can not be used to construct a strongly convex approx-
imate superhull of S essentially.

Chen, et al. [6] present the first method to solve
the convex superhull problem. They show a sequen-
tial algorithm that constructs an ε-convex (2 + 4

√
2)ε-

superhull of S which has at most n + 1 vertices in
O(n logn) time, or in O(n) time if S is sorted. They use
a sweep technique which cannot be easily parallelized.

This paper presents, for the first time, a parallel
algorithm for the strongly convex approximate super-
hull problem. We construct an ε-convex (8 + 4

√
2)ε-

superhull of S in O(logn) time using O(n) processors,
or in O(logn) time using O(n/ logn) processors if S
is sorted. The main technique is the use of an al-
most ε-convex approximate superhull of S which con-
trols the created vertices such that they do not lie far-
ther and farther from CH(S) in the process of con-
struction. Throughout this paper, the model of paral-
lel computation we use is the EREW -PRAM . It is a
synchronous shared-memory model where no two pro-
cessors can simultaneously read or write in the same
memory location. In this paper, we also implement our
algorithm and do some experiments and we find that (i)
the average performance of the algorithm is much bet-
ter than the theoretical analysis shows: the resulted su-
perhulls are more strongly convex than the requested ε
and much more approximate to CH(S) than (8+4

√
2)ε,

and (ii) our parallel method gives a stronger convexity
than the sequential one, although its degree of approx-
imation is a little bit worse than that of sequential one.

2. Definitions and Lemmas

Let S be a set of n points in the plane and P be a
simple polygon.

Definition 1 (ε-convex polygon): P is ε-convex (ε ≥
0), if P is convex and remains convex even after each
vertex of P is perturbed as far as ε. ✷

Definition 2 (δ-hull of points): P is a δ-hull (δ ≥ 0)
of S, if all vertices of P belong to S and no vertex of S
lies farther than δ outside the polygon P . ✷

Definition 3 (ε-convex δ-hull of points): P is an ε-
convex δ-hull of S, if P is a δ-hull of S and P is ε-

Fig. 2 An ε-convex vertex.

convex. ✷

Definition 4 (δ-superhull of points): P is a δ-super-
hull (δ ≥ 0) of S, if P contains all the points of S, and
no vertex of P lies farther than δ outside the convex
hull of S. ✷

Definition 5 (ε-convex δ-superhull of points): P is
an ε-convex δ-superhull of S, if P is a δ-superhull of
S, P is ε-convex and P has at most O(n) vertices. ✷

It is easily seen that an ε′-convex δ′-superhull of S
is an ε-convex δ-superhull of S if ε′ ≥ ε and δ′ ≤ δ. For
any two points p and q, let |pq| denote the length of
line segment pq, l(p, q) denote the straight line passing
through p and q, and int(l1, l2) denote the intersection
of lines l1 and l2. Points p and q divide line l(p, q) into
three parts: segment pq and two half lines l(p, q)p and
l(p, q)q which start at p and q, respectively. Let G be
a polygon (or polygonal chain). A sub-chain H of G is
contiguous if its vertices lie contiguously in G. Given
polygonal chains H and H ′, where H is a contiguous
sub-chain of G, G(H → H ′) is a polygon (or polygonal
chain) obtained by replacing H with H ′ in G. Similarly,
given k pairs of polygonal chains H1 and H ′

1, H2 and
H ′
2, . . ., Hk and H ′

k, where Hi (1 ≤ i ≤ k) is a contigu-
ous sub-chain in G, and for any i and j (i �= j) Hi and
Hj share no common vertex, G(H1→H ′

1,H2→H ′
2,. . .,

Hk→H ′
k) is a polygon (or polygonal chain) obtained

by replacing Hi with H ′
i for all i (1 ≤ i ≤ k) in G.

Definition 6: (point-line distance, point-segment
distance): Let a, b and c be three points in the plane.
Define d(b, l(a, c)) = min{|bd| | d is the point on l(a, c)}
to be the distance from point b to line l(a, c) and define
d(b, ac) = min{|bd| | d is the point on ac} to be the
distance from point b to line segment ac (Fig. 2). ✷

Definition 7 (ε-convex and ε-flat vertices): Let P be
a convex polygon (or convex polygonal chain), and
a, b and c be three contiguous vertices of P listing
in counter-clockwise. Vertex b is ε-convex in P if
d(b, l(a, c)) ≥ 2ε (Fig. 2), otherwise b is ε-flat. ✷

According to Definition 7, for three contiguous ver-
tices a, b, c of P the convexity of b, i.e., the value of
d(b, l(a, c)), is a local property which depends only on
its two neighbors in P . If d(b, ac) = d(b, l(a, c)) then
we say b is normal else b is abnormal. Obviously, if
� bac ≤ 90◦ and � bca ≤ 90◦ then b is normal. If b is ab-
normal and � bca > 90◦ then we say b is left-abnormal.
If b is abnormal and � bac > 90◦ then we say b is right-
abnormal.
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In a convex polygonal chain, the end vertices are
neither ε-convex nor ε-flat. For any three contiguous
vertices a, b and c of a simple polygon, if b is ε-convex,
then b remains convex even after perturbing a, b and c
as far as ε. Therefore, we have the following Lemma.

Lemma 1[11]: Let P be a simple polygon. If each
vertex of P is ε-convex, then P is ε-convex. ✷

The distance from a point v to simple polygon P ,
denoted as d(v, P ) , is defined as d(v, P ) = min{d(v, e),
e is the edge of P}. Therefore the point-line distance is
used to measure the convexity of vertex and the point-
segment distance is used to measure the distance from
a point to a simple polygon.

Let a convex polygon (convex polygonal chain)
be represented by a sequence of their vertices listing
in counter clockwise. A convex polygonal chain G is
monotonic in both x-axis and y-axis if both the x coor-
dinates and y coordinates of its vertices increase or de-
crease monotonically, respectively. The following prop-
erty holds obviously.

Property 1: Given a convex polygonal chain G =
(u1, u2, . . ., un), if G is monotonic in both x-axis and
y-axis, then d(b, uiuj) = d(b, l(ui, uj)) holds for any i
and j (1 ≤ i �= j ≤ n), where b is the intersection of
l(ui, ui+1) and l(uj−1, uj).

Let Q = (q1, q2, . . ., qm) be a convex polygon (or
convex polygonal chain). Denote Q(i : j) (1 ≤ i ≤ j
≤ m) to be the sequence of the contiguous vertices of
Q from qi to qj (Q(i : j) is empty if i > j). Given
two polygonal chains U and V , notation ✶ denotes the
operation of concatenating U and V , i.e., U ✶ V =
(u1,u2,. . .,uf , v1,v2,. . .,vg) for U = (u1,u2,. . .,uf ) and
V = (v1,v2,. . .,vg). The following property holds obvi-
ously.

Property 2: Let G = (u1, u2, . . ., un) be a convex
polygon and H = (uf , ..., ug) be a sub-chain of G. Let
I be the intersection of l(uf−1, uf ) and l(ug, ug+1). If
H ′ = (u), H ′ = (v) or H ′ = (u, v) such that u lies on
segment ufI and v lies on segment Iug, then G(H→H ′)
is still convex and the convexities of the vertices of G
other than those of H are not changed in G(H→H ′)
(Fig. 3). ✷

It is not easy to revise vertices in a convex poly-
gon locally, since it may change the convexities of their
neighbors. In the following, we show that under some

Fig. 3 G(H→H′) is still convex.

conditions, the vertices can be revised into ε-convex
without changing the convexities of their neighbors.

Definition 8 ((ε, δ)-swap and (ε, δ)-subswap): Let G
be a convex polygon (or a convex polygonal chain) and
H be a contiguous polygonal sub-chain of G. An (ε, δ)-
swap of H in G, denoted as swp(G,H, ε, δ), is a con-
vex polygonal chain H ′ satisfying the following condi-
tions: (i) H ′ has at most |H| vertices, (ii) G(H → H ′)
is convex, and for the vertices of G other than those
of H, their convexities in G(H → H ′) are the same
as in G, (iii) all the vertices of H ′ are ε-convex in
G(H → H ′) and (iv) the vertices of H ′ lie at most δ
outside of H ′. An (ε, δ)-subswap of H in G, denoted as
sswp(G,H, ε, δ), is a convex polygonal chain H ′ satisfy-
ing all the condition of a swp(G,H, ε, δ) except that the
last vertex of H ′ may not be ε-convex in G(H → H ′).

✷

The proof of Lemma 2 is given in Appendix, and
the proof of Lemma 3 can be found in [6].

Lemma 2: Let G = (u1, . . .,un) be a convex polyg-
onal chain and H = (uf+1, . . .,ug−1) be a contiguous
sub-chain ofG. If uf and ug are ε-convex inG, where uf

and ug are the vertices of G lying directly before uf+1

and after ug−1, respectively, then an sswp(G,H, ε, 2ε)
(= H ′) can be found in O(|H|) time using a single pro-
cessor and if H has at least one ε-convex vertex, H ′ has
also at least one ε-convex vertex. ✷

Lemma 3[6]: Let P be a convex polygonal chain and
H = (v, w, x) be a contiguous sub-chain of P . If w is
ε-flat and u, v, x and y are

√
2ε-convex, with u and y

lying before and after v and x respectively, then H ′, a
swp(G,H, ε, (2 + 2

√
2)ε) can be found in O(|H|) time

using a single processor. ✷

3. Algorithm

Let S be a set of n points in the plane. We construct a
strongly convex approximate superhull of S as follows:
find the convex hull of S, denoted as CH(S), and then
find an ε-convex (8+4

√
2)ε-superhull of CH(S). Since

CH(S) can be found in O(logn) time using O(n) pro-
cessors, or in O(logn) time using O(n/ logn) processors
if S is sorted [1], [4], [8], in the rest of the paper, we only
construct a strongly convex approximate superhull for
a convex polygon.

3.1 Almost-ε-Convex-Ring and Almost-ε-Convex-
Piece

Our parallel algorithm is based on divide-and-conquer.
If we construct an ε-convex δ-superhull of a convex
polygon P with n vertices, directly by divide-and-
conquer technique, we would divide P into two sub-
polygons P1 and P2 with the same size each, recursively
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Fig. 4 Combining two ε-convex β1-superhulls.

compute P ′
1 and P ′

2, ε-convex β1-superhulls of P1 and
P2 in parallel, and then combine P ′

1 and P ′
2 into P ′, an

ε-convex β2-superhull of P . In the combining step, the
vertices at the junctions would be revised if they were
not ε-convex (Fig. 4). It means that in the worst case
(the case that the junctions and their two neighbors lie
almost on a same line) the vertices of P ′ may lie 2ε out-
side P ′

1 and P ′
2, which means that P ′ may lie 2ε + β1

outside P . On the other hand, P ′
1 and P ′

2 were con-
structed recursively with Θ(logn) steps. It means that
we would finally get an ε-convex Θ(ε logn)-superhull
of P , which is not a good approximation of P . Obvi-
ously, δ should not be a function of n but only be that
of ε. Therefore, instead of constructing an ε-convex δ-
superhull of P directly, we first find a δ-superhull of P
in which only a proportion of the vertices are ε-convex,
and then revise it to be ε-convex.

Definition 9 (Almost-ε-Convex-Ring): Let P be a
convex polygon. Convex polygon P ′ is an Almost-ε-
Convex-Ring of P , denoted as a(P, ε), if P ′ satisfies the
following conditions: (i) P ′ has at most |P | vertices,
(ii) in every two contiguous vertices of P ′, at least one
is ε-convex, and (iii) each vertex of P ′ lies at most 4ε
outside P (Fig. 5(i)). ✷

Let F be a convex polygonal chain. By adding an
edge between the endpoints of F we get a closed chain.
Point v is said to be outside of F if v lies outside the
closed F . The end-vertices of F are neither ε-convex
nor ε-flat.

Definition 10 (Almost-ε-Convex-Piece): Let F be a
convex polygonal chain. Convex polygonal chain F ′

is an Almost-ε-Convex-Piece of F , denoted as a(F, ε),
if F ′ satisfies the following conditions: (i) F ′ has at
most |F | vertices, (ii) except the end-vertices, in any
two contiguous vertices of F ′, at least one is ε-convex,
(iii) the first and the last vertices of F ′ are the same as
those of F , (iv) the second and the penultimate vertices
of F ′ lie at most 2ε outside of F if they are ε-flat else
they lie at most 4ε outside of F , and the other vertices
of F ′ lie at most 4ε outside of F , and (v) the first and
the last edges of F ′ contain those of F as line segments,
respectively (Fig. 5(ii)). ✷

Given a convex polygon P , we construct a strongly
convex approximate superhull of P in two steps: we find

Fig. 5 (i) Almost-ε-convex-ring and (ii) Almost-ε-convex-
piece.

an Almost-ε-Convex-Ring of P , and then revise it into
an ε-convex (8+4

√
2)ε-superhull of P . We construct an

Almost-ε-Convex-Ring of convex polygon P as follows:
(1) divide P into four contiguous polygonal chains P1,
P2, P3, P4 at extreme vertices u, v, w and x which have
the largest x coordinate, the largest y coordinate, the
smallest x coordinate, and the smallest y coordinate,
respectively, and then find an a(Pi, ε), for each i (1 ≤
i ≤ 4), and (2) concatenate them into a polygon P ′ =
a(P1, ε) ✶ a(P2, ε) ✶ a(P3, ε) ✶ a(P4, ε) (note that P ′ is
convex since for each i, 1 ≤ i ≤ 4, the first and the last
edges of a(Pi, ε) contains these of Pi), and then revise
it into an Almost-ε-Convex-Ring of P .

3.2 Finding Almost-ε-Convex-Pieces

In this subsection, we find an a(F, ε) for a convex polyg-
onal chain F which is monotonic in both x-axis and y-
axis. It is easily seen that a(F, ε) is also monotonic in
both x-axis and y-axis since its first and last edges con-
tains these of F . From Property 1 point-line distance
and point-segment distance are the same measure for
F and a(F, ε). Thus, throughout this subsection we re-
gard point-line distance and point-segment distance as
the same distance.

Algorithm MakeAlmostConvexPiece(F)
Step 1 Let F = (u1, u2, . . ., um) and w = u�m/2�.
Divide F into two sub-chains F1 = (u1, u2, . . . , w) and
F2 = (w, v1, v2, . . . , v	m/2
), where vi = u�m/2�+i (1 ≤
i ≤ 	m/2
), and recursively find an a(F1, ε) and an
a(F2, ε) respectively, in parallel.

Step 2 Combine the a(F1, ε) and the a(F2, ε) into an
a(F, ε) as follows.

Assume a(F1, ε) = (z1, z2, . . . , zk, w
′) and a(F2, ε)

= (w′′, zk+1, . . . , zh). From Definition 10, w′ = w′′ =
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Fig. 6 Combining two almost-ε-convex-pieces.

Fig. 7 Revising H = (zk, w).

w, z1 = u1 and zh = v	m/2
. Let chain G = a(F1, ε) ✶

a(F2, ε) = (z1, z2, . . . , zk, w, zk+1, . . . , zh). It is eas-
ily seen that G satisfies all the conditions as an a(F, ε)
except there may be more than one ε-flat vertex appear-
ing at the junction w (Fig. 6). At most three contiguous
vertices, zk, w and zk+1, may be ε-flat at the junction,
since if zk is ε-flat, zk−1 is ε-convex or it is the first
vertex of G according to the definition of a(F1, ε), and
similarly if zk+1 is ε-flat in a(F2, ε), zk+2 is ε-convex
or it is the last vertex of G. Therefore, assuming that
H is the longest contiguous sequence consisting of the
ε-flat vertices at the junction w, |H| ≤ 3 holds. If H
contains only one vertex then G is already an a(F, ε).
If H contains more than two vertices, use the following
procedure REVISION(G,H) to revise H into H ′ such
that G(H → H ′) is an a(F, ε). ✷

Procedure REVISION(G,H)

(Case 1) |H| = 2. In this case, H = (zk, w) or H =
(w, zk+1).

(Subcase 1) H = (zk, w) (Fig. 7).
Find the intersection I of l(zk−1, zk) and
l(w, zk+1). If d(I, zk−1w) ≤ 2ε, let (i) H ′ =
(I), else find a point p on segment zkI such
that d(p, l(w, zk−1)) = 2ε (such p must exist since
d(zk, l(zk−1, w)) < 2ε and d(I, l(zk−1, w)) > 2ε),
and let (ii) H ′ = (p, w). Revise H into H ′.
(It is easily seen that only the last vertex (I or w)
of H ′ may not be ε-convex in G(H → H ′).)
(Subcase 2) H = (w, zk+1).
It is the symmetry case of Subcase 1.

(Case 2) |H| = 3. In this case, H = (zk, w, zk+1)
(Fig. 8).

Let I be the intersection of l(zk−1, zk) and
l(zk+1, zk+2), and let I ′ be the intersection of l(zk−1, zk)
and l(w, zk+1). Revise H as follows.

(Subcase 1) d(I, zk−1zk+1) ≤ 2ε.
Let (iii) H ′ = (I) and revise H into H ′.
(Subcase 2) d(I, zk−1zk+1) > 2ε and d(I ′, zk−1w)

Fig. 8 Revising H = (zk, w, zk+1).

≤ 2ε.
If d(I ′, zk−1zk+1) ≥ 2ε, let (iv) H ′ = (I ′, zk+1).
Else, find a point p on segment I ′I such that
d(p, l(zk−1, zk+1)) = 2ε (Fig. 8(i)) and let (v) H ′

= (p, zk+1). Revise H into H ′.
(It is easily seen that only the last vertex zk+1 of
H ′ may not be ε-convex in G(H → H ′).)
(Subcase 3) d(I ′, zk−1w) > 2ε.
Find a point p′ on segment zkI

′ such that
d(p′, l(zk−1, w)) = 2ε (Fig. 8(ii)). Let I ′′ be
the intersection of l(p′, w) and l(zk+1, zk+2).
If d(I ′′, p′zk+1) ≤ 2ε, let (vi) H ′ = (p′, I ′′),
else find a point p′′ on segment wI ′′ such
that d(p′′, l(p′, zk+1)) = 2ε (such p′′ must ex-
ist since d(w, l(p′, zk+1)) ≤ d(w, l(zk, zk+1)) < 2ε
and d(I ′′, l(p′, zk+1)) > 2ε), and let (vii) H ′ =
(p′, p′′, zk+1). Revise H into H ′.
(It is easily seen that only the last vertex of H ′

may not be ε-convex in G(H → H ′).) ✷

Let u, v and w be three contiguous vertices of a
convex polygonal chain F listing in counter-clockwise
order. We call edges (u, v) and (v, w) to be the right
and the left edges of v, respectively. In the following,
we prove that algorithm MakeAlmostConvexPiece(F)
finds a correct a(F, ε).

Property 3: Let F be a convex polygonal chain and
F ′ be the output of algorithm MakeAlmostConvex-
Piece(F). If v is the first ε-convex vertex of F ′, the
right edge (u, v) of v must contain some edge of F .

Proof: Let F ′
1 = a(F1, ε), F ′

2 = a(F2, ε), and G = F ′
1

✶ F ′
2. From the algorithm, F = G(H → H ′), where H

is the longest contiguous sequence of the ε-flat vertices
at the junction, F = F1 ✶ F2, and H ′ is computed in
Procedure REVISION(G,H). F ′

1 and F ′
2 are computed

recursively by the algorithm. Assuming that this prop-
erty has held for both F ′

1 and F ′
2 already, we show that

the property holds for F ′. If F ′
1 contains ε-convex ver-

tices, since its first ε-convex vertex v is the first ε-convex
vertex of F ′ and its vertices in the right of v (including
v) are never changed in procedure REVISION. From
the assumption the right edge of v contains some edge
of F1.

Now let F ′
1 contains no ε-convex vertices. If H ′
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contains no ε-convex vertices, the first ε-convex vertex
v of F ′

2 ( v = zk+1 in Case 1 of procedure REVISION
and v = zk+2 in Case 2) is the first ε-convex vertex of
F ′. From the construction of H ′, the right edge of v in
F ′ always contains the right edge of v in F ′

2. According
to the assumption the right edge of v in F ′

2 contains
some edge of F2. If H ′ contains ε-convex vertices, from
the construction of H ′, the first ε-convex vertex of H ′

always lies on the lengthening line of the first edge of
F ′
1. From Definition 10, the first edge of F ′

1 contains
the first edge of F1. ✷

Lemma 4: Let F be a convex polygonal chain with
m vertices. If F is monotonic in both x-axis and y-axis,
then an Almost-ε-Convex-Piece of F can be computed
in O(logm) time using O(m/ logm) processors.

Proof: Assuming that a(F1, ε) and a(F2, ε) are com-
puted correctly, we prove G(H → H ′) is a correct
a(F, ε).

It is easily seen that |H ′| ≤ |H|, and only the last
vertex of H ′ may be not ε-convex in G. From the con-
struction of H ′ and Property 2, G(H → H ′) is convex.
Therefore, G(H → H ′) satisfies the first two conditions
of Definition 10 as an a(F, ε). The vertices of H are ei-
ther the end-vertices or the second vertex or the penul-
timate vertex of the a(F1, ε) and the a(F2, ε), therefore,
they lie at most 2ε from F according to the definitions
of a(F1, ε) or a(F2, ε). It means that the vertices of H ′

lie at most 4ε from F since from the construction of H ′

the vertices lie at most 2ε from H. The end-vertices of
G(H → H ′) are the same as those of G. Thus, we only
need to show that G(H → H ′) satisfies the remaining
conditions of Definition 10: (a) the second vertex and
the penultimate vertex of G(H → H ′) lie at most 2ε
outside of F if they are ε-flat and (b) the first and the
last edges of G(H → H ′) contain those of F , respec-
tively. Note that when G is changed into G(H → H ′),
only the vertices of H, i.e., the edges chain E = f ✶ H
✶ g can be changed, where f and g are the vertices of
G lying before the first vertex of H and after the last
vertex of H, respectively.

Situation 1: neither f is the first vertex of G nor g is
the last vertex of G.

In this situation, the first and the last edges of G
are not contained in E, therefore, they are not changed
in G(H → H ′). Thus, conditions (a) and (b) hold
automatically.

Situation 2: f is the first vertex of G or g is the last
vertex of G.

In this case, the first or the last edges of G may
be contained in E. We divide the proof into two parts:
(1) if f is the first vertex of G, we prove that (a) the
second vertex of G(H → H ′) lies at most 2ε outside of
F if it is ε-flat and (b) the first edge of G(H → H ′)
contains that of F ; and (2) if g is the last vertex of G,
we prove that (a) the penultimate of G(H → H ′) lies

at most 2ε outside of F if it is ε-flat and (b) the last
edge of G(H → H ′) contains that of F .

Sub-Situation 1: f is the first vertex of G.
The first and the second vertices of G(H → H ′) are

f and the first vertex of H ′, say p respectively. From
the construction of H ′, the first vertex of H ′ must lie on
the lengthening line of the first edge of G and from the
assumption that a(F1, ε) is computed correctly, the first
edge of the a(F1, ε) (i.e., the first edge of G) contains
the first edge of F1. Therefore, edge (f, p) contains the
first edge of G, i.e., condition (b) holds.

If the first vertex of H ′, i.e., the second vertex of
G(H → H ′), is ε-convex in G(H → H ′), condition (a)
holds automatically. If the first vertex of H ′ is ε-flat in
G(H → H ′), H ′ contains only one vertex I such that
d(I, fg) ≤ 2ε ( Subcase 1 (i) of Case 1, where f = zk−1
and g = zk+1, and Subcase 1 (iii) of Case 2, where f =
zk−1 and g = zk+2, in procedure REVISION). Vertex g
is either the first ε-convex vertex of a(F2, ε) or the last
vertex of G. In both cases, the right edge of g contains
some edge of F from Property 3 and from Definition 10,
respectively. It means that F begins from its first ver-
tex f and passes through the a part of the right edge
of g. Therefore, F must enter the region bounded by
chain E and segment fg. Thus, d(I, F ) ≤ d(I, fg) ≤ 2ε,
i.e., I lies at most 2ε outside F . Therefore, condition
(a) holds.

Sub-Situation 2: g is the last vertex of G. This is the
symmetry case of Sub-Situation 1.

The algorithm can be executed in O(logm) time
using O(m) processors since it contains O(logm) recur-
sive steps and each step can be executed in O(1) time
using O(m) processors. It can be easily modified to run
in O(logm) time using O(m/ logm) processors: divid-
ing F into m/ logm sub-chains with O(logm) vertices
each, computing an Almost-ε-Convex-Piece using the
sequential method [6] for each chain in O(logm) time,
and combining these pieces using the method of our
above algorithm. ✷

3.3 Finding Almost-ε-Convex-Rings and Making
Them ε-Convex

Now we are ready to make an Almost-ε-Convex-Ring
of a convex polygon.

Lemma 5: Given a convex polygon P = (p1, p2, . . .,
pn), either an Almost-ε-Convex-Ring or an ε-convex
(4+4

√
2)ε-superhull of P can be constructed inO(logn)

time using O(n/ logn) processors.

Proof: We divide P in four parts, F1 = (u, . . . , v), F2 =
(v, . . . , w), F3 = (w, . . . , x) and F4 = (x, . . . , u) accord-
ing to the extreme vertices u, v, w and x which have
the largest x coordinate, the largest y coordinate, the
smallest x coordinate, and the smallest y coordinate, re-
spectively. Each Fi (1 ≤ i ≤ 4) is monotonic in both x-
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Fig. 9 Concatenating four almost-ε-convex-pieces.

Fig. 10 G has no ε-convex-vertex.

axis and y-axis. We construct Almost-ε-Convex-Pieces
a(F1, ε), a(F2, ε), a(F3, ε) and a(F4, ε), by Lemma 4
in parallel in O(logn) time using O(n/ logn) proces-
sors. Let G be the polygon obtained by concatenating
a(F1, ε), a(F2, ε), a(F3, ε) and a(F4, ε) (Fig. 9). Notice
that the last vertex of a(Fi, ε) and the first vertex of
a(Fi+1, ε) (the index is taken with modulo 4) are the
same. Polygon G is convex, since P and a(Fi, ε) (1 ≤
i ≤ 4) are convex and the first and the last edges of
a(Fi, ε) contain those of Fi. Convex polygon G satisfies
all conditions as an a(P, ε) except that more than one
contiguous ε-flat vertices may appear at the junctions
u, v, w and x. In the following, we show how to re-
vise G into either an a(P, ε) or an ε-convex (4+4

√
2)ε-

superhull in O(1) time using O(n) processors as fol-
lows. Note that the method in Sect. 3.2 can not be
used here since point-line distance and point-segment
distance may be different.
(Case 1) No ε-convex vertex exists in G.

If G contains no ε-convex vertex, there exists no ε-
convex vertex in a(Fi, ε) (1 ≤ i ≤ 4). It means that for
each i, Fi consists of at most three vertices. Therefore,
G contains at most eight vertices (Fig. 10). In this case,
we construct G′, an ε-convex (2+4

√
2)ε-superhull of G

in O(1) time using the sequential method [6]. Since the
vertices of G are ε-flat, according to the definition of
Almost-ε-Convex-Piece, they lie at most 2ε outside P .
Therefore, G′ is an ε-convex (4+4

√
2)ε-superhull of P .

Fig. 11 Constructing an almost ε-convex-ring.

(Case 2) At least one ε-convex vertex exists in G.
Assume that G has k ε-convex vertices. We divide

the ε-flat vertices of G into k seperated sub-chains H1,
H2, . . . , Hk such that Hi (1 ≤ i ≤ k) consists of all the
ε-flat vertices lying between the ith and the (i+1)th ε-
convex vertices of G (Fig. 11). From the construction of
G, |Hi| ≤ 9 holds (when G contains only one ε-convex
vertex, H1 may have nine vertices). Hi (1 ≤ i ≤ k) is
contiguous sub-chain of G and they share no common
vertices. For each i, if Hi has more than one vertex we
revise Hi into H ′

i, a sswp(G,Hi, ε, 2ε) of Hi, in O(1)
time by Lemma 2, in parallel. If |Hi| ≤ 1, let H ′

i = Hi.
We get a chain G′ = G(H1 → H ′

1, H2 → H ′
2, . . ., Hk

→ H ′
k). According to Definition 8, (i) |G′| ≤ |G| and

G′ is convex, (ii) in every two contiguous vertices of G′

at least one is ε-convex since H ′
i contains at most one

ε-flat vertex and the convexities of the vertices other
than H ′

i are not changed, and (iii) the vertices of H ′
i

lies at most 2ε outside from Hi, therefore, they lie at
almost 4ε outside from P from the fact that the vertices
Hi lie almost 2ε outside from P . Thus, G′ is an Almost-
ε-Convex-Ring of P . ✷

Finally, we use an Almost-ε-Convex-Ring of P to
compute an ε-convex (2 + 8

√
2)-superhull of P .

Lemma 6: Let P ′ be a convex polygon with n ver-
tices and there is at least one

√
2 ε-convex vertex

in every two contiguous vertices of P ′. An ε-convex
(2 + 4

√
2)ε-superhull of P ′ can be constructed in O(1)

time using O(n) processors.

Proof: First, we revise P ′ such that in every three
contiguous vertices, at least two are

√
2ε-convex, then

we use Lemma 3 to change all the
√
2ε-flat vertices into

ε-convex.
Assume that P ′ = (u1, u2, . . ., un) has

√
2ε-flat ver-

tices, else it is already
√
2ε-convex. We divide P ′ into k

contiguous sub-chains H1, . . ., Hk such thatHi contains
four

√
2ε-convex vertices of P ′ (only Hk may contain six√

2ε-convex vertices), the first and the last vertices of
Hi are ε-convex, and Hi and Hi+1 share a same end-
point, i.e., the last vertex of Hi is the same as the first
vertex of Hi+1 (H1 when i = k). Let Hi consists of
the vertices of Hi by deleting the first and the last ones
(Fig. 12). Hi (1 ≤ i ≤ k) is contiguous sub-chain of G
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and they share no common vertices. From the condition
of P ′, Hi (1 ≤ i ≤ k− 1) contains at most five vertices
(only Hk may contain at most nine vertices). For every
i (1 ≤ i ≤ k), if Hi contains any

√
2ε-flat vertex, we

revise Hi into H ′
i, an sswp(P ′, Hi,

√
2ε, 2

√
2ε) in O(1)

time, by Lemma 2, in parallel. If Hi contains no
√
2ε-

flat vertex, we just let H ′
i = Hi. That is, we get a chain

R = P ′(H1 → H ′
1, H2 → H ′

2, . . ., Hk → H ′
k). Similar

to the proof of Lemma 5, we can easily prove that (i) R
is convex, (ii) |R| ≤ |P ′|, (iii) R is a 2

√
2ε-superhull of

P ′, since the revised vertices lie at most 2
√
2ε from P ′.

(iv) Before and after every sub-chain Hi in P ′ there is
an

√
2ε-convex vertex. According to the properties of

a sswp(P ′, Hi,
√
2ε, 2

√
2ε) the vertices of P ′ other than

those of Hi are not changed in P (Hi → H ′
i). There-

fore, the
√
2ε-convex vertices located immediately be-

fore and after every sub-chain H ′
i are still

√
2ε-convex

in R. Moreover, according to Lemma 2 H ′
i contains at

most one
√
2ε-flat vertices and at least one

√
2ε-convex

vertices, therefore in every three contiguous vertices of
R at least two are

√
2ε-convex.

Convex polygon R satisfies all the conditions as an
ε-convex (2

√
2) ε-superhull of P ′ except in every three

contiguous vertices there may be one ε-flat vertex. We
revise the ε-flat vertices of P ′ by Lemma 3 as follows.
Suppose there are k ε-flat vertices w1, w2, . . ., wk in
R. For every wi (1 ≤ i ≤ k), there must be two

√
2ε-

convex vertices ui and vi lying before and two
√
2ε-

convex vertices xi and yi lying after wi, respectively.
We use Lemma 3 to revise chain Hi = (vi, wi, xi) into
H ′

i, an swp(R,Hi, ε, (2 + 2
√
2)ε) of Hi, for each i, in

parallel. It is easily seen that Hi (1 ≤ i ≤ k) are
contiguous sub-chains of G and they share no common

Fig. 12 Dividing the ring into k sub-chains.

Table 1 Average performance of our parallel algorithm.

ε δ
requested actual theoretical actual

(I) (II) (III) (I) (II) (III)
0.0200 0.0295 0.0283 0.0283 0.2663 0.1066 0.1527 0.0638

0.0800 0.1353 0.2298 0.2346 1.0651 0.1844 0.5038 0.2179
0.3240 0.4694 0.5313 1.0339 4.3136 0.9941 0.9770 0.7218
0.5600 7.5956 0.8403 1.0184 7.4557 0.9610 1.9172 0.7112
0.9700 7.9824 1.4832 1.3718 12.914 1.9739 3.2725 3.3924
1.6300 20.9204 3.9363 4.5167 21.701 1.9057 3.2830 2.6691
2.0460 21.1435 4.0635 4.5095 27.239 0.9224 3.2828 2.6796

vertices. That is, we get a chain R′ = R(H1 → H ′
1,

H2 → H ′
2, . . ., Hk → H ′

k). According to Definition 8,
(i) |R′| ≤ |R| and R′ is convex, (ii) the vertices of H ′

i

lie at most (2 + 2
√
2)ε outside of Hi, (iii) each vertex

of H ′
i is ε-convex in R′, and (v) the convexities of the

vertices of R other than those of Hi are not changed.
Therefore, R′ is an ε-convex (2+2

√
2)ε-superhull of R.

Since R is a 2
√
2ε-superhull of P ′, R′ is an ε-convex

(2 + 4
√
2ε)-superhull of P ′. ✷

Theorem 1: Let P be a convex polygon with n ver-
tices, an ε-convex (8 + 4

√
2)ε-superhull of P can be

found in O(logn) time using n processors.

Proof: Set ε’ =
√
2ε and construct an ε-convex (4 +

4
√
2)ε′-superhull of P or an Almost-ε′-Convex-Ring of

P in O(logn) time using O(n) processors by applying
Lemma 5. An ε′-convex (4 + 4

√
2)ε′-superhull of P is

(8 + 4
√
2)ε-superhull of P . If we find P ′, an Almost-

ε′-Convex-Ring of P we can find R, an ε-convex (2 +
4
√
2)ε-superhull of P ′ by Lemma 6. According to the

definition of Almost-ε′-Convex-Ring, the vertices of P ′

lie at most 4ε′ outside of P . Therefore, R is an ε-convex
(2 + 8

√
2)ε-superhull of P . ✷

4. Implementation and Experiment

Let the size of the input (a set of points in the plane)
be 10,000. The points are taken from three distribu-
tions: uniformly distributed inside a square, uniformly
distributed inside a disk, and uniformly distributed on
the boundary of a disk. We implement our algorithm
and do the experiments for the inputs of the above three
distributions. The results of the experiments are listed
in Table 1, where the data of (I), (II) and (III) corre-
spond to the first, the second and the third distribu-
tions, respectively.

From Table 1, we see that for a given (requested)
ε, our parallel algorithm computes an ε′-convex δ′-
superhull of S, where ε′ is larger than ε and δ′ is much
smaller than the theoretical value (8 + 4

√
2)ε. In dis-

tribution (I), note that due to the large size of the in-
put set and the shape of that distribution, the results
showed to be very convex. As a comparison, we also
list the results of the experiments of the sequential al-
gorithm [6] in Table 2. We can observe that the par-
allel algorithm has a fairly good average performance
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Table 2 Average performance of the sequential algorithm.

ε δ
requested actual theoretical actual

(I) (II) (III) (I) (II) (III)
0.0200 0.0210 0.0200 0.0833 0.1520 0.0321 0.0469 0.0249
0.0800 0.0839 0.0811 0.1177 0.6080 0.1319 0.1891 0.1267
0.3240 0.4416 0.3602 0.4841 2.4624 0.9153 0.4928 0.5313
0.5600 0.6009 0.6558 0.8358 4.2560 0.7905 0.7695 1.0266
0.9700 0.9773 1.1931 1.4534 7.3720 1.3783 1.4291 1.1378
1.6300 1.6728 1.9788 2.2468 12.388 2.3988 2.2223 1.6717
2.0460 14.6911 2.6134 2.0876 15.549 3.4117 3.3905 2.1086

as the sequential algorithm does. Moreover, it can be
easily seen that the parallel algorithm gives a stronger
convexity than the sequential one. This is due to the
fact that in the parallel method some vertices may be
revised more than once, consequently becoming more
convex. While in the sequential algorithm the vertices
are revised only once by the sweeping process.

5. Conclusion

We introduced the first parallel algorithm that com-
putes an ε-convex (8 + 4

√
2)ε-superhull of a set S of

n points in the plane in O(logn) time using n proces-
sors. The computational model we used is the EREW
PRAM . We did experiments and found that (i) the
practical data are much better than the theoretical
analysis shows, and (ii) our parallel method gives a
stronger convexity than the sequential one.
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Appendix A: Proof of Lemma 2

Lemma 2 Let G = (u1, . . ., un) be a convex polygonal
chain and H = (uf+1, . . .,ug−1) be a contiguous sub-
chain of G. If the vertices uf and ug of G which lie
directly before uf+1 and after ug−1 are ε-convex, then
an H ′ = sswp(G,H, ε, 2ε) can be found in O(|H|) time
using a single processor, and if H has at least one ε-
convex vertex H ′ has also at least one ε-convex vertex.

Proof: We revise H into H ′ from uf+1 to ug−1. Let i
= f + 1 and while i < g apply the following scanning-
and-revising process to H, repeatedly.

If ui is ε-convex, set i = i + 1, else scan the ver-
tices of H(i : g − 1) from ui one by one in counter-
clockwise to find k such that d(Ij , ui−1uj) < 2ε for
all j (i ≤ j ≤ k) and d(Ik+1, ui−1uk+1) ≥ 2ε where
Ij = int(l(ui−1, ui), l(uj, uj+1)) (k must exist since
d(Ii, ui−1ui) = 0). We revise H(i : k) as follows.

(Case 1) Ik is normal in triangle �ui−1Ik+1uk+1,
i.e., d(Ik+1, ui−1uk+1) = d(Ik+1, l(ui−1, uk+1)).

Note that while scanning, whenever an ε-convex
vertex is found, say us (i < s < g − 1), it must be se-
lected as uk since it is easily seen that d(Is+1, ui−1us+1)
> d(us, l(us−1, us+1)) ≥ 2ε. Therefore us+1 can not be
selected as uk since us is ε-convex. That is, the scan-
ning always stops at us if such vertex exists. It is easily
seen that H(i : k) contains at most one ε-convex vertex
(us). In the following we revise H(i : k) into F such
that if H(i : k) contains one ε-convex vertex, then in F
there is at least one ε-convex vertex.

If k = g − 1 then let F = (Ik). Note that
in this case Ik may be ε-flat. In the following as-
sume that k < g − 1. From the definition of k,
d(Ik, ui−1uk) < 2ε. If d(Ik, l(ui−1, uk+1)) ≥ 2ε, then
let F = (Ik). Else find point z on segment IkIk+1 such
that d(z, l(ui−1, uk+1)) = 2ε (such z must exist since
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Fig.A· 1 Finding z.

Fig.A· 2 Finding F .

Fig.A· 3 Finding z and z′ or z′′.

d(Ik, l(ui−1, uk+1)) < 2ε and d(Ik+1, l(ui−1, uk+1)) ≥
2ε), and let F = (z) (Fig. A·1). Here, obviously Ik and
z are ε-convex. Revise H(i : k) into F . Let i = k + 1.
(Case 2) Ik is abnormal in triangle �ui−1Ik+1uk+1,
i.e., d(Ik+1, uk+1ui−1) �= d(Ik+1, l(uk+1ui−1))

Subcase 1 Angle � uiui−1uk+1 ≥ π/2 (Fig.A·2).
Let F = (Ik) and revise the sub-sequence H(i : k)

into a new sequence F . Set i = k + 1.
(It is easily seen that Ik is ε-convex since

d(Ik, l(ui−1uk+1)) ≥ 2ε from the fact that ui−1 is ε-
convex in G.)
Subcase 2 Angle � uiui−1uk+1 < π/2.

If d(Ik, ui−1uk+1) ≥ 2ε, let F = (Ik), revise H(i :
k) into F and set i = k + 1. Else do the following
(Fig.A·3).

Find a point z on the segment IkIk+1 such
that d(z, ui−1uk+1) = 2ε (Such z must exist since
d(Ik+1, ui−1uk+1) ≥ 2ε and d(Ik, ui−1uk+1) ≤ 2ε).
Draw a line l vertical to line l(Ik+1, uk+1), and find
a point z′ on line l such that |z′uk+1| = 2ε. Deter-
mine whether line l(z′, uj)is the tangent from point z′

to H(k + 1 : g) for each j from j = k + 1 to g.
(a) If there is some j (k+1 ≤ j ≤ g) such that line

l(z′, uj) is the tangent, let F = (z, z′), revise H(i : j−1)
into F and set i = j. Obviously z and z′ are ε-convex
from their definition.

(b) If l(z′, uj) is not the tangent for any j (k+1 ≤ j
≤ g), then let z′′ be the intersection of lines l(ug−1, ug)
and l(uk+1, z

′). Let F = (z, z′′), revise H(i : g − 1)
into F and set i = g. Obviously, z is ε-convex from its
definition and vertex z′′ may be ε-flat.

After executing the above scanning-and-revising
process repeatedly, H(f+1 : g−1) is finally revised into
H ′. We prove that the following conditions hold: (1)
H ′ is a sswp(G,H, ε, 2ε) and (2) if H has at least one
ε-convex vertex then H ′ also has at least one ε-convex
vertex.

Now we prove that H ′ is a sswp(G,H, ε, 2ε). In
the above scanning-and-revising process, H(i : k) is
changed into F . It is easily seen that |F | ≤ |H(i :
k)|, G(H(i : k) → F ) is convex, and the convexities of
the vertices of G other than those of H(i : k) are not
changed. On the other hand, from the construction of
F , its vertices lie at most 2ε outside of H(i : k), and
they are ε-convex except in two situations: Situation
(i), in Case 1 when no ε-convex vertex exists in H(i : k)
and k = g − 1. In such case F = (Ik) and Ik may be
ε-flat. Since k = g − 1 then Ik is the last vertex of H ′.
Situation (ii), in Subcase 2 (b) of Case 2, where the
last vertex uj of F may be not ε-convex. If this case
happens, i is set to g and no more scanning-and-revising
process will be done, then uj is the last vertex of H ′.
Therefore, |G| ≤ |H(i : k)|, G(H → H ′) is convex, and
the convexities of its vertices other than those of H are
not changed. The vertices of H ′ lie at most 2ε outside
of H(i : k), and they are ε-convex except the last one.
Therefore, H ′ is a sswp(G,H, ε, 2ε).

Now we show that if H(i : k) contains at least one
ε-convex vertex then F contains at least one ε-convex
vertex too. It is clear that H(i : k) is revised into
F such that all its vertices are ε-convex except in the
two situations (i) and (ii) shown above. However, in
Situation (i) if uk is ε-convex then Ik is also ε-convex
since d(Ik, ui−1uk+1) > d(uk, uk−1uk+1) ≥ 2ε. And in
Situation (ii) although the last vertex of F (uj) may
be ε-flat, according to Subcase 2(b) of Case 2, the first
vertex of F (z) is ε-convex. Therefore, condition (2)
holds.

H ′ can be computed in O(g − 1) time since each
vertex of H is scanned only once. ✷
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