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SUMMARY This paper describes a method to normalize
the lip position for improving the performance of a visual-
information-based speech recognition system. Basically, there
are two types of information useful in speech recognition pro-
cesses; the first one is the speech signal itself and the second one
is the visual information from the lips in motion. This paper
tries to solve some problems caused by using images from the
lips in motion such as the effect produced by the variation of the
lip location. The proposed lip location normalization method
is based on a search algorithm of the lip position in which the
location normalization is integrated into the model training. Ex-
periments of speaker-independent isolated word recognition were
carried out on the Tulips1 and M2VTS databases. Experiments
showed a recognition rate of 74.5% and an error reduction rate
of 35.7% for the ten digits word recognition M2VTS database.
key words: hidden Markov model, lip location normalization,
lipreading, Tulips1, M2VTS

1. Introduction

Its well known that apart from the speech signal, an
important parameter on speech recognition processes
is the visual characteristics of the lips in motion in or-
der to improve the robustness and accuracy of speech
recognition [1]. Basically, there are two methods to ex-
tract speech information from image sequences of the
lips, the model-based [2], [4], [6] and the image-based
method [7], [8]. In the model-based method, an outline
of the lips is first required with a minimum amount
of parameters. Models constructed by this method
present less influence from the lighting conditions and
the lip location. This characteristic makes it suitable
for speech recognition processes but its principal dis-
advantage is that it is difficult to construct the model.
In case of the image-based method, a larger amount of
data is required. Also there is a large influence of the
lighting conditions and of the location of lips, but there
is not much difficulty on constructing the model.

This paper presents an approach based on the
image-based method in order to solve the effect of the
lip location on the speech recognition results. The pro-
posed method is based on a search algorithm of the lip
position in which a lip location normalization is inte-
grated in the model training [10].
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In this paper, experiments based on HMMs (Hid-
den Markov Models) on speaker-independent isolated
word recognition were carried out on two databases,
the Tulips1 [7] and the M2VTS [14] database. As a re-
sult of applying the proposed method, a good recogni-
tion performance was achieved and the error rate was
considerably reduced.

This paper is organized as follows. The next sec-
tion describes the location normalization algorithm.
Experiments on Tulips1 and M2VTS are described in
Sects. 3 and 4 respectively. Finally, conclusions and fu-
ture works are presented in the final section.

2. Location Normalized Training

An inherent difficulty of speaker-independent speech
recognition is that the resulting statistical models, i.e.,
HMMs, have to contend with a wide range of varia-
tion in the speech parameters caused by inter-speaker
variability.

Although the mouth part is extracted from orig-
inal images by some lip extraction algorithm, it has
some degree of variation of location as shown in the
left side of Fig. 2. If the HMM is trained with images
having such a variation of location, an HMM with a
large variance might be obtained. As a result, the dis-
tributions of different classes overlap each other, and
the discriminatory capabilities of the statistical models
may be reduced. Therefore, we propose a normalized
training technique, which integrates the location nor-
malization for each utterance into the model training.
For the location-normalized training, it is necessary to
jointly estimate the best lip location for each utter-
ance and the parameters of the HMMs. An iterative
approach is adopted in which one of these set of pa-
rameters (the lip locations and the HMM parameters)
is estimated at each stage and the maximum likelihood
estimation is used individually for each set of param-
eters assuming the other parameters are fixed. Thus
the training algorithm iterates the following (a) and
(b) steps several times after setting the initial model.

• Set Initial Model
Get the initial HMMs(0) using the original training
data set {I(0)}.

(a) Best Location Search
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Fig. 1 Lip location normalized training method scheme.

For the training data set {I(k−1)}, find the best
lip location data set {I(k)} in the sense that the
likelihood of each word in the data set is the
highest for the corresponding HMMs(k−1), (k =
1, 2, .., n− 1).

(b) Model Update
Update the model HMMs(k) by the Baum-Welch
re-estimation algorithm using all training data set
{I(k)} having the best location.

Figure 1 shows the lip location normalized train-
ing process scheme. In the iteration “0,” the original
data set {I(0)} is taken as training data and the first
HMM model HMMs(0) is constructed. In the itera-
tion “1” search the lip location for the utterance data
set {I(1)} having the highest likelihood for this HMM
model, then, update the HMM models HMMs(1) by
the Baum-Welch re-estimation algorithm using the ut-
terances with the best lip location. After this process,
the same procedure is repeated. That is, for each itera-
tion, search the lip location with the highest likelihood
for the current model HMMs(k), then update the model
HMMs(k+1) by using the utterances with the best lip
location. In the proposed method, the lip location nor-
malization is integrated in the model training in a sim-

ilar manner to SAT [10] in which the speaker normal-
ization is integrated in the training process.

In case of the training data, the likelihood for a
specific word or utterance is obtained from the cor-
responding HMM word model. In the procedure (a),
the likelihood is measured by the Viterbi algorithm [9].
In order to obtain the best location avoiding a large
amount of computation required for the exhaustive
search, we apply the following best location search
(Fig. 1) procedure to each utterance:.

• Best Location Search Procedure

Step 0. Give an initial guess for the location of
the region containing the lips.

Step 1. In total 8 kinds of lip image sequences
are extracted from the original lip image se-
quence by shifting the region to be extracted
±L pixels in x and y directions.

Step 2. From the 8 lip image sequences extracted
in step 1 and the current lip image sequence,
9 lip image sequences in total, choose a lip im-
age sequence whose likelihood is the highest
for the HMM.

Step 3. If the lip image sequence chosen in step 2
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Fig. 2 Effect of location normalized training technique on M2VTS images.

is the current lip image sequence, go to step 4.
Otherwise use the chosen lip image sequence
as the new current lip image sequence and go
to step 1.

Step 4. If L = 1, stop. Otherwise set L← �L/2�
and go to step 1.

Figure 2 shows M2VTS images, on the left, images
without location normalized training process, on the
right the same images after applying this technique.
We can see that the lip location of all the images came
to the center place of each frame. The initial value of L
was fixed to 10 at first and reduced gradually until 1 in
this study. After applying this normalization method,
the error was very much reduced as shown in Sects. 3
and 4.

To normalize the lighting conditions on images, we
utilized a simple method in which the average value of
intensities is subtracted from all the pixels in an utter-
ance. Intensity normalization and lip location normal-
ized training process were applied over the complete set
of utterances.

For the testing data, the best lip location for all
utterances is obtained in the sense that its likelihood
is the highest for all HMM word models. That is, the
best lip location for the training data is determined as
the maximum likelihood γ such that γ ∈ {l0, l1, . . . , l9}
and lw means the likelihood of an utterance obtained
from the HMM model of word w.

3. Experiments on the Tulips1

In order to explain the experiments carried out in this
paper, we are introducing the next terminology:

“w/o N” means that no normalization method has
been applied on the utterances. The utterances
are in its original state.

“w I” means that only the Intensity Normalization
method has been applied on utterances.

Iteration number “ k” means the corresponding recog-
nition results using HMMs(k) with intensity nor-
malization. The lip location normalized training

process is also applied over the testing data set
with intensity normalization.

Experiments of speaker-independent isolated word
recognition by using the Tulips1 and the M2VTS
databases were carried out using frames with subsam-
pling data in order to reduce the number of parameters,
that is, original frames were divided into blocks, each
block having the average intensity of the pixels inside
that block. Preliminary experiments [13] showed that
the use of subsampling data with small block size gives
the best recognition rates, probably because a small
block size provides higher spatial resolution in which
the lip location can affect considerably the recognition
rate. Therefore, blocks of 5 × 5, and 10 × 5 pixels per
block were used in this study. The subsampled frames
are constructed after making the 8 lip image sequences
described in Step 1. The lip location normalized train-
ing process was applied over the complete set of utter-
ances.

3.1 Tulips1 Database

For the first experiment, the Tulips1 database [7] was
used, which is a bimodal database comprising lip image
sequences and speech signals of 9 males and 3 females,
in total 12 speakers. Each speaker pronounces English
numbers, “one,” “two,” “three” and “four,” each twice.
Images are in grey scale with 8 bytes/pixel. Images
sequences are sampled at 30Hz and the frame size is
100 × 75 pixels. The database reflects a large variety
of lip locations and lighting conditions. In this paper,
the so-called “leave-one-out method” was applied to the
experiments. In the method, one of 12 subjects was
used for testing and the remaining 11 subjects were
used for training, so that the number of test data for
each word was 24 and it resulted in a total of 96 test
data by 12 speakers.

Subsampled frames with two different block sizes
were used; 5 × 5 and 10 × 5 pixels per block, that is,
two-dimensional feature vectors of 300 and 150 param-
eters, respectively. Vectors of each frame and the differ-
ence between successive two frames (delta parameters)
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were combined. Experiments of recognition by using
a continuous Hidden Markov Model (HMM) [12] were
carried out. Experiments were carried out varying the
number of states from 3 to 5 and better results were
obtained when 5 states were used. In this paper, each
word model was represented by one HMM which is a
left-to-right model with 5 states and a single Gaussian
distribution of diagonal covariance.

As was explained in Sect. 2, in order to apply
the lip location normalization method, it is necessary
to shift the lip region around the current position to
get the lip location with the highest likelihood for the
HMM, but in case of Tulips1, images cover only the lip
region and in order to shift the lip location we need to
compensate intensities outside area of original images.
In case of Tulips1, intensities obtained by shifting the
original image are given by

I1(x, y) = I0((x− u) mod X, (y − v) mod Y ) (1)

where I0(x, y) is the intensity of the original image,
(u, v) is the amount of displacement and X × Y is the
size of the original image.

Fig. 3 Effect of lip location normalization for subsampling
data with block of 5× 5; Database Tulips1.

Fig. 4 Effect of lip location normalization for subsampling
data with block of 10× 5; Database Tulips1.

3.2 Results

Figures 3 and 4 show the corresponding results when
subsampling data with block size of 5 × 5 and 10 × 5
were used. In Fig. 3, a recognition rate of 78.1% was ob-
tained when nothing was applied on utterances, that is,
neither intensity normalization nor lip location normal-
ization. 86.5% was obtained after applying only inten-
sity normalization on utterances, which means 38.4% of
error reduction rate. In case of Iteration “0” 87.5% of
recognition rate was obtained with an error reduction
rate of 42.9%. For Iteration “1” the error reduction was
increased up to 71.2% with a recognition rate of 92.7%.
The highest obtained recognition rate was 94.8% on It-
eration “2,” the error was reduced up to 76.3%.

In case of subsampling data with block size of 10×5
pixels, the curve of recognition rate showed almost the
same tendency. The recognition rate was increasing
up to iteration “2” where the highest obtained rate of
recognition was 92.7% with an error reduction of 61.1%.

From the fact that the recognition rate for the same
task by using other methods [2], [5] remains at the level
of 90% in case of Tulips1, the effectiveness of the pro-
posed method can be confirmed.

4. Experiments on the M2VTS

4.1 M2VTS Database

Although the proposed method gives good results, the
number of testing data in Tulips1 is not enough and
original images are fixed, that is, do not offer the possi-
bility of extracting complete lips images with different
positions. Therefore, the M2VTS database was used
in order to confirm the effectiveness of the proposed
method. The M2VTS (Multi Modal Verification for
Teleservices and Security applications) [14] is a multi-
modal face database recorded at UCL (Catholic Uni-
versity of Louvain). This database contains images and
audio signal information of 37 speakers (male and fe-
male) and provides 5 shots for each person. During
each shot, people have been asked to count from ‘0’ to
‘9’ in their native language. One shot is a sequence
of the ten digits pronounced continuously. Shots were
taken at one week intervals to account for minor face
changes like beards. For each speaker, the most diffi-
cult shot to recognize is the fifth, because of some face
and voice variations have been included. Images are
sampled at 25Hz. This study was carried out by using
the first four shots. The database contains full color
images of 286×350 pixels and they were converted into
grey-level images for the experiments in this study. For
the experiments, all 37 speaker lip images and same
experimental conditions as [3] were used.

For the experiments, images from the lips in mo-
tion were extracted from the database. The images
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were analyzed and a central point was visually calcu-
lated trying to leave the lips in the most center place
of frames. Each frame consists of 80 × 40 pixels. The
word boundaries of the training data were found by
an HMM based speech recognition system which was
used to segment and label the sentences. Subsampled
frames with two different block sizes were used; 5 × 5
and 10 × 5 pixels per block, that is, two-dimensional
feature vectors of 128 and 64 parameters, respectively.

Experiments of recognition by using continuous
HMMs were carried out varying the number of states
and the highest recognition rates were obtained when 8
states were used. Each word model was represented by
one HMM which is a left to right model with 8 states
and two single Gaussian distributions of diagonal co-
variance. The feature vector consisted of the static,
delta and acceleration coefficients.

For the testing process, the leave-one-out method
was used. It means that 37 leave-one-out testing were
carried out, each one with 1440 training words. For the
testing process, 40 test words per speaker, producing
1480 testing utterances in total.

4.2 Results

Experiments on isolated word recognition were carried

Fig. 5 Effect of lip location normalization for subsampling
data with block of 5× 5; Database M2VTS.

Fig. 6 Effect of lip location normalization for subsampling
data with block of 10× 5; Database M2VTS.

out by using the extracted image sequences from the
M2VTS database.

Figures 5 and 6 show the obtained results. As is
shown here, in case of blocks of 5×5, a recognition rate
of 60.3% was obtained without applying neither inten-
sity normalization nor lip location normalization and
66.6% was obtained by applying only the intensity nor-
malization over the training and the testing data; this
means an error reduction rate of 15.9%. After apply-
ing the lip location normalized process, the recognition
rate was increasing up to 74.5% on the second itera-
tion, and an obtained error reduction of 35.7%. In case
of blocks of 10 × 5, the recognition results showed the
same tendency as in case of blocks of 5× 5. The high-
est recognition rate was 74.2% obtained on the second
iteration with an error reduction of 31%. The highest
recognition rate was obtained with subsampling data
of the smallest block size of 5 × 5, probably because
this is the block size which provides the highest spatial
resolution in which the lip location can affect consider-
ably the recognition rate. The location normalization
gave a better improvement in recognition rate than the
improvement given by the intensity normalization as is
shown in Figs. 5 and 6. The tendency shown in this
figures for subsampling data with block size of 5× 5 is
similar to the tendency given by subsampling data of
10× 5.

Tables 1 and 2 show the confusion matrix for “w I”
and iteration “2,” for block size of 5×5 respectively. As
shown in the tables, better results can be appreciated
in the last case. All the words increased the number

Table 1 Confusion Matrix for the case “w I” for blocks of 5×5;
Database M2VTS.

0 1 2 3 4 5 6 7 8 9 Recg.
zero 120 5 4 0 6 0 0 4 0 7 81%
un 1 99 4 0 25 1 5 3 4 2 67%
deux 7 5 106 0 2 1 9 1 4 12 72%
trois 1 6 2 107 7 1 0 1 16 3 72%
quatre 3 17 0 4 65 10 6 13 0 10 44%
cinq 4 6 3 2 10 73 30 13 0 5 49%
six 1 7 5 0 3 17 104 9 0 1 70%
sept 3 12 2 1 15 19 13 77 2 2 52%
huit 1 3 2 18 7 1 0 1 106 2 72%
neuf 12 6 15 0 8 2 0 0 2 102 69%

Table 2 Confusion Matrix for the case of iteration “2” for
blocks of 5× 5; Database M2VTS.

0 1 2 3 4 5 6 7 8 9 Recg.
zero 127 5 4 0 1 4 0 1 0 5 86%
un 1 115 0 0 8 4 5 2 4 3 78%
deux 9 4 113 1 3 1 5 0 1 9 76%
trois 0 5 0 126 2 1 0 0 10 3 85%
quatre 3 19 1 4 76 9 6 5 0 6 51%
cinq 4 10 1 0 7 87 25 12 1 1 59%
six 0 7 4 0 5 19 102 10 0 0 69%
sept 3 10 2 0 4 19 10 99 0 0 67%
huit 0 3 2 23 1 2 1 1 107 5 72%
neuf 6 4 7 0 2 3 0 1 1 124 84%
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of times they were recognized except word “six” which
the number of recognized utterances decreased in Ta-
ble 2. We can appreciate that there was a tendency
of “miss-recognizing” between utterances “cinq,” “six”
and “sept,” that is, in Table 1, 30 utterances of “cinq”
were recognized as “six,” and 13 as “sept.” 17 words
of “six” were recognized as “cinq” and 9 as “sept.” 19
words of “sept” were recognized as “cinq” and 13 as
“six.” Probably, because these words produce almost
the same lip movements. Table 2 shows almost the
same tendency but between these words, the number
of well recognized and bad recognized words were very
much improved.

Figures 7 and 8 show the obtained recognition rate
for all the 37 users at “w I” and iteration “2” in the
case of blocks of 5×5 pixels. As shown in the figures, a
considerable difference of the recognition rate per user
can be appreciated. It is important to note that there
are 3 persons with low recognition results, less than
30%. One of them corresponds to a person who does
not speak the same language as the others, so that the
expected recognition rate should be also low. Another
speaker is a person whose mouth region is full of beard,
and it makes the recognition a little hard. The third
one is a person who seems to be laughing during the
utterance.

Fig. 7 Recognition rate per users at iteration “w I”; block size
of 5× 5.

Fig. 8 Recognition rate per users at iteration “2”; block size
of 5× 5.

Experiments using same database and also same
recordings were carried out in Ref. [3]. Those experi-
ments were based on the model-based method, there-
fore images are already normalized, so that, results are
not affected by the lip location. HMMs also use 8 states
and 2 Gaussian distributions and for the training and
testing process, experiments also are based on the leave-
one-out method. Almost same conditions are given for
the experiments. Experiments of isolated word recog-
nition were carried out and a recognition rate of 60.2%
was obtained by [3]. In this study, after applying the
proposed normalization method for isolated word recog-
nition, 74.5% was obtained. From this fact, the effec-
tiveness of the proposed method can be confirmed.

4.3 Discussion

Figure 9 shows images obtained from the values of the
mean vector and the square root of the variance vec-
tor of HMMs without and with lip location normalized
training process for one of the mixtures on M2VTS. In
the figure, values of means and variances of static and
delta parameters are represented by gray levels and av-
erage values of variance vectors are also shown. We can
see that normalized images are sharper than the same
ones without normalization. In case of the variance vec-
tor, normalized images become darker than the ones
without normalization. It means that smaller values
could be obtained for the variance after the normalized
training method.

Figure 10 shows the average values of the obtained
variance per pixel for static and delta data on the HMM
models. They were obtained by calculating the average
value between variances on the two mixtures. The val-
ues of the variance are decreasing as the iteration num-
ber increases in both cases. It means that there exist a
tendency of finding a better class separation after the
location normalized training process.

Figure 11 shows the change of the obtained likeli-
hood per frame for the training data through the itera-
tions, which is obtained by subsampling data with 5×5
pixels per block for the M2VTS database. The likeli-
hood is increasing as the iteration number increases.
At first, the likelihood is increased significantly at iter-
ation “1.” It shows that the proposed method is very
much effective during the first iteration.

The property of identifying positions of the lips
depends on all the training data. That is, if the major-
ity of lip images have lips located at center place and
HMMs are trained with such a data, our proposed nor-
malization method will be able to identify lips located
at center place of frames. For example, assuming that
the majority of the lip images have lips located at the
left place of frames, the proposed method will identify
lips when they are located at the left.

The identification property is different from the
recognition property. The recognition depends on the
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Fig. 9 Effect of lip location normalization for HMM models. Utterance “Toroa.” Sub-
sampling data with block of 5×5 (M2VTS Database). Above, data on “w I.” Below, data
on iteration “2.”

testing data, that is, if the testing lip images correspond
to difficult cases to make recognition, for example, users
who have beard or people who show big teeth etc. and

HMMs are not trained with this kind of data, low recog-
nition results can be obtained. Otherwise, good recog-
nition results can be obtained.
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Fig. 10 Variance through the iterations; blocks of 5 × 5;
M2VTS database.

Fig. 11 Likelihood through the iterations; blocks of 5 × 5;
M2VTS database.

After an analysis on Figs. 3, 4, 5 and 6 we conclude
that in all cases, recognition rates are incremented un-
til a maximun value is reached, after that, recognition
rates decrease. This behavior can be because of an over-
training presented by HMMs. HMMmodels are trained
one more time on each iteration and for all iterations
same testing data is used. The model corresponding
to the iteration with the highest recognition rate cor-
responds to the best model for the testing data. After
this iteration, models are over-trained and they are not
considered to be the best ones to produce better recog-
nition rates.

Although the obtained recognition rates in this pa-
per are considered as good results compared with other
methods, in case of the M2VTS database, recognition
rates still remain low. The reasons can be described as
follows:

• The frame shift for visual data is very long com-
pared with that of acoustic data. In case of the
M2VTS, the frame shift is 40ms (25Hz) while the
frame shift for acoustic data is normally set to 10–
20ms.
• The M2VTS although is one of the biggest bimodal
databases available is still so small considering the
big amount of cases which can be given. For ex-
ample, people with big lips or small lips, people
who open very much the lips to speak, people who

almost do not move their mouth, people full of
beard, people with big teeth, people whose tongue
can be easily be seen during the speech etc. Con-
sidering this limitation, recognition rates are very
much affected in the sense that the HMM models
do not consider all possible cases.
• In order to improve the recognition results for
speechreading using lip images, is necessary to in-
clude other kind of normalizations like the lip size
normalization, the lip inclination normalization,
etc.

5. Conclusions

In this study, we proposed a location normalized train-
ing technique for automatic lip-reading for image-based
visual speech recognition. In order to show the ef-
fectiveness of the proposed normalization method, the
Tulips1 and the M2VTS databases were used. By the
proposed method the recognition rate can be signifi-
cantly improved, recognition rates of 94.8% and 74.5%
were obtained for Tulips1 and M2VTS respectively.
The recognition error was reduced up to 76.3% in case
of tulips1 and 35.7% in case of M2VTS.

In the future, we will apply the lip location normal-
ization on continuous word recognition. Also, we will
normalize the size and the slant of images and integrate
visual information with audio information.
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