平坦な誘電率–温度特性を持つ Ba_{1-x}Sr_xTiO₃ 傾斜セラミックスの作製

太田敏孝·阿部裕一·平下恒久·宮崎英敏·引地康夫*·鈴木久男**

名古屋工業大学工学部附属セラミックス研究施設,507-0071 岐阜県多治見市旭ヶ丘 10-6-29 *名古屋工業大学工学部材料工学科,466-8555 愛知県名古屋市昭和区御器所町 **静岡大学工学部物質工学科,432-8561 愛知県浜松市城北 3-5-1

Flat Profile of Permittivity vs Temperature for Graded Ba_{1-x}Sr_xTiO₃ Ceramics

Toshitaka OTA, Yuichi ABE, Tsunehisa HIRASHITA, Hidetoshi MIYAZAKI, Yasuo HIKICHI* and Hisao SUZUKI**

Ceramics Research Laboratory, Nagoya Institute of Technology, 10–6–29, Asahigaoka, Tajimi-shi 507–0071

*Department of Materials Science and Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya-shi 466–8555 **Department of Materials Science, Shizuoka University, 3–5–1, Johoku, Hamamatsu-shi 432–8561

Graded $Ba_{1-x}Sr_xTiO_3$ (BST) ceramics, which had a continuously varying graded composition from one surface toward the other of the specimen, were examined with respect to their dielectric property. Specimens were prepared by sintering superposed layers of green compacts of BST solid solutions with different values of x. The electric relative permittivity of a single-phase BST ceramic showed a peak at the Curie temperature, which shifted to lower temperatures with increasing x. On the other hand, the profile of relative permittivity vs temperature of the graded BST ceramic experienced a linear characteristic. Furthermore, its slope could be controlled by changing the volume fraction of each layer. The relative permittivity was $4000-5500 \pm 5\%$ in the temperature range from 30 to 110° C.

[Received June 26, 2000; Accepted November 13, 2000]

Key-words : Functionally graded materials, Capacitor, Permittivity, Barium titanate, Strontium titanate

1. 緒 言

チタン酸バリウムは、コンデンサー材料として現在広く用い られている.しかし、その誘電率はキュリー点において鋭い ピークを示し,温度依存性が非常に大きい.したがって,実用 上は Ba の位置を Sr などのシフター剤や、Ca などのデプレッ サー剤を添加して置換固溶することにより、キュリー点を室温 付近まで低下させるとともに、そのピークをブロードにして温 度依存性を低減させることが行われている. また, 低温側及び 高温側にピークを有する二つの成分を複合することによって, 誘電率-温度特性の平坦化が図られている.その応用として, 最近ではコアシェル構造を形成させることにより, 例えば X7R 規格 (-55℃~+125℃の範囲で容量変化が±15%以内) が達成されている1).更に、異なった温度にピークを有する多 成分の複合体からなる試料では,誘電率-温度特性はより全体 に広がり,温度依存性の全くない特性が期待できる.しかし, このような複合の場合, 焼結時間が長くなると原料粉体同士が 互いに反応して単一相の固溶体を形成しやすいため実用的では tev.

一般に複合体の誘電率は、(1)式の対数則で表される.また、下限と上限を表す平板の直列及び並列モデルとして、(2) 式及び(3)式がある²⁾.

 $\log \varepsilon' = \sum v_i \log \varepsilon_i' \tag{1}$

 $1/\varepsilon' = \sum v_i/\varepsilon_i' \tag{2}$

$$\varepsilon' = \sum v_i \varepsilon_i' \tag{3}$$

ここで、 ϵ_i' 及び v_i は、各相の比誘電率及び体積分率を表す. 著者らはこの上限を表す並列モデルに着目し、組成の少しずつ 異なる $Ba_{1-x}Sr_xTiO_3$ (BST)固溶体を順次積層して、すなわ ち、一つの試料中で組成を端から端に傾斜させることにより、 多成分系の複合体を作製した.この方法では各組成はある程度 の厚みを有するため,比較的長時間の焼成によっても均質化に よる単一の固溶体は形成されなかった.その結果,(3)式から の計算値と一致して高い比誘電率で,しかも,端成分のキュ リー点間の温度範囲において,比誘電率はピークではなく直線 的な温度特性を示すことを見いだした.しかし,各単一組成の ピークの形が異なっていたため,比誘電率-温度特性はある傾 きを示した³⁾.本実験では,各組成の比誘電率のピークの大小 に合わせて,各層の体積分率を変化させ,傾きのない平坦な温 度特性を得ることを試みた.

2. 実験方法

出発原料として、共立窯業原料製チタン酸バリウム(KYO-RIX BT-HP3) 及びチタン酸ストロンチウム (KYORIX ST-HP1) を用いた. これらを, x=0~0.5まで0.02ごとの割 合で組成を変化させ、自動乳鉢中にて湿式混合、100℃にて乾 燥,バインダーとしてポリビニルアルコールを5mass%添加 し,造粒した後,30 mesh のふるいを通して成形粉末試料とし た. これを所望の量, 12 $\phi \times 0.3 \sim 2$ mm の円板に10 MPa で一 軸加圧し,順次積層した後,15 MPa にて最終的に加圧した. 450℃にてバインダーを焼成除去後,更に100 MPa にて CIP 成形を行い,1325℃にて2h,酸素気流中にて焼結した.得ら れた試料を約8×8×5~20mmの角柱状に加工し、電極とし て銀ペースト(エヌ・イーケムキャット製, A-2735)を各単 一組成が並列になるように塗布した:また,角柱状試料を電極 面に対して垂直方向にカットした三角柱状試料も作製した.こ れら試料についてLCRメーター(YHP製, HP-4284A)を 用いて交流2端子法,周波数1kHzで室温から180℃の範囲で 誘電率及び $tan \delta$ の測定を行った.

3. 結果及び考察

図1は、 $x=0\sim0.5$ まで0.02ごとに組成を変化させた26種の 単一組成試料及びそれら26種すべて積層した傾斜試料(大き さ約8×8×12 mm,電極面積約100 mm²,電極間距離約8 mm)の比誘電率及び tan δ の温度特性を示す.なお,図中に は、単一組成のデータは見やすいように、一つおきの0.04ごと のデータを示してある.既報と同様に³⁾,傾斜試料の比誘電率 (●)は各単一組成のデータ(●)から(3)式により計算した 結果(○)と一致して、室温からx=0組成のキュリー点であ る約140°Cの温度範囲においてほぼ直線的な温度特性を示し た.また、tan δ に関しては、低温側では傾斜試料の値が最も 高かったが、高温側では単一組成の試料全般に見られた急激な 増大が低く抑えられていた.

各単一組成の比誘電率は,BT リッチ側ではより鋭いピーク を,ST リッチ側ではよりブロードなピークを示し,それぞれ の比誘電率-温度特性の曲線の形が少しずつ異なっていたた め,全部を積層した傾斜試料では,温度に対してある傾きを示 したと考えられた.そこで,比誘電率が高いST リッチ側程, 体積分率が小さくなるよう,すなわち,体積分率も傾斜させる ことによって比誘電率-温度特性の平坦化を試みた.体積分率 を変える方法としては,(A) 作製した傾斜試料を斜めにカッ トする方法,及び,(B)各単一組成の層の厚みを少しずつ変 える方法,の二通りの方法を行った.

図2は、前述の26層からなる傾斜試料について、ST リッチ 側の割合が少なくなるように電極面に対して垂直方向に順次斜 めにカットする(A)の方法による比誘電率-温度特性の変化 を示す.ここで電極は図中に示すように三角柱の両底面とな り、電極間距離は変化していない.対角線を越えて、x=0.5及 び0.48組成の部分を切断した試料(▲)において、ほぼ平坦な

Fig. 1. (a) Relative permittivity vs temperature and (b) tan δ vs temperature for single-phase BST ceramics (\bullet) and graded BST ceramics (\bullet , \bigcirc). Open circle indicates the profile calculated by Eq. (3).

温度特性が得られた.この場合,室温から125℃までの温度範 囲で比誘電率の変化は5%以内となった.なお,この斜めに カットする方法に依れば,比誘電率の温度係数を,その場の単 純な加工によって任意に変化させることが可能であり,実用上 興味深い材料と考えられる.

図3は、厚みを傾斜させる方法(B)により作製した試料の 比誘電率-温度特性の結果を示す.簡単のため、BSTの組成

Fig. 2. Relative permittivity vs temperature for cut graded BST ceramics.

Fig. 3. Relative permittivity vs temperature for graded BST ceramics with a constant volume fraction (\blacktriangle) and graded volume fractions (\bigcirc , \bigcirc). Open circle indicates the profile calculated by Eq. (3).

Table 1. Compositions of Graded BST Ceramics in Fig. 3								
Composition	X = 0.40 0).36 (0.32	0.28	0.24	0.20	0.16	0.12
(▲) Constant	V i =			0.125				
(●, ○)Graded	V i = 0.023 0).047 ().078	0.109	0.14	0.171	0.202	0.233

は、ピークの鋭いx=0.1以下と、ピークが測定範囲を超えるx =0.4以上を除いた x=0.12~0.4まで0.04ずつ変化させた 8 相 (表1)を選び、傾斜試料(大きさ約8×8×9mm, 電極面積 約70 mm², 電極間距離約8 mm) を作製した. 各組成に対す る体積分率は、単一組成の温度特性を基に種々の値を設定して 計算した結果,室温からx=0.12組成のキュリー点である約 110℃までの温度範囲でほぼ平坦な温度特性が得られると予想 された表に示す値を用いた. その結果,体積分率が一定の場 合,比誘電率はある傾きをもって変化した(▲)のに対し,体 積分率も傾斜した試料では、比誘電率は(3)式による計算結果 (○) と一致してほとんど平坦となり(●),その変化は5%以 内であった. この方法を用いて, 更に広い組成範囲の傾斜試料 を作製することにより、広い温度範囲で平坦な温度特性が得ら れることが期待でき、本方法は新しい誘電率-温度特性の制御

法として非常に有用であると結論できた.

謝 辞 本研究の一部は,平成10年度文部省科学研究費補助 金,特定領域研究 (A) (2), No. 10123213の助成を受けて行われた ことを付記し、謝意を表します.

> 文 献

- 1) Yamamoto, T., New Ceramics, 11[5], 33-38 (1998) [in Japanese]
- Kingery, W. D., Bowen, H. K. and Uhlmann, D. R., "Introduc-(2)tion to Ceramics," 2nd ed., John Wiley & Sons, New York (1976) pp. 913–74.
- Ota, T., Tani, M., Hikichi, Y., Unuma, H., Takahashi, M. and 3) Suzuki, H., "Ceramic Transactions, Vol. 100," Ed. by Nair, K. M. and Bhalla, A. S., Am. Ceram. Soc. (1999) pp. 51-60.