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Pressure Spectrum in Homogeneous Turbulence
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The pressure spectrum in homogeneous steady turbulence is studied using direct numerical simulation
with resolution up to 10243 and the Reynolds number Rl between 38 and 478. The energy spectrum
is found to have a finite inertial range with the Kolmogorov constant K � 1.65 6 0.05 followed by a
bump at large wave numbers. The pressure spectrum in the inertial range is found to be approximately
P�k� � Bp ē4�3k27�3 with Bp � 8.0 6 0.5, and followed by a bump of nearly k25�3 at higher wave
numbers. Universality and a new scaling of the pressure spectrum are discussed.
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The pressure spectrum in an incompressible turbulent
flow is defined as �p2� �

R`
0 P�k� dk. Kolmogorov’s the-

ory predicts that
P�k� � ē3�4n7�4f�kh� (1)

� Bp ē4�3k27�3, L21 ø k ø h21, (2)
where f�x� is a nondimensional function, n is the kine-
matic viscosity, ē is the average rate of energy dissipation
per unit mass, L is the integral scale of turbulence, h is
the Kolmogorov scale, and Bp is a nondimensional con-
stant of order one [1]. The fluid density is assumed to be
unity throughout this paper.

There have been many studies of the pressure spectrum
[1–21]. Some of the experiments have shown that P�k� ~

k27�3 [3], or equivalently Dp � ��p�x 1 r� 2 p�x��2� ~

r4�3 [13,21]. Others have reported that r4�3 is not observed
[14]. Recent direct numerical simulations (DNS’s) with
large scale forcing have found that the pressure spectrum
is approximately proportional to k25�3, unlike k27�3, in the
wave number range where the energy spectrum scales close
to k25�3 [17–19]. Gotoh and Rogallo conjectured that the
observed k25�3 scaling for P�k� is a bump, as observed
for the energy spectrum, and that P�k� scales as k27�3 in
the lower wave number range [19]. There seems to be no
agreement about the scaling of the pressure spectrum when
compared to the case of the energy spectrum.

We have performed a series of DNS’s of incompressible
homogeneous isotropic turbulence using a resolution of up
to N � 10243. DNS was designed to generate a wider
inertial range and higher Reynolds numbers. The range
TABLE I. DNS parameters and statistical quantities of runs: Tav
eddy is the length of time average.

Rl N kmax n cf Forcing range Tav
eddy E ē L l lp h�31022� F=p K Bp

38 1283 60 1.50 3 1022 1.30
p

3 # k #
p

12 22.6 1.99 1.19 0.891 0.501 0.371 4.10 3.62 · · · · · ·
70 2563 121 4.00 3 1023 0.50

p
3 # k #

p
12 49.7 1.16 0.457 0.785 0.318 0.256 1.93 5.60 · · · · · ·

125 5123 241 1.35 3 1023 0.50
p

3 # k #
p

12 5.52 1.25 0.492 0.744 0.185 0.170 0.841 7.61 · · · · · ·
284 5123 241 6.00 3 1024 0.50 1 # k #

p
6 3.03 1.96 0.530 1.246 0.149 0.177 0.449 10.4 1.64 · · ·

387 10243 483 2.80 3 1024 0.51 1 # k #
p

6 1.09 1.81 0.522 1.215 0.0986 0.131 0.255 11.3 1.62 · · ·
460 10243 483 2.00 3 1024 0.51 1 # k #

p
6 2.14 1.79 0.506 1.150 0.0841 0.119 0.199 11.8 1.64 8.1

478 10243 483 2.80 3 1024 0.51 1 # k #
p

6 0.34 2.00 0.419 1.350 0.116 0.167 0.269 11.8 1.71 7.9
0031-9007�01�86(17)�3775(4)$15.00
of the Taylor microscale Reynolds number Rl � ūl�n

is between 38 and 478, where ū is the root mean square
of turbulent velocity and l is the Taylor microscale. The
characteristic parameters of DNS are listed in Table I. The
code uses the pseudo-Fourier spectrum and fourth order
Runge-Kutta-Gill methods. Random forcing, Gaussian
and white in time, is applied to the lower wave numbers.
A statistically steady state was confirmed by observing the
time evolution of the total energy, the total enstrophy, and
the skewness of the longitudinal velocity derivative. The
statistical averages were taken as the time average over
tens of turnover times for lower Reynolds numbers and
over a few turnover times for the higher Reynolds numbers.
The data of the highest Reynolds number, Rl � 478, were
obtained as short time average (about 0.34 eddy turnover
times) during the passage toward steady state rather than
over a statistically steady state. The resolution condition
kmaxh . 1 is satisfied for most runs, but that of the case
when Rl � 460 is slightly less than unity (kmaxh � 0.96).
We believe that this does not adversely affect the energy
and pressure spectra results in the inertial range. Com-
putations with Rl # 284 were performed using a Fujitsu
VPP700E vector parallel machine with 16 processors at
The Institute of Physical and Chemical Research (RIKEN).
Simulations using higher Rl were performed on a Fujitsu
VPP5000�56 with 32 processors at the Nagoya University
Computation Center.

The energy spectra in Kolmogorov units [multiplied by
�kh�5�3] are shown in Fig. 1. Collapse of curves at various
Reynolds numbers is very satisfactory, although the curves
© 2001 The American Physical Society 3775
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FIG. 1. Scaled energy spectra, ē21�4n25�4�kh�5�3E�k�. The
inertial range is 0.007 # kh # 0.04 and K � 1.65 6 0.05.

with Rl $ 284 have appreciable rise of E�k� near the high
wave number boundary. It is clearly seen that the curves
with Rl $ 284 have a small but certainly a finite plateau.
The Kolmogorov constant K was measured in the range of
0.007 # kh # 0.04 in which the average energy transfer
flux function P�k��ē is nearly flat and close to unity (fig-
ure not shown). The value of K ,

K � 1.65 6 0.05 , (3)

is very close to the value of 1.62 obtained in previous ex-
periments and DNS’s [22,23], and to the value of 1.72 ob-
tained using the Lagrangian spectral theory (Lagrangian
renormalized approximation) [24,25]. There is a small
spectral bump at wave numbers near kh � 0.2, as ob-
served in other DNS’s [23] and experiments [26,27].

Figure 2 shows the pressure spectra with the K41
scaling, Eq. (1), multiplied by �kh�7�3, for various
Reynolds numbers. Figure 3 is an enlargement of the

FIG. 2. K41 scaling for the pressure spectra, ē23�4n27�4 3
�kh�7�3P�k�. The inertial range is 0.007 # kh # 0.04.
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higher Reynolds numbers’ curves. When Rl , 300, the
curves do not contain a plateau; however, when Rl . 300
and increases, there appears a small plateau between
0.007 # kh # 0.04 where the energy spectrum has a
25�3 slope. The slope and width of the Rl � 460 curve
plateau were the same, within the statistical error bar,
when the averaging time was doubled. A series of DNS’s
were also performed with Rl � 560, Tav

eddy � 1.16, and
kmaxh � 0.76, which implies that the energy spectrum
near the high wave number end is contaminated. Nev-
ertheless, the k7�3P�k� curve contains almost the same
plateau as the Rl � 460 curve (figure not shown). As
a check, the P�k� curve for Rl � 560 was compared
with that computed from the velocity field, discarding
the contaminated Fourier components of k . 308. Both
pressure spectra were found to be identical in the wave
number range of kh , 0.2. These facts indicate that the
plateau of k7�3P�k� certainly exists and is stable.

More careful examination of the k7�3P�k� plateau was
undertaken. The kgp P�k� curve is plotted in Fig. 4 with
gp � 5�3, 2.11, 2.28, and 7�3. Between 0.007 # kh #

0.04, the plateau has a very small slope. A nearly horizon-
tal curve is produced by compensating with k2.11; this ex-
ponent was obtained from a least squares fit. The deviation
of the exponent from 7�3 is caused by the narrow inertial
range and is partly due to the intermittency. Since P�k� is
given by P�k� � FLL,LL�k�, where FLL,LL�k� is the fourth
order moment of the velocity Fourier amplitude [1], the
exponent of P�k� ~ k2gp is evaluated as gp � z

L
4 1 1,

using the exponent of the fourth order longitudinal ve-
locity structure function L�r� ~ rz

L
4 . The value of z

L
4

in the present DNS was z
L
4 � 1.28, which is consistent

with the She and Lévêque value [28,29]. This means that
the intermittency correction for gp is very small, Dgp �
7�3 2 2.28 � 0.05; therefore, the correction may be ne-
glected, as in the case of the energy spectrum. The devi-
ation 0.22 � 7�3 2 2.11 is larger than the intermittency

FIG. 3. Closeup of ē23�4n27�4�kh�7�3P�k� for higher Rey-
nolds numbers. A short straight line shows the slope of k2�3

and a horizontal line indicates Bp � 8.0.
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FIG. 4. Comparison of compensated pressure spectrum
ē23�4n27�4�kh�gp P�k� at Rl � 460. From the uppermost
curve, gp � 5�3, 2.11, 2.28, 7�3.

correction, but smaller than the deviation 0.44 � 2.11 2

5�3. From Figs. 2, 3, and 4, the compensation is much
more favorable for k7�3P�k� than for k5�3P�k�. There-
fore, in the inertial range, P�k� ~ k27�3 approximately;
P�k� ~ k25�3 does not apply but rather is a part of a
bump (see discussion below). When the Reynolds num-
ber becomes large enough, it is expected that P�k� tends
to Eq. (2) with a possible small intermittency correction
to the exponent, Dgp , although the approach is very slow.

The curves obtained for Rl � 387, 460, and 478 indi-
cate that P�k� approaches the approximate k27�3 spectrum
over the range of 0.007 # kh # 0.04. If P�k� is of the
form of Eq. (2), the value Bp is

Bp � 8.0 6 0.5 , (4)

which is shown in Fig. 3 as a horizontal line. Taking into
account the relatively short length of the averaging time,
and the finite inertial range, it is reasonable to use a large
Bp error bar for the present data.

When the joint Gaussian hypothesis is applied to the
fourth order velocity structure functions, Bp is related to
the Kolmogorov constant K as [1,3,4,10]

Bp �
7
3

µ
27
55

∂2 G�1�3�2

G�24�3�
K2 � 1.32K2. (5)

With K � 1.65, Bp � 3.59, which is smaller than the
present DNS value. This is consistent with the fact that
P�k� is larger than PG�k�, computed from the Gaussian
random velocity field with the same energy spectrum as
that of the actual turbulence field [6,7,19]. Pumir sug-
gested that Bp � 7 using DNS data with N � 1283 at
Rl � 77.5. Métais and Lesieur computed P�k� ~ k27�3

from a large eddy simulation, with K � 1.4 and Bp � 2.6.
Pullin estimated that Bp � 2.14 3.65 from Lundgren’s
stretched spiral vortex model.

There is a bump, with a peak value of about 17, in
P�k� near kh � 0.2 which is more appreciable than that
in the energy spectrum. Since the pressure spectrum is
related to the fourth order moment of the velocity, the
bottleneck phenomenon causes larger amplitude and wider
spectral support of the bump [27]. The left part of the
bump consists of a finite ramp. For Rl � 284, the slope
of the ramp is close to 2�3, indicating that P�k� ~ k25�3

(Fig. 3), but the slope gradually decreases as the Reynolds
number increases. It is this part which the previous DNS’s
have observed as P�k� ~ k25�3 [17–19].

The collapse of the P�k� curves for all Rl’s is not
as good as the energy spectrum, even in the dissipation
range. The collapse of the pressure spectra is improved
when the normalized pressure gradient variance, F=p �
��=p�2�ē23�2n1�2 is included in the scaling for P�k�:

P�k� � F=p ē3�4n7�4f1�kh� , (6)

where f1�x� is a nondimensional function [19,20]. Fig-
ure 5 presents P�k� using Eq. (6), and clearly shows that
the scaling of P�k� in the high wave number range is bet-
ter than the scaling using Eq. (1). The inset shows the
variation of F=p against the Reynolds number. F=p is
a monotonically increasing function of Rl that becomes
very weakly dependent on Rl as Rl becomes large. It
should be noted that although the insensitivity of F=p to
Rl is consistent with Batchelor’s Gaussian theory for the
pressure, its value is considerably larger than the value
corresponding to the Gaussian theory, FG

=p [2,19]. This
insensitivity of F=p at large Rl implies that the collapse
of P�k� with Rl $ 284 is little affected by F=p . How-
ever, there still remains a weak Reynolds number depen-
dence of P�k� in the inertial range, causing the pressure
spectrum to be nonuniversal. Close inspection of P�k� in
the k27�3 range shows that the factor F=p of Eq. (6) im-
proves the collapse of the curves (Figs. 2 and 5). In this
range, f1�kh� � Cp�kh�27�3 approximately, where Cp is

FIG. 5. Scaling of the pressure spectra with the factor F=p ,
F21

=p ē23�4n27�4�kh�7�3P�k�. The lines are the same as those in
Fig. 2. The inset is the variation of F=p against Rl. Squares
are F=p computed by limr!0Dp�r��r2, and other symbols are
experimental data by Voth et al. [16].
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FIG. 6. Scaling of the pressure spectrum in terms of kp .

a nondimensional constant of the order one. The constant
Bp is related as Bp � F=pCp , so that Bp becomes weakly
dependent on the Reynolds number, while Cp is not. It is
reasonable, in this sense, to regard Cp as a more univer-
sal constant than Bp . Using the values of Bp and F=p we
obtain

Cp � 0.68 6 0.04 . (7)

The nonuniversality enters the pressure spectrum through
F=p�Rl� as a function of Rl. Therefore, F=p is a key
parameter for the second order statistics of pressure at
small scales. The Reynolds number dependence of F=p

is attributed to the coherent structure of the source term
field in the Poisson equation for the pressure [19].

Figure 6 shows that transition of P�k� to the left ramp
portion of the bump occurs at kh � 0.03 for Rl $ 387,
which corresponds to kplp � 1.5, and also at 1.8 and
1.6 for Rl � 460 and 478, respectively. Here, lp is a
characteristic length scale for the pressure gradient defined
by ��≠p�≠x�2� � ū4�l2

p . This is analogous to the Taylor
microscale. Thus the crossover scale between the k27�3

and the bump is about kp � l21
p .

The pressure spectrum at low wave numbers scales as

P�k� � ē4�3L7�3f2�kL� , (8)

where L is the integral scale and f2�x� is a nondimensional
function. The curves of P�k� at this range collapse reason-
ably well into one curve (figure not shown). The scaling
of Eq. (6) matches Eq. (8) in the k27�3 range.
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