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SUMMARY P -complete problems seem to have no parallel
algorithm which runs in polylogarithmic time using a polynomial
number of processors. A P -complete problem is in the class EP
(Efficient and Polynomially fast) if and only if there exists a
cost optimal algorithm to solve it in T (n) = O(t(n)ε) (ε < 1)
using P (n) processors such that T (n) × P (n) = O(t(n)), where
t(n) is the time complexity of the fastest sequential algorithm
which solves the problem. The goal of our research is to find
EP parallel algorithms for some P -complete problems. In this
paper first we consider the convex layers problem. We give an
algorithm for computing the convex layers of a set S of n points
in the plane. Let k be the number of the convex layers of S.
When 1 ≤ k ≤ n

ε
2 (0 ≤ ε < 1) our algorithm runs in O(n log n

p
)

time using p processors, where 1 ≤ p ≤ n
1−ε
2 , and it is cost

optimal. Next, we consider the envelope layers problem of a
set S of n line segments in the plane. Let k be the number of
the envelope layers of S. When 1 ≤ k ≤ n

ε
2 (0 ≤ ε < 1), we

propose an algorithm for computing the envelope layers of S in

O(
nα(n) log3 n

p
) time using p processors, where 1 ≤ p ≤ n

1−ε
2 ,

and α(n) is the functional inverse of Ackermann’s function which
grows extremely slowly. The computational model we use in
this paper is the CREW -PRAM . Our first algorithm, for the
convex layers problem, belongs to EP , and the second one, for
the envelope layers problem, belongs to the class EP if a small
factor of log n is ignored.
key words: parallel algorithm, P -complete problems, convex

layers problem, envelope layers problem

1. Introduction

In parallel computational theory, one of the primary
measures of parallel complexity is the class NC. Let n
be the input size of a problem. The problem is said to
be in the class NC if there exists an algorithm which
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solves the problem in polylogarithmic time using poly-
nomial number of processors. Many problems in the
class P , which is the class of problems solvable in poly-
nomial time sequentially, are also in the class NC.

On the other hand, there are some problems in
P which do not seem to admit parallelization readily.
These problems, which we refer to as hardly paralleliz-
able ones, form the class so-called P -complete prob-
lems. In other words, the class of P -complete problems
consists of the most likely candidates of P that are not
in NC. If a parallel algorithm which runs in polyloga-
rithmic time using a polynomial number of processors
could be found for at least one P -complete problem
then a similar solution would exist for any other one.

However, polylogarithmic time complexity is not
so important when considering practical parallel com-
putation. Actually, the number of processors is usually
small in comparison with the size of a problem. Thus,
in practice cost optimality turns to be the most im-
portant measure for parallel algorithms. The cost of a
parallel algorithm is defined as the product of the run-
ning time and the number of processors required by the
algorithm. A parallel algorithm is called cost optimal
if its cost is of the same order as the time complexity
of the fastest known sequential algorithm for the same
problem. In other words, the cost optimal parallel algo-
rithm achieves optimal speedup, which is equal to the
number of processors.

Therefore, one way to parallelize P -complete prob-
lems is to find a cost optimal parallel algorithm. As-
sume that O(nk) is the upper bound of the fastest
known sequential time complexity for a P -complete
problem A. It seems that the problem A has no paral-
lel algorithm which runs in polylogarithmic time since
A is P -complete. However, the problem A may have
a parallel algorithm which runs in O(nk−ε) time us-
ing nε processors for some constant ε, 0 < ε < k. It
means that, in practice, the algorithm achieves optimal
speedup if the number of processors is not larger than
nε.

Kruskal et al. [9] proposed the class EP . The EP
means “Efficient and Polynomially fast,” and a prob-
lem is in EP if and only if there exists a cost optimal
algorithm to solve it in T (n) = O(t(n)ε) (ε < 1) us-
ing P (n) processors such that T (n)× P (n) = O(t(n)),
where t(n) is the time complexity of the fastest sequen-
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tial algorithm which solves the problem.
In this paper, we consider EP algorithms for two

famous P -complete problems, the convex layers prob-
lem and the envelope layers problem, in the CREW -
PRAM computational model.

First we consider the convex layers problem which
requires to partition the input set S of n points in the
Euclidean plane into a set of convex polygons defined as
follows: (i) compute the convex hull of S and remove its
points from S, (ii) then repeat instruction (i) until no
point remains in S. This problem is a natural extension
of the convex hull problem.

Chazelle [2] proposed an optimal sequential al-
gorithm for the convex layers problem which runs in
O(n logn) time. The sequential algorithm is time op-
timal because the computation of a convex hull, which
is the first hull of the convex layers, requires Ω(n logn)
time [13]. Dessmark et al. [4] proved that the problem
is P -complete. In [5] Fujiwara et al. considered the
problem under a very strong constraint. They proved
that if all points of S lie on d horizontal lines, when
d ≤ nδ (0 < δ ≤ 1

2 ) the problem is still P -complete.
They proposed an EP algorithm for the problem which
runs in O(n log n

p ) time using p processors if d ≤ nε

(0 < ε ≤ 1
2 ) and 1 ≤ p ≤ nε in the EREW -PRAM .

That is, to achieve cost optimality, there must be d
horizontal lines such that each line must pass through
more than n

1
2 points in average, what is unlikely in

most cases. Besides, the parameter d does not repre-
sent the substantial complexity of the problem.

In this paper we present a new EP parallel algo-
rithm for computing the convex layers of a set S of n
points. Let k be the number of the convex layers of S.
When 1 ≤ k ≤ n

ε
2 (0 ≤ ε < 1) our algorithm runs in

O(n log n
p ) time using p processors, where 1 ≤ p ≤ n

1−ε
2 ,

in the CREW -PRAM , and it is cost optimal.
As the number of layers never exceeds the number

of horizontal lines in which the input points lie, i.e.
k ≤ d, the problem considered by Fujiwara et al. [5]
which have been proved to be P -complete when d ≤
nδ (0 < δ ≤ 1

2 ), can be reduced to the convex layers
problem we consider here. Thus, when 1 ≤ k ≤ n

ε
2

(0 ≤ ε < 1) the problem of finding the convex layers of
S is also P -complete.

The second problem considered here is the enve-
lope layers problem. The envelope layers of a set of
(opaque) line segments are analogous to the convex lay-
ers of a set of points, with convex hulls replaced by up-
per envelopes. The upper envelope of a set of line seg-
ments in the plane is the collection of segment portions
visible from the point (0,+∞). To find the envelope
layers, we repeatedly compute the upper envelope of
the set and discard the segments that appear on it (if
any piece of a segment appears on the envelope, we dis-
card the whole segment). The envelope layers problem
is to label each segment with the iteration number at

which it appears on the envelope.
Let S be a set of n (opaque) line segments in the

plane. Hershberger [7] gave an O(nα(n) log2 n) algo-
rithm for computing the envelope layers of S, where
α(n) is the functional inverse of Ackermann’s function
which grows extremely slowly. Hershberger [7] also
proved that the problem of finding envelope layers is
P -complete.

Here, we also give an algorithm for the envelope
layers problem. Let k be the number of envelope layers
of S. When 0 ≤ k ≤ n

ε
2 (0 ≤ ε < 1) our algorithm

runs in O(nα(n) log3 n
p ) time using p processors, where

1 ≤ p ≤ n
1−ε
2 , in the CREW -PRAM . If we ignore a

factor of logn our algorithm belongs to the class EP .
The problem of finding the envelope layers of lines,

which is dual to the convex layers problem, can be re-
duced to the problem of finding the envelope layers of
line segments. Thus, when 1 ≤ k ≤ n

ε
2 (0 ≤ ε < 1)

the problem of computing envelope layers of S is also
P -complete.

This paper is organized as follows. Section 2 states
the definitions of the problems. In Sect. 3 we give a cost
optimal parallel algorithm for constructing the convex
layers. Section 4 shows an algorithm for computing the
envelope layers. Some conclusions are given in Sect. 5.

2. Preliminaries

Definition 1 (Convex hull of points): Let S be a set
of n points in the Euclidean plane. The convex hull of
S, denoted as CH(S) = (p1, p2, . . . , pm) (m ≤ n) where
p1 is the rightmost vertex of CH(S), is the smallest
convex polygon that contains all the points of S. ✷

Definition 2 (Convex layers problem): Let S be a
set of n points in the Euclidean plane. The con-
vex layers of S, denoted as CL(S), consists of a se-
quence of convex hulls, (CL1(S), CL2(S), . . . , CLk(S))
(1 ≤ k ≤ n), which satisfies the following two condi-
tions:
(1) P (CL1(S)) ∪ P (CL2(S)) ∪ . . . ∪ P (CLk(S)) = S,
where P (CLi(S)) (1 ≤ i ≤ k) denotes the set of the
vertices of CLi(S);
(2) Each CLi(S) (1 ≤ i ≤ k) is a convex hull of a set
of points P (CLi(S))∪P (CLi+1(S))∪ . . .∪P (CLk(S)),
which is referred to as the ith convex layer of S. ✷

The size of CL(S) is defined to be the total number
of the vertices in CL1(S), CL2(S), . . . , CLk(S), which
is obviously O(n).

Definition 3 (Upper envelope): Let S be a set of n
(opaque) line segments in the plane. The upper enve-
lope of S is the collection of segment portions visible
from the point (0,+∞). ✷

The size of an upper envelope is defined to be the
number of distinct pieces of segments that appear on it.
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The size of the upper envelope of a set of n line segments
is Θ(nα(n)), where α(n) is the functional inverse of
Ackermann’s function which grows extremely slowly [6].

Definition 4 (Envelope layers problem): Let S be a
set of n (opaque) line segments in the plane. The en-
velope layers of S, denoted as EL(S), consists of a
sequence of upper envelopes, (EL1(S), EL2(S), . . . ,
ELk(S)) (1 ≤ k ≤ n), which satisfies the following two
conditions:
(1) L(EL1(S)) ∪ L(EL2(S)) ∪ . . . ∪ L(ELk(S)) = S,
where L(ELi(S)) (1 ≤ i ≤ k) denotes the set of the
line segments that appear on ELi(S);
(2) Each ELi(S) (1 ≤ i ≤ k) is the upper envelope of a
set of line segments L(ELi(S)) ∪ L(ELi+1(S)) ∪ . . . ∪
L(ELk(S)), which is called as the ith envelope layer of
S. ✷

The size of EL(S) is defined to be the total size of
EL1(S), EL2(S), . . . , ELk(S), which is O(nα(n)) [7].

Let S1 and S2 be two sets of line segments. We say
that sets S1 and S2 are separated if the x-coordinate
of the rightmost endpoint of S1 is smaller than or equal
to the x-coordinate of the leftmost endpoint of S2.

3. The Convex Layers Problem

3.1 The 2-3 Tree for Supporting Operations on the
Convex Layers

When solving the convex layers problem we use a bal-
anced tree, say a 2-3 tree, to support the operations on
the convex layers. A 2-3 tree is a rooted tree in which
each internal node has two or three children. Every
path from the root to a leaf is of same length. There-
fore, if the number of leaves is n, the height of the tree
is Θ(log n).

Let P be a convex polygon of n vertices, and let
(p1, p2, . . . , pn) denote the sequence of vertices of P
listed counterclockwise, where p1 is the rightmost ver-
tex of P . Let ei (1 ≤ i ≤ n) be the edge of P whose
endpoints are pi and pi+1 (pn+1 = p1), and let si de-
note the slope of edge ei. Let pr = p1 and pl denote the
rightmost and leftmost points of P , respectively. The
line passing through points pr and pl divides P into
two parts: the upper part UP (P ) = (p1, p2, . . . , pl) and
the lower part LP (P ) = (pl, pl+1, . . . , pn, p1). We store
the upper part of P in a 2-3 tree as follows (Fig. 1).
The lower part is stored in another 2-3 tree similarly.
The pairs (e1, s1), (e2, s2), . . . , (el−1, sl−1) are placed at
the leaves in a left-to-right order. Since P is convex, it
holds that si < si+1. Each internal node v holds three
data items, L[v], M [v] and R[v], where L[v], M [v] and
R[v] are the pairs (ex, sx), (ey, sy) and (ez, sz) with the
largest slope sx, sy, and sz, stored in the first (left-
most), the second, and the third (rightmost) subtrees
of v, respectively. If v does no have the third subtree
then R[v] is empty.

Fig. 1 A convex polygon and the 2-3 tree storing its upper
part.

Fig. 2 Inserting a sequence F of contiguous edges in a convex
layer P into a convex layer Q.

In our algorithm for finding convex layers, the fol-
lowing operations are performed on the 2-3 tree: (I)
storing a convex layer whose vertices are taken from
the points of S, (II) searching for an edge of a convex
layer, (III) finding the common tangents of two convex
layers, (IV) deleting a set of contiguous edges from a
convex layer, and finally (V) given two convex polygons
P and Q and a set F of contiguous edges in P , insert-
ing F into Q, where P , Q and F satisfy the following
condition: assuming that Q′ is the polygon consisting
of the vertices of Q and F , then Q′ is convex, and the
vertices of F lie contiguously in Q′ (Fig. 2).

For a convex layer with n elements, operation (I)
can be done in O(logn) time using n processors, and
operation (II) can be done in O(logn) time using a
single processor as well [8]. For two convex polygons
with n vertices each one, operation (III) can be done
in O(logn) time using a single processor [10]. In the
following we consider operations (IV) and (V).

Let us consider the following two lemmas which
are necessary to describe operations (IV) and (V).

Lemma 1: Let T1 and T2 be two 2-3 trees of
height h1 and h2 respectively, where (s1, s2, . . . , sf )
and (t1, t2, . . . , tg) are the elements stored in the
leaves of T1 and T2 respectively, and s1 ≤ s2 ≤
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. . . ≤ sf ≤ t1 ≤ t2,≤ . . . ≤ tg. Constructing
a 2-3 tree T storing (s1, s2, . . . , sf , t1, t2, . . . , tg), de-
noted by merge((T1, T2;h1, h2) : T ), can be done in
O(max{h1, h2} −min{h1, h2}+ 1) sequentially.
Proof: Without loss of generality we assume h1 ≥ h2.
From the condition that s1 ≤ . . . ≤ sf ≤ t1 ≤ . . . ≤ tg,
T can be constructed by inserting all leaves of T2 to the
right side of the rightmost leaf of T1. This can be easily
done by considering the root of T2 as a rightmost leaf
to be inserted into T1 at height h2. Such insertion can
be done in O(h2−h1+1) time sequentially [1]. Thus, T
can be constructed in O(max{h1, h2}−min{h1, h2}+1)
time sequentially. ✷

Lemma 2: Let T be a 2-3 tree of height h and let
(t1, t2 . . . , tl) be a sequence of contiguous leaves in T .
the operation of constructing a 2-3 tree T ′ storing
(t1, t2 . . . , tl), denoted by build((T, h, (t1, t2 . . . , tl)) :
T ′), can be done in O(h) time sequentially.

Proof: Let FR = (T1, T2, . . . , Tk) (k ≤ l) be the for-
est consisting of the largest subtrees of T whose leaves
store only the elements of (t1, t2 . . . , tl). FR can be con-
structed from T in O(h) time sequentially and it holds
that k = O(h). T ′ can be obtained by constructing the
2-3 tree of FR as follows.

Let Tg (1 ≤ g ≤ k) be the highest tree in FR.
From the fact that (t1, t2 . . . , tl) are contiguous leaves
in T then h1 ≤ h2 ≤ . . . ≤ hg−1 < hg and hg ≥ hg+1 ≥
. . . ≥ hk where hi denotes the height of tree Ti in FR
(1 ≤ i ≤ k). Tg divides FR into two sub-forests, say
FR′ and FR′′ such that the trees in FR′ and FR′′

are listed, respectively, in an increasing and decreasing
order of height from left to right (Fig. 3). If g = 1 let
FR′ be empty and let FR′′ = FR, otherwise let FR′ =
(T1, T2, . . . , Tg−1) and FR′′ = (Tg, Tg+1, . . . , Tk).

We can obtain T ′ in two steps:
(i) First we construct the 2-3 tree of FR′′, that is,

merge Tg, Tg+1, . . . , Tk into Tg as follows. Sequentially
from i = k − 1 down to g we perform the operation
merge((Ti, Ti+1;hi, hi+1) : Ti).

(ii) Then we merge the trees of FR′ and Tg as
follows. Sequentially from i = 1 to g − 1 we perform
the operation merge((Ti, Ti+1;hi, hi+1) : Ti+1), and let
T ′ be Tg.

From Lemma 1 step (i) takes O((hg − hg+1 + 1)+

Fig. 3 The forest FR.

(hg+1−hg+2+1)+ . . .+(hk−1−hk+1)) = O(max{hg−
hk+1, k−g+1}) time, and step (ii) takes O((h2−h1+
1)+(h3−h2+1)+ . . .+(hg−hg−1+1)) = O(max{hg−
h1+1, g}) time. Thus, the total time to construct T ′ is
O((max{hg−hk+1, k−g+1})+(max{hg−h1+1, g}))
= O(max{hg −min{h1, hk}+ 1, k + 1}) = O(h). ✷

Now let us consider operation (IV). We show that
deleting a set of contiguous edges from a convex layer
with n vertices can be done in O(logn) time sequen-
tially.

Contiguous edges of a convex layer are stored
in the leaves of a 2-3 tree contiguously. Let
P = (p1, p2, . . . , pn) be a convex layer and
G = (g1, g2, . . . , gm) (1 ≤ m < n) be a set of con-
tiguous vertices in P listed counterclockwise, such that
g and g′ are the vertices of P located immediately be-
fore and after G, respectively. Let BT1[P ] and BT2[P ]
denote, respectively, the two 2-3 trees storing UP (P )
and LP (P ). For simplicity let us assume that all edges
of G belong to the upper part of P , UP (P ). If we delete
the edges of G from P , BT1[P ] has to be updated, that
is, all the edges (gi, gi+1) (1 ≤ i ≤ m− 1) of G must be
deleted from BT1[P ], and a new edge connecting g1 to
gm has to be inserted in BT1[P ].

We update BT1[P ] as follows. BT1[P ] − H
consists of at most two parts of consecutive leaves
of BT1[P ]. Let Gl and Gr be the consecutive
leaves of BT1[P ] located to the left and right, re-
spectively, of the leaves storing the edges of G
(Fig. 4). Then we construct the 2-3 trees of Gl

and Gr by build((BT1[P ], h(BT1[P ]), Gl) : Tl) and
build((BT1[P ], h(BT1[P ]), Gr) : Tr) respectively, where
h(BT1[P ]) denotes the height of BT1[P ]. This can
be done in O(logn) time from Lemma 2. Finally by
merge((Tl, Tr;h(Tl), h(Tr)) : BT1[P ]) we merge Tl and
Tr in O(logn) time from Lemma 1, where h(Tl) and
h(Tr) denotes the height of Tl and Tr respectively.

The new edge connecting g1 to gm can be inserted
into BT1[P ] in O(logn) time sequentially [1]. There-
fore, deleting G from P can be done in O(logn) time
sequentially.

Now let us consider operation (V) which inserts
a set F of contiguous edges in a convex layer P into
a convex layer Q. For simplicity we assume that the

Fig. 4 G, Gl and Gr in BT1[P ].
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edges of F belong to UP (P ), and will be inserted
into UP (Q). Let BT1[P ] and BT1[Q] be the two 2-
3 trees storing UP (P ) and UP (Q) respectively. First
we construct the 2-3 tree of F , denoted as T [F ], by
build((BT1[P ], h(BT1[P ]), F ) : T [F ]) in O(logn) time
from Lemma 2. Then we delete F from BT1[P ] in
O(logn) time by using operation (IV) explained above.

If F has to be inserted before the left-
most leaf of BT1[Q] then we directly perform
merge((T [F ], BT1[Q];h(T [F ]), h(BT1[Q])) : BT1[Q]),
where h(T [F ]) and h(BT1[P ]) denotes the height of
T [F ] and BT1[P ] respectively. Otherwise, if F has
to be inserted after the rightmost leaf of BT1[Q] then
we directly perform merge((BT1[Q], T [F ];h(BT1[Q]),
h(T [F ])) : BT1[Q]). In both cases the merging process
can be done in O(logn) time from Lemma 1.

Now assume that F has to be inserted between two
consecutive leaves of BT1[Q], say e and e′. Leaves e and
e′ divide BT1[Q] into two parts of contiguous leaves.
Let Ql be the consecutive leaves of BT1[Q] located to
the left of e inclusive, and Qr be the consecutive leaves
of BT1[Q] located to the right of e′ inclusive. Then we
construct the new BT1[Q] containing F in three steps
as follows.

(i) We construct the 2-3 trees of Ql and
Qr by build((BT1[Q], h(BT1[Q]), Ql) : Tl) and
build((BT1[Q], h(BT1[Q]), Qr) : Tr) respectively, where
h(BT1[Q]) denotes the height of BT1[Q].

(ii) By merge((Tl, T [F ];h(Tl), h(T [F ])) : Tl) we
merge Tl and T [F ], where h(Tl) and h(T [F ]) denote
the height of Tl and T [F ] respectively.

(iii) Finally we obtain the new BT1[Q] by merg-
ing Tl (updated in (ii)) and Tr by merge((Tl, Tr;h(Tl),
h(Tr)) : BT1[Q]).

Step (i) can be done in O(logn) time from
Lemma 2. Steps (ii) and (iii) can be done in O(logn)
time from Lemma 1. Thus, operation (V) can be done
in O(logn) time sequentially.

3.2 Outline of the Algorithm

Let S be a set of n points in the Euclidean plane.
We sort S by its x-coordinates, which can be done in
O(logn) time using n processors [8]. Let k be the num-
ber of the convex layers of S and ε (0 ≤ ε < 1) be
a constant. When 1 ≤ k ≤ n

ε
2 holds, the following

algorithm computes the set of convex layers of S in
O(n log n

p ) time using p processors, 1 ≤ p ≤ n
1−ε
2 .

Algorithm ComputeCL(S)

[Input] A set S = (p1, p2, . . ., pn) of n points in
the Euclidean plane sorted by their x-coordinates.
[Output] A set CL(S) = (CL1(S), CL2(S), . . . ,
CLk(S)) (1 ≤ k ≤ n) of the convex layers of S,
where CLi(S) (1 ≤ i ≤ k) is the ith convex layer
of S.

(Step 1) Divide S into S1, S2, . . . , S
n

1−ε
2
subsets

such that Si (1 ≤ i ≤ n
1−ε
2 ) contains n

1+ε
2 points

and the x-coordinate of any point of Si is less than
the x-coordinate of any point of Si+1.
(Step 2) In parallel, for each subset Si (1 ≤ i ≤
n

1−ε
2 ) compute the convex layers of Si, denoted

as CL(Si) = (CL1(Si), CL2(Si), . . . , CLki
(Si)) by

Chazelle’s sequential algorithm, where ki is the
number of layers in Si. Store each CLj(Si)
(1 ≤ j ≤ ki) (1 ≤ i ≤ n

1−ε
2 ) in two 2-3

trees, denoted as BT1[CLj(Si)] and BT2[CLj(Si)],
as stated in Sect. 3.1, that is, BT1[CLj(Si)] for the
upper part and BT2[CLj(Si)] for the lower part of
the convex layer.
(Step 3) Let S′ = S and for each i (1 ≤ i ≤ n

1−ε
2 )

let S′
i = Si. Let x = 1. While S′ is not empty,

find CLx(S), that is, the xth convex layer of S,
repeatedly as follows.

(a). Find the convex hull of the outermost
layers of S′

1, S
′
2, . . . , S

′
n

1−ε
2
, which obviously is

CLx(S).
(b). Revise S′ and S′

i (1 ≤ i ≤ n
1−ε
2 ).

(i). Delete the vertices of CLx(S) from
S′.
(ii). For each i (1 ≤ i ≤ n

1−ε
2 ) in paral-

lel, delete the vertices of CLx(S) from S′
i.

Then reconstruct the convex layers of S′
i

on the 2-3 trees.

(c). Set x = x + 1. While S′ is not empty
return to (a).

✷

Obviously, in the above algorithm, Step 1 can
be executed in O(1) time using n processors if S is
stored in an array. In Step 2, the size of Si is n

1+ε
2

(1 ≤ i ≤ n
1−ε
2 ). The convex layers of each subset

Si, CL(Si) = (CL1(Si), CL2(Si), . . . , CLki
(Si)), can

be computed by the known Chazelle’s sequential al-
gorithm [2] in O(n

1+ε
2 logn) time. Therefore, all the

convex layers of S1, S2, . . . , S
n

1−ε
2
can be computed in

O(n
1+ε
2 logn) time using n

1−ε
2 processors. Then we

store each CLj(Si) (1 ≤ j ≤ ki) (1 ≤ i ≤ n
1−ε
2 ) in two

balanced trees BT1[CLj(Si)] and BT2[CLj(Si)], that
is, BT1[CLj(Si)] for the upper part and BT2[CLj(Si)]
for the lower part of the convex layer. This can be
done in O(log |Si|) time using |Si| processors as stated
in Sect. 2. That is, all the layers of all Si can be stored
in O(logn) time using n processors.

Now let us consider Step 3. The convex layers of S,
CL(S) = (CL1(S), CL2(S), . . . , CLk(S)) (1 ≤ k ≤ n),
is constructed repeatedly in Step 3. After CLx(S)
(1 ≤ x ≤ k − 1) is computed in Step 3(a), S′ and
S′

i (1 ≤ i ≤ n
1+ε
2 ) must be revised in Step 3(b)(i)

and Step 3(b)(ii), respectively, by deleting its points
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that appear as vertices of CLx(S), and then the con-
vex layers of each revised S′

i must be reconstructed in
Step 3(b)(ii).

Let S be stored in an array. Step 3(b)(i) can
be easily done in O(1) time using n processors. In
Sect. 3.3 we show that Step 3(a) can be done in
O(logn) time using O(n1−ε) processors. In Sect. 3.4
we show that Step 3(b)(ii) can be done in O(k logn)
time using O(n

1−ε
2 ) processors. Since the instruc-

tions of Step 3 are repeated k times, where k is
the number of convex layers of S, Step 3 takes to-
tally O(k2 log n) time using O(n

1−ε
2 ) processors. The

whole algorithm ComputeCL(S) can be executed in
O(max(n

1+ε
2 logn, k2 logn)) time using n

1−ε
2 proces-

sors. Thus by using p processors, where 1 ≤ p ≤ n
1−ε
2 ,

it takes O(max(n log n
p , n

1−ε
2 k2 log n

p )) time. Therefore,
when 1 ≤ k ≤ n

ε
2 (0 ≤ ε < 1), the algorithm

ComputeCL(S) is cost optimal and runs in O(n log n
p )

time using p processors, where 1 ≤ p ≤ n
1−ε
2 .

Theorem 1: Let ε (0 ≤ ε < 1) be a con-
stant. Algorithm ComputeCL(S) computes the con-
vex layers of a set S of n points in the plane in

O(max(n log n
p , n

1−ε
2 k2 log n

p )) time using p processors,

where 1 ≤ p ≤ n
1−ε
2 . ✷

Corollary 1: Let k be the number of the convex lay-
ers of S. When 1 ≤ k ≤ n

ε
2 (0 ≤ ε < 1) the convex

layers of S can be computed optimally inO(n log n
p ) time

using p processors, where 1 ≤ p ≤ n
1−ε
2 , in the CREW -

PRAM . ✷

3.3 Constructing the Outermost Convex Layer

In this section, we explain how to find the convex hull
of the outermost layers of S′

1, S
′
2, . . . S

′
n

1−ε
2
(Step 3(a)

of the algorithm ComputeCL). We call the upper
part and the lower part of a convex hull as the up-
per hull and lower hull, respectively. Let OLi be the
outermost convex layer of S′

i, that is OLi = CL1(S′
i)

(1 ≤ i ≤ n
1−ε
2 ). We compute the upper hull of

OL1, . . . , OL
n

1−ε
2
, denoted as UH, as follows. The

lower hull LH of OL1, . . . , OL
n

1−ε
2
can be computed

similarly.

Procedure UHull (OL1, . . . , OL
n

1−ε
2
)

(Step 1) For any pair of i, j (1 ≤ i < j ≤ n
1−ε
2 )

find Tij , the common tangent of OLi and OLj , in
parallel. Let Tij = (lij , rij), meaning that points
lij and rij are the left and right endpoints of Tij ,
respectively.
(Step 2) For each OLi we now have n

1−ε
2 − 1 in-

cident tangents. The tangents can be partitioned

Fig. 5 Finding the upper common tangents.

into two subsets: one for which the tangents are
incident to OLi from the left, and the other for
tangents incident from the right (Fig. 5). Among
the first subset we find the tangent, let us call it
Li, which lies uppermost, that is, with the smallest
slope. Similarly, among the second subset we find
the tangent Ri, which lies uppermost, that is, with
the largest slope. Notice that L1 and R

n
1−ε
2
do

not exist because OL1 and OL
n

1−ε
2
are the respec-

tive leftmost and rightmost ones among all OLi

(1 ≤ i ≤ n
1−ε
2 ).

(Step 3) For 2 ≤ i ≤ n
1−ε
2 − 1, let Li = (l, li)

and Ri = (ri, r), where li and ri refer to points
belonging to OLi, and l and r refer to points be-
longing to convex layers lying left and right of OLi

respectively (Fig. 5). If the point ri lies to the left
of the point li, that is, if ri < li, then no point of
OLi belongs to UH. Otherwise, the points of OLi

located counterclockwise between ri and li, inclu-
sive, belong to UH. For i = 1 let the points of
OL1 located counterclockwise between r1 and the
leftmost point of OL1 inclusive, belong to U . For
i = n

1−ε
2 let the points of OL

n
1−ε
2
located counter-

clockwise between the rightmost point of OL
n

1−ε
2

and r
n

1−ε
2
inclusive, belong to UH. ✷

Now let us consider the computational complex-
ity of procedure UHull(OL1, . . . , OL

n
1−ε
2
). As men-

tioned in Sect. 3.1 the tangent of two convex layers can
be found in O(logn) time sequentially [10]. Therefore,
Step 1 can be done in O(logn) time using n1−ε proces-
sors. In Step 2 finding Li and Ri for each OLi can be
done by using the maxima finding algorithm. As OLi

(1 ≤ i ≤ n
1−ε
2 ) is stored in a 2-3 tree, and the number

of incident tangents in each OLi is less than n
1−ε
2 , find-

ing Li and Ri requires O(logn
1−ε
2 ) = O(logn) time and

O(n
1−ε
2 ) processors. Thus, all Li and Ri can be found

in O(logn) time using n1−ε processors. In Step 3, the
part of OLi (1 ≤ i ≤ n

1−ε
2 ) which belongs to UH can be

found in constant time using n
1−ε
2 processors. There-

fore, the procedure UHull(OL1, . . . , OL
n

1−ε
2
) can be

done in O(logn) time using O(n1−ε) processors.
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Fig. 6 Reconstructing the convex layers.

3.4 Reconstructing the Convex Layers

Let Q be a set of n points and CL(Q) = (CL1(Q),
CL2(Q), . . . , CLh(Q)) (1 ≤ h ≤ n) be the convex layers
of Q, where CLi(Q) (1 ≤ i ≤ h) is the ith convex layer
of Q, and h is the number of the layers of Q. Let each
convex layer of Q be stored in two 2-3 trees as explained
in Sect. 3.1.

Let F1 and F2 be two contiguous sub-polygonal
chains of CL1(Q), such that F1 and F2 have no common
parts (Fig. 6(i)). Suppose we want to delete the points
of F1 and F2 from Q and reconstruct the convex layers
Q. If F1 ∪ F2 = CL1(Q), that is, F1 and F2 consist of
all the points of CL1(Q), then we just delete the points
of F1 and F2 from Q, delete CL1(Q) from CL(Q), and
no reconstruction needs to take place. Otherwise, we
revise Q and its convex layers as follows. As F1 and F2

share no common parts we can delete both of them at
the same time and reconstruct the convex layers of Q.
In order to simplify the explanation, in the following
we show how to reconstruct the the convex layers of
Q after deleting F1. The procedure for deleting F2 is
similar.

Let Q′ be the set obtained by deleting the points of
F1 from Q. We reconstruct the convex layers CL(Q′) =
(CL1(Q′), CL2(Q′), . . . , CLh′(Q′)), where h′ ≤ h is
the number of convex layers of Q′, based on the convex
layers of CL(Q). It is easily seen that the points of
CLl(Q′) (1 ≤ l ≤ h′) come from the points of CLl(Q),
or CLl(Q) and CLl+1(Q) (see Fig. 6(i) where the layers
CL1(Q), CL2(Q), and CL3(Q), are drawn with thick
lines and Fig. 6(ii) where the layers CL1(Q′), CL2(Q′),
and CL3(Q′), are drawn with dotted lines).

Fig. 7 Finding CLj(Q
′).

We construct CL(Q′) from CL1(Q′) to CLh′(Q′)
repeatedly. Assuming that we have found CL1(Q′),
CL2(Q′), . . . , CLj−1(Q′) (1 ≤ j ≤ h′ − 1) we find
CLj(Q′) as follows. Let G = (g1, g2, . . . , gv) con-
sist of the points of CLj(Q) which do not belong to
CLj−1(Q′) (F1 when j = 1) listed in counterclockwise.
If CLj+1(Q) lies completely inside the convex polygon
G, then CLj(Q′) = G (Fig. 7(i)). Else, CLj(Q′) con-
sists of not only the points of G but also some points of
CLj+1(Q). To find these points of CLj+1(Q), we draw
the tangents from the endpoints of G into CLj+1(Q)
(Fig. 7(ii)). The points of CLj+1(Q) intersected by the
tangents will determine a sub-chain of CLj+1(Q) that
will become the part of CLj(Q′) (see Fig. 7(ii)). To
construct CLj(Q′), we first delete the vertices which
do not belong to CLj(Q′) from CLj+1(Q) (these ver-
tices are contiguous in CLj+1(Q)). Then by inserting
G into CLj+1(Q), we get CLj(Q′).

Since the layers are stored in 2-3 trees, the tan-
gents from the endpoints of G into CLj+1(Q) can be
found in O(logn) time sequentially [10]. By using
the operations (IV) and (V) stated in Sect. 3.1, the
2-3 trees storing CLj(Q) can be updated to the ones
storing CLj(Q′) in O(logn) time sequentially. Since
we find CLi(Q′) repeatedly from i = 1 to i = h′,
CL(Q′) = (CL1(Q′), CL2(Q′), . . . , CLh′(Q′)) can be
found in O(h′ log n) = O(h logn) time sequentially.

Now let us go back to Step 3(b)(ii) of the al-
gorithm ComputeCL in Sect. 3.2, where for each i

(1 ≤ i ≤ n
1−ε
2 ) in parallel, we delete the vertices of

CLx(S) from S′
i, and then reconstruct the convex lay-

ers of S′
i. The vertices of CLx(S) which belong to S′

i

form two (or one) contiguous subchains in CLx(S), de-
noted as F ′

1 and F
′
2 respectively. Let k

′
i be the number
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of layers in S′
i. Considering S

′
i as Q, F

′
1 and F ′

2 as F1

and F2 respectively, and k′i as h, we can reconstruct
the convex layers of S′

i as above. Therefore, each S
′
i

can be processed in O(k′i logn) time sequentially. As
the ith convex layer of S never contains the points of
the jth (j > i) convex layer of S′

i then k
′
i ≤ k, where

k is the number of convex layers of S. Therefore, all
S′

i (1 ≤ i ≤ n
1−ε
2 ) can be processed in O(k logn) time

using n
1−ε
2 processors.

4. The Envelope Layers Algorithm

Let S be a set of n (opaque) line segments in the
plane. Our algorithm for computing the set of enve-
lope layers of S, is basically as follows. First we use
a segment tree to divide S into m = O(logn) groups,
G1, G2, . . . , Gm, and reduce the envelope layers prob-
lem of Gi (1 ≤ i ≤ m) into the convex layers problem
of points in the plane. Next, we find the envelope lay-
ers of Gi (1 ≤ i ≤ m) by our algorithm for the convex
layers given in Sect. 3. Then we cut the envelope layers
of all groups G1, G2, . . . , Gm by n

1−ε
2 vertical lines into

n
1−ε
2 separate groups H1, H2, . . . , H

n
1−ε
2
, and for each

i (1 ≤ i ≤ n
1−ε
2 ) in parallel, we compute the envelope

layers of Hi, by Hershberger’s sequential algorithm [7].
Finally, we concatenate the envelope layers of all Hi

from i = 1 to n
1−ε
2 into the envelope layers of S.

4.1 The Segment Tree to Divide Segments

Let S be a set of n line segments. The plane can be
partitioned into slabs by drawing vertical lines through
all the segments endpoints. This can be accomplished
by sorting the endpoints of the segments in S by x-
coordinates in increasing order, and then partitioning
the x-axis by the x coordinates of the endpoints into
2n+1 slabs. The segment tree of S, denoted as ST (S),
is built as follows [11] (Fig. 8):

(i) Construct a complete binary tree with 2n
leaves. (We assume that 2n is a power of two,

Fig. 8 The segment tree ST (S).

if not add some dummy leaves.)
(ii) Let each leaf of ST (S) represent one slab taken
in left-to-right order, and each internal node rep-
resent the union of its descendants’ slabs. Each
region associated with a node, whether an original
slab or a union of them, is a canonical slab.
(iii) In a top-down fashion, that is, descending from
the root to the leaves, associate with each node
v ∈ ST (S) a subset S[v] of S, where S[v] consists
of the segments or subsegments of S that have its
endpoints on the boundary of the canonical slab
represented by node v, which have not been asso-
ciated with any of v’s ancestors in ST (S).

It can be seen from step (iii) that for each segment
in S, at most two subsegments may appear in one level
of the segment tree ST (S). Thus, every segment is
decomposed into at most 2 logn + 1 = O(logn) sub-
segments, each with its endpoints on the boundary of
some canonical slab.

Property 1: [7] The segment tree ST (S) divides set
S into 4n− 1 subsets which satisfy the following prop-
erty: for any two nodes x and y on the same level of
ST (S), the subsets associated with nodes x and y are
separated. ✷

The segment tree ST (S) can be constructed in
O(logn) time using O(n) processors, by slightly modi-
fying the algorithm of Chen et al. [3].

Let i (1 ≤ i ≤ logn + 1) denote each the level
of ST , such that root is located at level i = 1 and
the leaves at level i = logn + 1. On each level
i of ST (S), let the nodes be numbered from 1 to
gi(= 2i−1). We define group Gi = (L1

i , L
2
i , . . . , L

gi

i ),
where Lj

i (1 ≤ j ≤ gi) is the set associated with
node j on level i of ST (S). Therefore, the n seg-
ments of S are divided into O(n logn) subsegments
which belong to m = O(logn) groups, G1, G2, . . . , Gm

(Fig. 8). Obviously group Gi (1 ≤ i ≤ m) has O(n)
subsegments. From Property 1, for each group Gi,
EL(L1

i ), EL(L
2
i ), . . . , EL(L

gi

i ) are separated from each
other.

Given i and j, let us consider the property of Lj
i .

In Lj
i , the right endpoints of all the segments have the

same x-coordinates, and the left endpoints also have
the same x-coordinates. This implies that Lj

i can be
considered as a set of lines. From the duality of points
and lines, finding the envelope layers of n lines can be
reduced into finding the convex layers of n points in the
plane. Since the size of the convex layers of n points
is O(n), the size of EL(Lj

i ) is O(|L
j
i |) segments. We

summarize the above property as follows.

Property 2: (i) Given i and j, (1 ≤ i ≤ m,

1 ≤ j ≤ gi), EL(L
j
i ) can be found by comput-

ing CL(Lj
i ). (ii) the size of the envelope layers of each

subset Lj
i , i.e. |EL(L

j
i )|, is O(|L

j
i |) segments, the size of
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the envelope layers of all subsets in each group Gi, i.e.∑gi

j=1 |EL(L
j
i )| = O(|Gi|), is O(n) segments, and the

size of the envelope layers of all groups G1, G2, . . . , Gm,
i.e.

∑m
i=1

∑gi

j=1 |EL(L
j
i )| = O(

∑m
i=1 |Gi|), is O(n logn)

segments. ✷

4.2 The Outline of the Algorithm

Let S be a set of n (opaque) line segments in the plane.
Let k be the number of the envelope layer of S, and
let ε (0 ≤ ε < 1) be a constant. When 1 ≤ k ≤ n

ε
2

the following algorithm computes the envelope layers
of S in O(nα(n) log3 n

p ) time using p processors, where

1 ≤ p ≤ n
1−ε
2 .

Algorithm ComputeEL(S)

[Input] A set S of n (opaque) line segments in the
plane.
[Output] A set EL(S) = (EL1(S), EL2(S), . . . ,
ELk(S)) (1 ≤ k ≤ n) of the envelope layers of
S, where k is the number of layers, and ELi(S)
(1 ≤ i ≤ k) is the ith envelope layer of S.
(Step 1) Use a segment tree, denoted as ST (S),
which has m = O(logn) levels, to divide the n seg-
ments of S into O(n logn) subsegments which be-
long tom groups, say G1, G2, . . . , Gm, where group
Gi (1 ≤ i ≤ m) corresponds to the subsegments as-
sociated on level i of ST (S) (Fig. 8). We reduce the
envelope layers problem of Gi to the convex layers
problem of O(|Gi|) points in the plane.
(Step 2) For each i (1 ≤ i ≤ m) in parallel, find
EL(Gi) the envelope layers of Gi by using our al-
gorithm for the convex layers.
(Step 3) Cut the envelope layers of all G1, . . . , Gm,
i.e. EL(G1), . . . , EL(Gm), by n

1−ε
2 vertical lines

into n
1−ε
2 separate groups H1, H2, . . . , H

n
1−ε
2

(Fig. 9). Then, for each i (1 ≤ i ≤ n
1−ε
2 )

in parallel, compute the envelope layers of Hi,
EL(Hi) = (EL1(Hi), EL2(Hi), . . . , ELhi

(Hi)),
where hi is the number of layers in Hi, by Hersh-
berger’s sequential algorithm [7].
(Step 4) Let k = max(h1, h2, . . . , h

n
1−ε
2
). Obtain

ELt(S) (1 ≤ t ≤ k), i.e. the tth envelope layer
of S, by concatenating ELt(H1), ELt(H2), . . . ,
ELt(H

n
1−ε
2
) (ELt(Hi) is empty if t > hi).

✷

In Sect. 4.1 we have shown that Step 1 can be
done in O(logn) time using n processors. It was also
shown that the envelope layers problem of Gi can
be reduced to the convex layers problem of O(|Gi|)
points in the plane. In Sect. 4.3 we show that when
1 ≤ k ≤ n

ε
2 (0 ≤ ε < 1), Step 2 can be done in

O(n log2 n
p ) time using p processors, where 1 ≤ p ≤

Fig. 9 Cutting the envelope layers of G1, . . . , Gm by n
1−ε
2

vertical lines into n
1−ε
2 parts.

n
1−ε
2 . Finally, in Sect. 4.4 we show that when 1 ≤

k ≤ n
ε
2 (0 ≤ ε < 1) EL(S) can be constructed from

EL(G1), EL(G2), . . . , EL(Gm) (Step 3 and Step 4), in
O(nα(n) log3 n

p ) time using p processors, where 1 ≤ p ≤
n

1−ε
2 .

Theorem 2: Let k be the number of the envelope
layers of a set S of n (opaque) line segments. When
1 ≤ k ≤ n

ε
2 (0 ≤ ε < 1) the envelope layers problem of

S can be solved in O(nα(n) log3 n
p ) time using p proces-

sors, where 1 ≤ p ≤ n
1−ε
2 . ✷

4.3 Constructing the Layers of Each Group

In Step 2, we compute the convex layers of
Gi = (L1

i , L
2
i , . . . , L

gi

i ) for each i (1 ≤ i ≤ m),
which consists of two subtasks. First we find
EL(L1

i ), EL(L
2
i ), . . . , EL(L

gi

i ). Then we concatenate
EL(Lj

i ) from j = 1 to j = gi into the envelope layers
of Gi (Fig. 10). The details of these two subtasks are
given below.

From Property 2(i) we use the algorithm
ComputeCL in parallel, in Step 2, to find the enve-
lope layers of Lj

i . Now we show how this can be ac-
complished having p processors available. Recall that
from Step 1 the total number of subsegments of all sub-
sets Lj

i is O(n logn). Then in Step 2 each processor is
responsible for processing n log n

p subsegments. As the
size of Lj

i may be larger or smaller than
n log n

p , we may
need to assign more than one processor to process it,
or assign several of them to one processor. Let lji be
the number of subsegments in subset Lj

i . If l
j
i =

n log n
p ,

then we assign one processor to compute the envelope
layers of Lj

i . Otherwise, if l
j
i >

n log n
p , then we assign

z =
⌊

lj
i

n log n
p

⌋
processors to Lj

i such that each one cor-

responds to O(n log n
p ) subsegments of Lj

i . If l
j
i <

n log n
p

then we consider Lj
i as a small subset of Gi. In this

case, we let one processor to be in charge for several el-
ements such that it is responsible for processing a total
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Fig. 10 Concatenating the envelope layers of L1
i , L2

i , . . . , Lgi
i

into the convex layers of Gi = L1
i , L2

i , . . . , L
gi
i .

of O(n log n
p ) subsegments.

Now let us consider the running time for com-
puting EL(Lj

i ) = (EL1(L
j
i ), EL2(L

j
i ), . . . , ELkij

(Lj
i ))

(1 ≤ i ≤ m, 1 ≤ j ≤ gi), where kij is the number of the
envelope layers of Lj

i . If l
j
i >

n log n
p , Lj

i is processed
in parallel using z processors. If lji ≤ n log n

p , Lj
i is

processed sequentially as explained above. Since from
Property 2(ii) the total size of all Lj

i (1 ≤ i ≤ m,
1 ≤ j ≤ gi) is N = O(n logn), by using the algo-
rithm for the convex layers in Sect. 3, when 1 ≤ k ≤ n

ε
2

we can find all EL(Lj
i ) (1 ≤ i ≤ m, 1 ≤ j ≤ gi) in

O(N log N
p ) = O(n log2 n

p ) time using p processors.
Since EL(L1

i ), EL(L
2
i ), . . . , EL(L

gi

i ) are separated,
we can concatenate them into EL(Gi) = (EL1(Gi),
EL2(Gi), . . . , ELki

(Gi)), where ki is the number of en-
velope layers of Gi, as follows (Fig. 10). For each i (1 ≤
i ≤ m) let kij be the number of the envelope layers of
Lj

i . We have ki = max(ki1, ki2 . . . , kigi
). ELt(Gi) can

be obtained by concatenating ELt(L
j
i ) from j = 1 to

j = gi (EL(L
j
i ) is empty if t > ki). Refer to Fig. 10(ii)

where dotted lines are used to show the layers of Gi

(ki = 2) obtained from the concatenation of the layers
of EL(L1

i ), EL(L
2
i ), . . . , EL(L

7
i ). From Property 2(ii),∑gi

j=1 |EL(L
j
i )| = O(n). Therefore, if the envelope lay-

ers of EL(Lj
i ) are saved in arrays, the concatenation

of the layers of EL(L1
i ), EL(L

2
i ), . . . , EL(L

gi

i ) into the
layers of EL(Gi) can be done in O(logn) time using
O( n

log n ) processors by using prefix sums computation.

Thus, in Step 2 EL(Gi) can be computed in O(n log2 n
p )

time using p processors, where 1 ≤ p ≤ n
1−ε
2 .

4.4 Constructing the Envelope Layers of S

Let v = max(k1, k2, . . . , km), where ki (1 ≤ i ≤ m) is
the number of layers in EL(Gi). Then, the total num-
ber of layers in EL(G1), . . . , EL(Gm) is K = O(vm).
Since v ≤ k, where k is the number of envelope lay-
ers of S, and m = O(logn), K = O(k logn). On
the other hand, from Property 2(ii) the total size of
EL(G1), EL(G2), . . . , EL(Gm) is O(n logn).

Now we show how to construct the envelope lay-
ers of S from EL(G1), EL(G2), . . . , EL(Gm). First,
we use n

1−ε
2 vertical lines to cut K envelope lay-

ers of EL(G1), . . . , EL(Gm) into n
1−ε
2 separate parts

H1, H2, . . . , H
n

1−ε
2
(Fig. 9). The n

1−ε
2 vertical lines,

l1, l2, . . . , l
n

1−ε
2
can be decided as follows. Let X be

the set consisting of the endpoints of the segments in
EL(G1), . . . , EL(Gm). Sort the points of X by their
x-coordinates in increasing order, and then divide X
into n

1−ε
2 parts, i.e. X1, X2, . . . , X

n
1−ε
2
, such that each

Xi (1 ≤ i ≤ n
1−ε
2 ) contains O(n

1+ε
2 logn) points of

X and the x-coordinates of the points of Xi are less
than the x-coordinates of the points of Xi+1. Notice
that the endpoints of a same segment may belong to
different Xi parts. For each i (1 ≤ i ≤ n

1−ε
2 ), define

li to be the vertical line passing through the leftmost
point of Xi. After cutting, each Hi (1 ≤ i ≤ n

1−ε
2 )

contains O(n
1+ε
2 logn) endpoints. In the cutting pro-

cess some segments may be partitioned by the verti-
cal lines into subsegments that belong to several parts
(Fig. 9). As each vertical line cuts the K layers of
EL(G1), . . . , EL(Gm), it may produce K = O(k logn)
segments. Thus, each Hi (1 ≤ i ≤ n

1−ε
2 ) consists of

O(n
1+ε
2 logn+ k log n) segments.
Then, for each i (1 ≤ i ≤ n

1−ε
2 ) in parallel, we com-

pute the envelope layers of Hi by using Hershberger’s
sequential algorithm [7].

Sorting the O(n logn) points in X can be done
in O(logn) time using n processors. For each i

(1 ≤ i ≤ n
1−ε
2 ), EL(Hi) can be computed in

O(|Hi|α(|Hi|) log2 |Hi|) time sequentially [7]. There-
fore, EL(H1), EL(H2), . . . , EL(H

n
1−ε
2
) can be com-

puted in O(|Hi|α(|Hi|) log2 |Hi|) time using n
1−ε
2 pro-

cessors, where |Hi| = O(n
1+ε
2 logn + k log n). Thus,

Step 3 can be done in O(n
1+ε
2 α(n) log3 n) time using

n
1−ε
2 processors, i.e. it can be done in O(nα(n) log3 n

p )

time using p processors, where 1 ≤ p ≤ n
1−ε
2

(0 ≤ ε < 1).
Finally, we concatenate the layers of EL(H1),

EL(H2), . . . , EL(H
n

1−ε
2
) into the layers of EL(S) =

(EL1(S), EL2(S), . . . , ELk(S)). Let EL(Hi) =
(EL1(Hi), EL2(Hi), . . . , ELhi

(Hi)), where hi is
the number of the layers of Hi. Obviously, k =
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max(h1, h2, . . . , h
n

1−ε
2
). ELt(S) (1 ≤ t ≤ k) can

be obtained by concatenating ELt(H1), ELt(H2), . . . ,
ELt(H

n
1−ε
2
) (ELt(Hi) is empty if t > hi). As stated

in Sect. 2 the size of the envelope layers of Hi is

O(α(|Hi|)|Hi|). Thus, |EL(S)| =
∑n

1−ε
2

i=1 |EL(Hi)| =

O(
∑n

1−ε
2

i=1 α(|Hi|)|Hi|) = O(nα(n) logn) when k < n
ε
2 .

If the envelope layers of each EL(Hi) are saved in ar-
rays and k < n

ε
2 , concatenating EL(H1), EL(H2),

. . . , EL(H
n

1−ε
2
) into EL(S) (Step 4) can be done in

O(logn) time using O(nα(n) log n
log n ) processors by using

prefix sums computation.

5. Conclusion

In this paper we have proposed an EP parallel algo-
rithm for computing the convex layers of a set S of n
points. Let k be the number of the convex layers of S.
When 1 ≤ k ≤ n

ε
2 (0 ≤ ε < 1) our algorithm runs in

O(n log n
p ) time using p processors, where 1 ≤ p ≤ n

1−ε
2 ,

in the CREW -PRAM , and it is cost optimal.
We have also considered the envelope layers prob-

lem. We presented an algorithm which solves the enve-
lope layers problem of a set S of n (opaque) line seg-
ments. Let k be the number of the envelope layers of
S. When 1 ≤ k ≤ n

ε
2 (0 ≤ ε < 1) our algorithm

runs in O(nα(n) log3 n
p ) time using p processors, where

1 ≤ p ≤ n
1−ε
2 , in the CREW -PRAM . If we ignore

a factor of logn our algorithm for the envelope layers
belongs to the class EP .

To simplify the explanation we used the CREW -
PRAM parallel computational model, although the re-
sults are also generalized to the EREW -PRAM model.

We expect that our methodology can be general-
ized to solve other P -complete problems as well.
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