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Realization of Quantum Receiver for M -Ary Signals
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SUMMARY In quantum communication theory, a realiza-
tion of the optimum quantum receiver that minimizes the error
probability is one of fundamental problems. A quantum receiver
is described by detection operators. Therefore, it is very impor-
tant to derive the optimum detection operators for a realization
of the optimum quantum receiver. In general, it is difficult to
derive the optimum detection operators, except for some simple
cases. In addition, even if we could derive the optimum detection
operators, it is not trivial what device corresponds to the oper-
ators. In this paper, we show a realization method of a quan-
tum receiver which is described by a projection-valued measure
(PVM) and apply the method to 3-ary phase-shift-keyed (3PSK)
coherent-state signals.
key words: quantum communication theory, quantum detec-

tion, quantum receiver, realization problem, error probability

1. Introduction

Realization of the optimum quantum receiver that min-
imizes the error probability is one of fundamental prob-
lems in quantum communication theory [1]–[4]. A mea-
surement process of a quantum receiver is described
by detection operators which are defined in a Hilbert
space. Therefore, it is very important to derive the op-
timum detection operators for realization of the opti-
mum quantum receiver. In general, it is difficult to de-
rive the optimum detection operators analytically. Be-
fore 1990’s, optimum detection operators only for few
signals, e.g. binary pure-state signals, were known. In
addition, even if we could derive the optimum detection
operators, it is not trivial what device corresponds to
the operators. It is necessary to consider a physical cor-
respondence of it. This is called a realization problem
of the optimum quantum receiver.

Studies of realization of the optimum quantum re-
ceiver were started by Kennedy and Dolinar in 1970’s
[5], [6]. They did not find the realization method from
the optimum detection operators but tried to construct
physical system by means of a heuristic manner. So
far realization methods have been proposed for the op-
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timum quantum receiver of binary coherent-state sig-
nals [6] and quasi-optimum quantum receivers of bi-
nary coherent-state signals [5], 4-ary phase-shift-keyed
(4PSK) coherent-state signals [7] and M -ary orthogo-
nal coherent-state signals [8].

On the other hand, studies of constructing the op-
timum quantum receiver from the optimum detection
operators were started in 1990’s. So far realization al-
gorithm has been proposed for binary signals [9]–[11],
binary codes [12] andM -ary linearly dependent signals
in two-state systems [13]. They are all based on two-
state system or its extension. As for general M -ary
linearly independent signals, a direction of realization
was mentioned in Ref. [14]. However no construction
method of the optimum quantum receiver for a specific
physical system is clarified. Recently studies of deriving
the optimum detection operators have been developed,
and the optimum detection operators have been clar-
ified for pure-state signals such as certain 3 or 4-ary
signals [15], M -ary symmetric signals [16] and binary
linear codes [17], [18] and for mixed-state signals such as
signals in two-state system [13], [19], [20] and the other
specific signals [21], [22]. Therefore, it is desired to clar-
ify the construction method of the optimum quantum
receiver from its optimum detection operators for gen-
eral M -ary linearly independent signals.

In this paper, we develop Ref. [14] and generalize
the approach for binary pure-state signals [11] to clar-
ify a realization method of a quantum receiver which is
described by a projection-valued measure (PVM). It is
known that the set of the optimum detection operators
for linearly independent signals is a PVM [23]. There-
fore, we can realize the optimum quantum receiver for
any M -ary linearly independent signal by using our re-
alization method.

This paper is organized as follows. In Sect. 2, we
explain the measurement process and the error proba-
bility in quantum communication theory. In Sect. 3, we
show our realization method. In Sect. 4, we apply the
method to 3PSK signals. And Sect. 5 is for concluding
remarks.

2. Basis of Quantum Detection

In this section, we briefly survey quantum detection
theory [1]–[4].
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We consider quantum communication for sending
M -ary c lassical information {xi|i = 0, · · · ,M − 1}. In
this case, the outputs of the transmitter are quantum
states {ρ̂i} which correspond to classical information.
A quantum state is described by a Hermitian opera-
tor on the Hilbert space of the quantum system and
satisfies

ρ̂i ≥ 0, Trρ̂i = 1. (1)

where Tr denotes the trace, i.e., the sum of diagonal ele-
ments of a matrix. If a signal state ρ̂i is pure, the state
can be described by a unit vector |ψi〉 in the Hilbert
space and

ρ̂i = |ψi〉〈ψi|. (2)

The pure-state signal contains no classical noise and
Trρ̂2

i = 1 is satisfied. If a signal state is mixed, the
state contains classical noises and Trρ̂2

i < 1 is satisfied.
A quantum receiver in which quantum measure-

ment is performed is generally described by a positive
operator-valued measure (POM) which is a set of non-
negative Hermitian operators {Π̂j} satisfying the reso-
lution of the identity:

M−1∑
j=0

Π̂j = Î, Π̂j ≥ 0, (3)

where Î is the identity operator and Π̂j is called a detec-
tion operator and expresses the measurement process
which decides that a received state is ρ̂j . In general,
the number of detection operators need not to equal
the number of signals. But we suppose that they are
equal since we only treat error probabilities as criteria.
If {Π̂j} satisfies not only Eq. (3) but also

Π̂jΠ̂j′ = δjj′Π̂j , (4)

{Π̂j} is a projection-valued measure (PVM). Here δjj′

is the Kronecker-delta which is defined as

δjj′ =
{

0, (j 	= j′),
1, (j = j′). (5)

When the transmitted signal is ρ̂i, the probability that
the received signal is decided to be ρ̂j is represented by
Π̂j as

P (ρ̂j |ρ̂i) = Trρ̂iΠ̂j . (6)

Then the error probability Pe is represented as

Pe = 1−
M−1∑
i=0

ξiTrρ̂iΠ̂i, (7)

where ξi is a priori probability of ρ̂i. The operators
{Π̂(opt)

j } by which the Pe is minimized are called the
optimum detection operators.

Fig. 1 Received quantum state control.

3. Realization of PVM

In this section, we show a realization method of a quan-
tum receiver of which the detection operators are de-
scribed by a PVM. Generally, the expression of detec-
tion operators {Π̂j} of a quantum receiver is abstract
and it is not obvious the physical correspondence of
the operators. On the other hand, detection operators
which correspond to measurement of signal observable
are called standard detection operators [14], [24], [25],
and its physical correspondence is obvious. Needless to
say, physical correspondence of a measurement of the
other well-known observable is also obvious. In the fol-
lowing, we represent standard detection operators or
the other well-known measurement as {Êj}.

It was shown in Ref. [10] that the optimum detec-
tion operators for any binary pure-state signals can be
realized by a unitary operator Û and well-known de-
tection {Êj} as Fig. 1. These construction methods of
receivers are called a received quantum state control
[26]. Refs. [9] and [10] developed the idea of utilizing a
unitary process as a received quantum state controller
[27] and showed algorithm for binary pure-state sig-
nals, by which the unitary operator Û is derived. Here
Û is related to the detection operator of the quantum
receiver as

Π̂j = Û†ÊjÛ . (8)

This algorithm has been generalized for binary codes
and M -ary linearly dependent signals in two-state sys-
tem and the structure of the quantum circuit which
plays the role of the unitary operator Û was discussed
[12], [13].

Here we develop Ref. [14] in which possibility of
applying a received quantum state control to realization
of the optimum quantum receiver for general signals
was mentioned and generalize the approach for binary
pure-state signals [11] to clarify a realization method of
a quantum receiver forM -ary signals which is described
by a PVM.

The realization method is divided into two steps.
The first step is to decompose each detection operator
Π̂j which describes the quantum receiver into a unitary
operator Û and a detection operator Êj correspond-
ing to well-known measurement. The second step is to
derive the quantum circuit which corresponds to the
unitary operator Û .
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3.1 Decomposition of Detection Operators

The Hilbert space spanned by signal quantum states is
called the signal space. If the signals areM -ary and lin-
early independent, the dimensions of the signal space
are M . The detection operators of the quantum re-
ceiver are defined on thisM -dimensional space. In gen-
eral, the dimensions d of the Hilbert space of the phys-
ical system are not always equal to M . For example,
the dimensions of an optical system are infinity. Detec-
tion operators of well-known measurement are defined
on d-dimensional space and projections of them onto
the signal space are not generally a PVM. Therefore,
it is impossible to derive the unitary operator which
expresses the received quantum state controller on M -
dimensional space.

Here we generalize the approach for binary pure-
state signals [11] and introduce an extended space so
that detection operators of well-known measurement
become orthogonal on the extended space.

First, we apply the identity operator on d-
dimensional space which is the sum of the detection
operators of well-known measurement to each signal.
Each of signal states {|ψi〉|i = 0, · · · ,M − 1} is pro-
jected into M states,

|ψi〉 =
M−1∑
j=0

Êj |ψi〉 =
M−1∑
j=0

√
εij |Aij〉, (9)

where

|Aij〉 =
1

√
εij
Êj |ψi〉. (10)

Here εij expresses the probability that the received sig-
nal is decided to be ρ̂j by Êj when the transmitted
signal is ρ̂i and satisfies

εij = 〈ψi|Êj |ψi〉, (11)

M−1∑
j=0

εij = 1. (12)

In this way, M signals can be described by M2 vec-
tors {|Aij〉|i, j = 0, · · · ,M − 1}. We apply Schmidt
orthonormalization to N linearly independent vectors
of M2 vectors {|Aij〉|i, j = 0, · · · ,M − 1} and intro-
duce N -dimensional extended space spanned by the or-
thonormal set which is derived by Schmidt orthonor-
malization.

{|Ai0〉, · · · , |Ai(M−1)〉} is orthogonal for any i.
On the other hand, {|A0j〉, · · · , |A(M−1)j〉} is non-
orthogonal and sometimes linearly dependent. So if
nj vectors of {|A0j〉, · · · , |A(M−1)j〉} are linearly inde-
pendent, we orthonormalize these vectors and derive
an orthonormal set {|rj′+l〉|l = 0, · · · , nj − 1}(j′ =

∑j−1
m=0 nm). This operation for all j derives N(=∑M−1
j=0 nj) orthogonal vectors {|rk〉|k = 0, · · · , N − 1},

where M ≤ N ≤ M2. These N vectors construct a
orthonormal set in N -dimensional space. Êj is related
to this orthonormal set as follows:

Êj =
j′+nj−1∑

k=j′

|rk〉〈rk|, (13)

j′ =
j−1∑
m=0

nm. (14)

Since the detection operators Π̂j of the quantum re-
ceiver for M -ary signals are a PVM, it can be repre-
sented as

Π̂j = |ωj〉〈ωj |, (15)

where {|ωj〉|j = 0, · · · ,M − 1} are called measurement
basis vectors. We extend these M basis vectors to
basis vectors in N -dimensional extended space. We
make an orthonormal set {|ω′k〉|k = 0, · · · , N − 1} on
N -dimensional extended space by adding N −M basis
vectors obtained by Schmidt orthonormalization, where
|ωj〉 = |ω′k〉 if j = k.

In this way, both {Π̂j} and {Êj} become PVM
on N -dimensional extended space. Thus realization of
the detection operators will be in principle possible by
combining a quantum circuit which plays the role of Û
and the detection {Êj} if we define the unitary operator
as

|ω′k〉 = Û†|rk〉. (16)

3.2 Decomposition of Unitary Operator

In order to construct the quantum receiver we have to
derive the Hamiltonian which corresponds to Û and
clarify the structure of a quantum circuit which corre-
sponds to Û . The unitary operator defined in Eq. (16)
is the operator on N -dimensional space. Therefore, it is
difficult to derive the Hamiltonian which corresponds to
Û and to construct a quantum circuit. We can not di-
rectly apply the derivation method in Ref. [11] in which
the realization of the optimum quantum detection for
binary signals was shown and it was studied how to
construct the quantum circuit which corresponds to a
unitary operator on 1 or 2-dimensional space. How-
ever, if we can decompose a unitary operator on N -
dimensional space into 1 or 2-dimensional operations,
it will be possible to construct the quantum circuit.
Here we consider the spectral decomposition of Û . Ac-
cording to Stone’s theorem, Û on N -dimensional space
can be decomposed as

Û =
N−1∑
t=0

eiθt |xt〉〈xt|, (17)
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where eiθt and |xt〉 are an eigenvalue and an eigenvector
of Û , respectively and {|xt〉} is an orthonormal set in
N -dimensional space. Then Û is expressed as

Û =
N−1∏
t=0

R̂t(θt), (18)

R̂t(θt) = exp[iθt|xt〉〈xt|]. (19)

In this way Û can be decomposed into N 1-dimensional
rotations. Thus it will be possible to construct the
quantum circuit if we derive the Hamiltonians for 1-
dimensional rotations in Eq. (19). Derivation of Hamil-
tonians should be considered for respective signals
based on a certain physical system. Here we show the
Hamiltonian for an optical system. Because the optical
system is most important system in quantum commu-
nication. In the optical system, the Hamiltonian for
R̂t(θt) in Eq. (19) is generally derived as follows:

ĤR̂t
= −h̄gX̂, (20)

X̂ = |xt〉〈xt|

=
∞∑

m=0

Ct,m√
m!

(â†)m
∞∑

l=0

(−â†)l(â)l
l!

·
∞∑

n=0

C∗
t,n√
n!
(â)n, (21)

where â (â†) is the photon annihilation (creation) op-
erator,

Ct,n = 〈n|xt〉, (22)

∑
n

∑
m

Ct,nCt′,m =
{

1, k = k′,
0, k 	= k′, (23)

and g = θt/τ is the coupling constant of the physical
process represented by the Hamiltonian ĤR̂t

and τ is
the interaction time, and |n〉 is a photon number state
with photon number n. The Hamiltonian corresponds
to nonlinear multiphoton processes.

4. Example

In this section, we show realization of the optimum
quantum receiver for 3-ary phase-shift-keyed (3PSK)
coherent-state signals as an example. The quantum
system in this case is an optical system and the di-
mensions are infinity. Therefore, the dimensions of the
quantum system are much higher than the signal space
(M � d).

Signal states of 3PSK are expressed as

|ψ0〉 = |α〉, |ψ1〉 = |αe 2πi
3 〉, |ψ2〉 = |αe− 2πi

3 〉. (24)

We assumed that α is real since no generality is lost
by this assumption. An orthonormal set {|ej〉} on
3-dimensional Hilbert space spanned by these signal
states can be chosen as follows [28]

|e0〉 =
1√
3h0

(|ψ0〉+ e−
2πi
3 |ψ1〉+ e

2πi
3 |ψ2〉), (25)

|e1〉 =
1√
3h1

(|ψ0〉+ e
2πi
3 |ψ1〉+ e−

2πi
3 |ψ2〉), (26)

|e2〉 =
1√
3h2

(|ψ0〉+ |ψ1〉+ |ψ2〉), (27)

where hj denotes an eigenvalue of the Gram matrix

h0 = 1−Kc +
√
3Ks, (28)

h1 = 1−Kc −
√
3Ks, (29)

h2 = 1 + 2Kc, (30)

Kc = e−
3
2 |α|2 cos

√
3
2

|α|2, (31)

Ks = e−
3
2 |α|2 sin

√
3
2

|α|2. (32)

It was shown in Ref. [16] that the optimum detec-
tion operators for 3PSK signal with equal a priori prob-
ability correspond to a measurement process which is
called a Square-root measurement(SRM) [29]–[31]. The
measurement basis vectors {|ωi〉} of SRM are expressed
as

|ω0〉 =
1√
3
(|e0〉+ |e1〉+ |e2〉), (33)

|ω1〉 =
1√
3
(e

2πi
3 |e0〉+ e−

2πi
3 |e1〉+ |e2〉), (34)

|ω2〉 =
1√
3
(e−

2πi
3 |e0〉+ e

2πi
3 |e1〉+ |e2〉). (35)

Now each of the signal states is projected into three
states,

|ψi〉 =
2∑

j=0

Êj |ψi〉 =
2∑

j=0

√
εij |Aij〉,

i, j = 0, 1, 2, (36)

where we assumed the detection of well-known ob-
servable is a photon counting and Ê0 = |0〉〈0|, Ê1 =
|1〉〈1|, Ê2 = Î − |0〉〈0| − |1〉〈1|. |0〉 and |1〉 are vacuum
state and photon number state with photon number
1, respectively. Ordinary, standard detection operators
express the optimum classical receiver. But in this case,
the optimum classical receiver is a heterodyne receiver
which corresponds to simultaneous measurement of two
observables and its detection operators are not a PVM.
So we used the photon counting as the detection process
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though it is not the optimum classical receiver.
The subspaceH0 spanned by {|Ai0〉}, the subspace

H1 spanned by {|Ai1〉} and the subspace H2 spanned
by {|Ai2〉} are orthogonal each other. But |A0j〉, |A1j〉
and |A2j〉 are not. Both {|Ai0〉} and {|Ai1〉} are linearly
dependent set as

|A00〉 = |A10〉 = |A20〉 = |0〉, (37)

|A01〉 = e−
2πi
3 |A11〉 = e

2πi
3 |A21〉 = |1〉. (38)

So we determine |r0〉 and |r1〉 as

|r0〉 = |A00〉 = |0〉, (39)
|r1〉 = |A01〉 = |1〉. (40)

On the other hand, {|Ai2〉} is linearly independent set.
So we apply Schmidt orthonormalization to {|Ai2〉} and
determine the orthonormal vectors |r2〉, |r3〉 and |r4〉:

|r2〉 = |A02〉, (41)

|r3〉 =
|A12〉 − 〈r2|A12〉|r2〉√

1− |〈r2|A12〉|2
, (42)

|r4〉 =
|A22〉 − 〈r2|A22〉|r2〉 − 〈r3|A22〉|r3〉√

1− |〈r2|A22〉|2 − |〈r3|A22〉|2
, (43)

where

|Am2〉 =
|αe 2mπi

3 〉 − e−
|α|2

2 |0〉 − αe 2mπi
3 − |α|2

2 |1〉√
1− e−|α|2 − |α|2e−|α|2

,

(44)

〈A02|A12〉 = 〈A12|A22〉 = 〈A02|A22〉∗ (45)

=
e

−3+
√

3i
2 |α|2 − e−|α|2(1 + 1−

√
3i

2 |α|2)
1− e−|α|2(1 + |α|2) . (46)

From the above calculation, we obtain an orthonormal
set {|rk〉|k = 0, · · · , 4} in 5-dimensional space. {Êj} is
expressed by this orthonormal set as follows:

Ê0 = |r0〉〈r0|, (47)

Ê1 = |r1〉〈r1|, (48)

Ê2 =
4∑

k=2

|rk〉〈rk|. (49)

The measurement basis vectors of the optimum detec-
tion operators are expressed as

|ωj〉 =
4∑

k=0

cjk|rk〉, j = 0, 1, 2, (50)

where cjk = 〈rk|ωj〉 which can be easily calculated from
Eqs. (24)–(35) and Eqs. (39)–(46). Then we add two
basis vectors |ω′3〉 and |ω′4〉 to these three basis vectors
to construct an orthonormal set {|ω′k〉}. Here {Π̂(opt)

j }
is expressed by {|ω′k〉} as follows:

Π̂
(opt)
0 = |ω′0〉〈ω′

0|, (51)

Π̂
(opt)
1 = |ω′1〉〈ω′

1|, (52)

Π̂
(opt)
2 =

4∑
k=2

|ω′k〉〈ω′
k|. (53)

where we determined |ω′3〉 and |ω′4〉 as follows:

|ω′k〉 =
|rk−3〉 −

∑k−1
m=0〈ωm|rk−3〉|ωm〉√

1−
∑k−1

m=0 |〈ωm|rk−3〉|2
,

k = 3, 4. (54)

These two basis vectors do not affect the measurement
result since they are orthogonal to signal states.

We define the unitary operator Û which connects
{Π̂(opt)

j } and {Êj} as

Π̂
(opt)
j = Û†ÊjÛ . (55)

Here Û is expressed as

Û = [c∗jk], j, k = 0, 1, · · · , 4 (56)

where cjk = 〈rk|ω′j〉.
Next, Û should be decomposed into some 1-

dimensional rotations in order to derive a Hamiltonian.
According to Stone’s theorem, Û on N -dimensional
space can be decomposed as

Û =
4∑

t=0

eiθt |xt〉〈xt|. (57)

Then Û can be decomposed into five 1-dimensional ro-
tations as follows

Û =
4∏

t=0

R̂t(θt), (58)

R̂t(θt) = exp[iθt|xt〉〈xt|]. (59)

We must derive eigenvalues of Û in order to derive five
rotation angles {θt}. It is not easy to derive these angles
analytically. However it is comparatively easy to derive
them numerically. Figure 2 shows numerical values of
θt with respect to Ns = |α|2. We can see from Fig. 2
that each angle θt converges a certain value when Ns is
large.

Next, we have to describe the eigenvectors {|xt〉}
by annihilation (creation) operators â(â†) in order to
derive Hamiltonians of R̂t(θt). It is enough to derive
the description of {|xt〉} by {|rk〉} and the description
of {|rk〉} by â and â† for this purpose. Let rtk = 〈rk|xt〉
then

|xt〉 =
4∑

k=0

rtk|rk〉. (60)

The analytical description of {|xt〉} by {|rk〉} is very
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Fig. 2 Angles of rotations.

complicated. Here we show numerical values for the
case of Ns = 3 as an example.

|x0〉 =




−0.289624 + 0.340012i
−0.168546− 0.402603i
0.183842− 0.410997i

0.538176
0.0241692 + 0.342168i


 , (61)

|x1〉 =




−0.271052− 0.147831i
0.0925722 + 0.203245i
0.0686031− 0.395389i
−0.230179 + 0.298503i

0.742747


 , (62)

|x2〉 =




0.663316
0.379212− 0.0696386i
0.408074 + 0.044467i
0.365357− 0.00786251i
0.316223− 0.0965159i


 , (63)

|x3〉 =




0.062142 + 0.32745i
−0.478264− 0.158766i

0.560824
−0.367122 + 0.103642i
−0.0163204− 0.417925i


 , (64)

|x4〉 =




−0.0445443 + 0.390037i
0.59752

0.0938877− 0.380006i
−0.413167− 0.344246i
−0.213751 + 0.0270972i


 . (65)

The rotation R̂t(θt) and corresponding Hamiltonian
ĤR̂t

can be expressed by â and â† as in Eqs. (20)–
(23). Thus the physical correspondence of the optimum
quantum receiver for 3PSK signals, which is expressed
by Eqs. (33)–(35) was shown.

5. Conclusion

In this paper we showed a realization method of the

optimum quantum receiver forM -ary linearly indepen-
dent signals and applied the method to 3PSK as an
example. This is the first example of realization of
the optimum quantum receiver forM -ary linearly inde-
pendent signals which are not based on two-state sys-
tem. This method is applicable to any case that de-
tection operators are expressed as a PVM on a signal
space. Therefore, it is also applicable to mixed-state
signals defined in Ref. [22] and to the case that a quasi-
optimum quantum receiver is described by a PVM [32].
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