
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.5 MAY 2001
1201

PAPER Special Section on Discrete Mathematics and Its Applications

Designing Efficient Parallel Algorithms with Multi-Level

Divide-and-Conquer∗

Wei CHEN†a) and Koichi WADA†, Regular Members

SUMMARY Multi-level divide-and-conquer (MDC) is a gen-
eralized divide-and-conquer technique, which consists of more
than one division step organized hierarchically. In this paper,
we investigate the paradigm of the MDC and show that it is an
efficient technique for designing parallel algorithms. The follow-
ing parallel algorithms are used for studying the MDC: finding
the convex hull of discs, finding the upper envelope of line seg-
ments, finding the farthest neighbors of a convex polygon and
finding all the row maxima of a totally monotone matrix. The
third and the fourth algorithms are newly presented. Our discus-
sion is based on the EREW PRAM, but the methods discussed
here can be applied to any parallel computation models.
key words: design of parallel algorithm, multi-level divide-and-
conquer, convex hull problem of discs, upper envelope problem of
segments, farthest neighbors problem of polygons

1. Introduction

Divide-and-conquer (DC) is one of the most important
techniques used for designing parallel algorithms. It
consists of two steps: the division step which divides
a problem into subproblems and finds the solution of
each, and the merging step which merges the solutions
of the subproblems into that of the original problem.
To solve a problem efficiently with the DC, one should
find a division which divides the problem into a set of
proper subproblems such that (i) the total size of the
subproblems does not exceed the size of the original
problem much and (ii) the solutions of the subproblems
can be easily merged into that of the original problem.
Sinc some problems do not have such divisions, the DC
is not always efficient. Fortunately, for some problems,
although proper subproblems can not be found by one
division step, they can be found by carrying out several
division steps which are organized hierarchically. We
are interested in such problems.

We introduce a concept multi-level divide-and-
conquer (MDC). It is the same as that of the ordinary
DC except that one division step is replaced by more
than one hierarchically organized division step. The
input of the first division step is that of the original

Manuscript received August 31, 2000.
Manuscript revised November 17, 2000.

†The authors are with the Department of Electrical
and Computer Engineering, Nagoya Institute of Technol-
ogy, Nagoya-shi, 466-8555 Japan.
a) E-mail: chen@elcom.nitech.ac.jp
∗This research was supported by the Grant-in-Aid for

Scientific Research (B)(2) 10205209 from the Ministry of
Education, Science, Sports and Culture of Japan.

problem, and the input of the ith (i ≥ 2) division step
is the output of the (i− 1)th division step. In this pa-
per, we discuss the structures and the mechanisms of
the MDC and show that it is an excellent method for
designing parallel algorithms. There are some impor-
tant parameters in the MDC: the number of division
levels (steps), the sizes of subproblems and the num-
ber of subproblems in each division level. We give a
standard way for designing these parameters. We also
show that by adjusting the parameters and adding some
other auxiliary approaches such as pruning technique,
the MDC will become much more efficient.

In this paper, we use several algorithms to explain
the MDC technique. In these algorithms, some are
known and some are newly presented. We would focus
on the MDC technique itself but not these algorithms.
Therefore, when the details of the algorithms prevent
us from understanding the technique we leave them to
the references. We use the EREW PRAM as a compu-
tational model, but conclusions can be applied to any
parallel computation models. A parallel algorithm in
the PRAM is cost optimal if the product of its running
time and the number of the processors is of the same
order as the running time of the fastest known sequen-
tial algorithm. It is time optimal if it is the fastest
possible algorithm using a polynomial number of pro-
cessors. In this paper, the following MDC-based paral-
lel algorithms are used for studying the MDC method:
(1) finding the convex hull of n discs in O(log1+ε n)
time using O(n/ logε n) processors, (2) finding the up-
per envelope of n line segments in O(logn) time using
O(n) processors, (3) finding the farthest neighbors of
a convex polygon with n vertices and (4) finding all
the row maxima in an totally monotone matrix with n
rows and n columns in O(log1+ε n/ log logn) time us-
ing O(n/ logε n) processors, where ε > 0 is an arbitrary
constant. Some other problems such as finding the con-
vex hull of curves in the plane and finding the upper
envelope of h-intersecting segments in the plane are also
used. In these algorithms, the first and the second are
known [3], [4], and the third and the fourth are newly
presented. All the above problems have been studied
for quite some time and each has many applications. As
so far, without using the MDC technique the first and
the second problems are solved in O(log2 n) time us-
ing O(n/ logn) processors [10], [14], and the third and
the fourth problem are solved in O(logn) time using

1202
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.5 MAY 2001

O(n) processors [2] and in O(log2 n/ log logn) time us-
ing O(n/ logn) processors [5].

We introduce a standard MDC technique in Sect. 2.
In Sect. 3 and Sect. 4, we use the first and the second al-
gorithms to show how to design and adjust parameters
and how to prune the recursive processes in the MDC,
respectively. We describe the third and the fourth al-
gorithms in Sect. 5 to show how to use the MDC more
flexibly and skillfully.

2. Multi-Level Divide-and-Conquer

Given a problem, we consider the following three types
of divisions: EDHM (Easily Dividing Hard Merging)
divisions, in which the total size of the subproblems is
close to that of the original problem but the solutions
of the subproblems are difficult to be merged, HDEM
(Hard Dividing Easily Merging) divisions, in which the
total size of the subproblems is much larger than that
of the original problem, but the solutions of the sub-
problems are easily merged, and finally EDEM (Eas-
ily Dividing Easily Merging) divisions. Structurally, in
contrast with one merge step following one division step
in the ordinary DC, one merge step follows k-division
steps in a k-level MDC, where the first k − 1 division
steps are the EDHM ones and the last one is the EDEM
one. One should not confuse the concept of a k-level
MDC with a k-DC. The latter is the ordinary DC where
the division step divides the given problem into k sub-
problems. In a k-level MDC, the k division steps are
executed one after another in a sequential way, there-
fore, the value of k should not be too large.

In the following, we show a standard MDC tech-
nique. We use it to solve the convex hull problem of a
set S of N discs in the plane, which is defined as the
smallest convex region that contains all the discs of S.
The convex hull of S, denoted as CH(S), is represented
by the sequence of arcs (portions of circles) which lie on
the boundary of CH(S) in clockwise order. There are
at most 2N − 1 arcs in CH(S) [9], [12]. A straight line
which passes through the leftmost and the rightmost
points separates CH(S) into two parts: the upper hull
UH(S) and the lower hull LH(S). In the following, we
show an algorithm to compute UH(S). The lower hull
LH(S) can be found in the same way. Two sets of arcs
are said to be separated if the arcs of two sets lie on the
different sides of a vertical line. Let n be the number
of discs for a given subset S′ of S. We find UH(S′) in
the following. Ｗ e can find UH(S) by setting S′ = S.

An ordinary DC technique finds UH(S′) in the
following two ways. (1) the first method divides the n
discs into δ equally-sized subsets of discs, recursively
finds the upper hull of each subset in parallel, and then
merges these δ upper hulls into UH(S′). (2) The sec-
ond method partitions the n discs into δ equally-sized
separated sets of arcs by δ−1 vertical lines, recursively
computes the upper hull of each subset in parallel, and

then merges the δ upper hulls into UH(S′). The first
method uses an EDHM division: to merge the δ up-
per hulls, one should find the intersections of the hulls
which may reach totally Θ(δn). The second method
uses an HDEM division: after partitioning, each sub-
sets may contain Θ(n) arcs which means that the total
size of the subproblems may be Θ(δn) (Fig. 1). There-
fore, both methods are inefficient.

A 2-level MDC combined by the above two division
methods solves the problem as follows:
First division step: Divide n discs into δ equally-
sized subsets of discs, and recursively construct the up-
per hull of each subset in parallel (Fig. 2(a)). Note that
these upper hulls may intersect with each other.
Second division step: Using n/δ − 1 vertical lines,
partition the δ upper hulls produced in the first recur-
sive step which contain at most 2n arcs totally into
n/δ equally-sized separated parts (Fig. 2(b)), and then
recursively find the upper hull of each part in parallel.
Merge step: Merge the 2n/δ separated upper hulls
produced in the second recursive step into the upper
hull of S′.

In the second division step, when using vertical
lines to partition the upper hulls, one line intersects
with each upper hull at most once. The second di-
vision step is an EDEM one, since (1) partitioning δ
upper hulls by n/δ − 1 vertical lines increases at most
n− δ arcs, i.e., the size of each subset does not exceed
3δ and the total size of the subsets does not exceed 3n,

Fig. 1 A set of discs difficult to be separated.

(a) (b)

Fig. 2 An MDC technique used for finding the convex hull of
discs.

CHEN and WADA: DESIGNING EFFICIENT PARALLEL ALGORITHMS WITH MULTI-LEVEL DIVIDE-AND-CONQUER
1203

and (2) the separated n/δ upper hulls produced in the
second division step can be merged easily: for each up-
per hull computing the portion which belongs to the
solution, and connecting each portion from the left to
right. In the algorithm if the size of the problem is
small enough, we solve it by any sequential algorithm in
constant time. Let T (n) and P (n) denote the running
time and the number of the processors, respectively.
Partitioning δ upper hulls by n/δ − 1 vertical lines in
the second division step can be done in O(logn) time
using O(n/ logn) processor, and the merging step can
be done in O(logn) time using O(n/ logn) processor
[4]. In the first and the second division steps, δ sub-
problems of size n/δ each and n/δ subproblems of size
3δ each are recursively found in parallel, respectively.
Therefore, we have the following recurrences:

T (n) ≤




T (n/δ) + T (3δ) +O(logn),
if n > 4
c, if n ≤ 4

P (n) ≤



max{O(n/ logn), δP (n/δ), n/δP (3δ)},
if n > 4
1, if n ≤ 4

Replacing δ by n1/2, we get T (n) = O(logn
log logn) and P (n) = O(n loglog 3 n). Therefore,
UH(S) can be found in O(logN log logN) time us-
ing O(N loglog 3N) processors. This means that the
MDC solves the problem faster than the ordinary DC.
In Sect. 3, we will adjust the parameters of the above
MDC to make it cost optimal.

The above example gives a common behavior of the
MDC: in each division step total size of the subprob-
lems should not exceed the size of the original prob-
lem too much, and in the merging step the solutions
of the subproblems should be easily merged into the
solution of the original problem. Generally, let a k-
level MDC solve a problem of size n in T (n) time us-
ing P (n) processors. We assume that the ith division
step divides the output of the (i − 1)th division step
(the first division step divides the input of the prob-
lem) into hi (1 ≤ i ≤ k) subproblems of size ni each
in TD(n, i) time using PD(n, i) processors, and assume
the merge step merges the outputs of the final divi-
sion step into the solution of the original problem in
TM (n) time using PM (n) processors. Since the sub-
problems are solved recursively, in the ith division step
we can solve the subproblem of size ni in T (ni) time us-
ing P (ni) processors. Let TD(n) =

∑k
i=1 TD(n, i) and

PD(n) = maxk
i=1 PD(n, i). The problem can be solved

in T (n) =
∑k

i=1 T (ni) + TD(n) + TM (n) time and
using P (n) = maxk

i=1{hiP (ni), PD(n), PM (n)} pro-
cessors. In an h-DC (it divides the problem into h-
subproblems), h is often designed as a positive integer

or as a function of the size n of the problem. In the
latter case, for solving more subproblems in parallel, h
is often designed as nε, where 0 < ε <1. When design-
ing a k-level MDC, we usually set hi = n1/k (1 ≤ i
≤ k) first. The size ni of each subproblem in the ith
level should not exceed cn1/k, where c > 0 is a con-
stant. In this situation, if TD(n) + TM (n) = O(1),
then T (n) = kT (cn1/k) + O(1) = O(logn), and if
TD(n) + TM (n) = O(logn), then T (n) = kT (cn1/k) +
O(logn) = O(logn log logn). Also if PD(n) = PM (n)
= O(n), then P (n) = maxk

i=1{n1/kP (cn1/k), O(n)} =
O(n loglog c n).

3. Adjusting Parameters of the MDC

A k-level MDC is called as an (h1, h2,. . ., hk)-MDC
if its ith division step divides the input of this step
into hi subproblems and solves them recursively. The
algorithm of finding UH(S) in Sect. 2 is a (δ, 2n/δ)-
MDC, where δ = n1/2. As we stated before, instead
of setting hi = c (c is a positive integer) we prefer to
set hi = nε (0 < ε <1) so that nε subproblems can be
solved in parallel. But it does not always give the best
algorithm since the price paid for dividing and merging
may be high when the number of subproblems is big. In
this section, we show how to adjust the value of hi such
that it does not depend on the sizes of subproblems too
much.

Let us consider the (δ, 2n/δ)-MDC used for find-
ing UH(S) in Sect. 2 once again. Instead of setting δ =
n1/2 in the algorithm of Sect. 2, we define that δ = δi

(1 ≤ i ≤ c), if di < n ≤ di+1, where δi = min(di, n/di),
d = log1/c N and di = 2di

(= 2log
i/c N) and c is a posi-

tive integer which will be decided later. We should note
that N is the size of S and d is fixed when the input S
and c are given. From the definition, we know that δ
(therefore, the number of the subproblems in both divi-
sion steps) keeps the same value when n changes from
di to ≤ di+1. We solve the problem with the same algo-
rithm in Sect. 2 as follows: if the size n of the problem
(n = N at the beginning of the algorithm) satisfies the
condition dt < n ≤ dt+1 (1 ≤ i ≤ c − 1), we solve the
problem by the (δt, 2n/δt)-MDC (1 ≤ t ≤ c). If n ≤ d1,
we stop the recursion and solve the problem directly by
the known algorithm which runs in O(log2 n) time us-
ing O(n/ logn) processors [14]. Replacing δ with δt and
changing the boundary condition in the recurrences of
Sect. 2, we get the following recurrences for the revised
algorithm:

T (n) ≤




T (n/δt) + T (3δt) +O(logn),
if dt < n ≤ dt+1 (1 ≤ t ≤ c− 1)
O(log2 n), if n ≤ d1

P (n) ≤



max{O(n/ logn), δtP (n/δt), n/δtP (3δt)},
if dt < n ≤ dt+1 (1 ≤ t ≤ c− 1)
n/ logn, if n ≤ d1

1204
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.5 MAY 2001

We can prove that T (N) = O(log1+1/c N) and P (N) =
O(N/ log1/c N) [4]. For any constant ε > 0, by setting
c = �1/ε� and c = �log logN�, the algorithm runs in
O(log1+ε N) time using O(N/ logε N) processors, and
in O(logN log logN) time using O(N log1+ε N) proces-
sors, respectively. The first result is cost optimal and
the second one is faster. If there are only 2O(logα N)

different kinds of radii in N discs for any α (0 < α <
1), from the first result UH(S) is constructed not only
cost optimally but also time optimally in O(logN) time
using O(N) processors.

The same MDC can be used to solve the following
generalized convex hull problems. Let E be a set of
N convex curves in the plane and let the boundary of
the convex hull of E consist of at most hN portions of
curves. In the special case that E is a set of circle, h
= 2. Let OI , OII and OIII denote the operations of
finding the common tangents of two curves, the inter-
sections of two curves and the intersections of one curve
and one straight line, respectively, in the plane, and A,
B and C denote the running time of the operations OI ,
OII and OIII , respectively. By replacing the operations
on arcs of circles by the ones on arcs of curves, the con-
vex hull of E can be computed by the same algorithm
in O(A+B+C

log1+ε N
) time using O(N/ logε N) processors, or

in O(A+B+C
logN log logN) time using O(N log(1+ε) log h N) pro-

cessors for any positive constant ε. For quadratic curves
in the plane, A, B and C are constants, and h = 4.

The same MDC can be also used to solve the
upper envelope problem. Given a collection S of N
segments which are h-intersecting in the plane, that
is, they intersect pairwise at most h times, regard-
ing the segments as opaque barriers, their upper en-
velope, denoted as UE(S), consists of the portions of
the segments visible from point (0,+∞). UE(S) con-
tains Θ(λh+2(N)) segments, where λh(N) = O(N),
Θ(Nα(N)), and O(Nα(N)α(N)

h−3
) for h ≤ 2, h = 3

and h > 3, respectively, and α(N) is the extremely
slowly growing functional inverse of Ackermann’s func-
tion [9], [12]. Let dt and δt be defined as before, and
let S′ be a subset of S with n h-intersecting segments.
The following algorithm finds UE(S′). UE(S) can be
found by setting S′ = S and n = N .
Base: If n ≤ d1, solve the problem directly by the
known algorithm which runs in O(log2 n) time using
O(λh+1(n)

log n) processors [10]. If n > d1, do the following
steps.
First division step: Find t > 1 such that dt < n
≤ dt+1. Divide n segments of S′ into δt equally-sized
subsets of segments, and recursively construct the up-
per envelope of each subset in parallel. Note that these
upper envelopes may intersect with each other.
Second division step: Using n/δt − 1 vertical lines,
partition the δt upper envelopes produced in the first
recursive step which contain at most λh+2(n) segments

totally into λh+2(n)/δt equally-sized separated parts,
and then recursively find the upper envelopes of each
part in parallel.
Merge step: Connect the λh+2(n)/δt separated upper
envelopes produced in the second recursive step from
the left to the right to get the upper envelope of S′.

We can prove that UE(S) can be found by the
above algorithm in O(log1+ε N) time using O(λh+1(N)

logε N)
processors for any ε > 0 [3].

4. Using Prune Technique in the MDC

In a k-level MDC, the k division steps are organized hi-
erarchically and executed one after another. Since the
subproblems in each division step are usually solved re-
cursively, there are k recursive processes which must be
executed sequentially. If we can remove some recursive
processes from the division steps, we can solve the prob-
lems more efficiently. In the following, we show how to
use prune technique to remove the recursive processes
of some division steps.

At the end of Sect. 3, we gave an algorithm of find-
ing the upper envelope of a set S of N h-intersecting
segments in the plane. Here, we restrict the segments
to be line segments and show that by adding a prune
technique we can find UE(S) both time and cost opti-
mally.

S has a left (or right) base if all the left (right)
endpoints of the segments of S lie on a same vertical
line. It is known that the problem of finding the upper
envelope of N segments can be reduced, in O(logN)
time using O(N) processors, into that of finding the
upper envelope of N segments which has the left (or the
right) base [3]. Therefore, in the following we assume
that S has a left base and find UE(S). When S has
a left base, the segments of S is 1-intersecting and the
size of UE(S) is at most 2N − 1. We define set S[l1, l2]
= {the subsegment of e lying between vertical lines l1
and l2 , e ∈ S}.
Algorithm FindUEWithBase(S)
(Input) S and P (S), where S is the set of N line seg-
ments in the plane and S is sorted in increasing slope,
and P (S) is the set consisting of the right endpoints
of the segments of S and P (S) is sorted in increasing
x-coordinate.
(Output) UE(S).
[method] Let S′ be a subset of S with n segments. The
segments of S′ are sorted in increasing slope. P (S′)
consists of the right endpoints of the segments of S′

which are sorted in increasing x-coordinate. The follow-
ing procedure finds UE(S′) with an (n1/2, n1/2)-MDC.
UE(S) can be found by setting S′ = S and n = N .
Procedure UEWithBase(S′)
(Base step) If n = 1, UE(S′) = S′. This completes
the algorithm.

CHEN and WADA: DESIGNING EFFICIENT PARALLEL ALGORITHMS WITH MULTI-LEVEL DIVIDE-AND-CONQUER
1205

(a) The first division step

(b) The second division step

Fig. 3 Algorithm for finding the upper envelope of the lines
segments with a left base.

(First division step) Divide S′ into n1/2 subsets S1,
S2, . . ., Sn1/2 such that Si (1 ≤ i ≤ n1/2) consists of the
segments whose right endpoints belong to Pi, where Pi

contains ((i−1)n1/2+1)th to (in1/2)th points of P (S′)
(Fig. 3(a)). For each i, recursively construct UE(Si) in
parallel.
(Second division step) Let li (1 ≤ i ≤ n1/2) be the
vertical line passing through the rightmost endpoint of
Si (Fig. 3(b)). Let S be the set of all the segments of
UE(S1), UE(S2), . . ., UE(Sn1/2). Separate S which
contains at most 2n − 1 segments by lines l0, l1, . . .,
ln1/2 into n1/2 separated parts S[l0, l1], S[l1, l2], . . .,
S[ln1/2−1, ln1/2] such that each part contains O(n1/2)
segments (or subsegments), where l0 is the left base of
S′. For each i, recursively construct UE(S[li−1, li]) in
parallel.
(Merge step) Concatenate UE(S[li−1, li]) from i = 1
to i = n1/2 in the increasing order of i. ✷

In Second division step, one vertical line passes
through at most n1/2 upper envelopes. If in the above
algorithm we move li (1 ≤ i ≤ n1/2) such that it passes
through the 2i|S|/n1/2th end points of S, then each
part contains at most 3n1/2 segments. Except the
recursive parts, the rest of the procedure of finding
UE(S′) can be done in O(logn) time using O(n) pro-
cessors. Therefore the whole procedure can be executed
in T (n) = T (n1/2) + T (3n1/2) + O(logn) time using
P (n) = max{n1/2P (n1/2), n1/2P (O(n1/2)), n}, that
is, it can be executed in O(logn log logn) time using
n loglog 3 n processors. Therefore, UE(S) can be found
in O(logN logN logN) time using N loglog 3N proces-
sors. Actually, by adding a prune technique into proce-
dure UEWithBase to get rid of the recursive structure

in the second division step, we can find UE(S) both
cost and time optimal.

A line is said to be induced from a segment, if the
segment lies on the line. A set of lines is said induced
from a set S of segments, denoted as L(S), if it consists
of all the lines which are induced from the segments of
S. Let set Ŝ consist of some subsegments of S. For
any pair s ∈ S and s′ ∈ Ŝ, s is the origin of s′ if s′ is a
subsegment of s. We use Ori(Ŝ, S) to denote the subset
of S which consists of all the origins of the segments in
Ŝ. Usually, UE(S) is a simple polygonal chain, but
when no confusion occurs, we also consider it as a set
of the line segments which are the edges of the chain.
The following lemma reveals the relation between the
upper envelope of lines and that of segments.

Property 1: Let T be a set of line segments and L(T)
be the set of the lines induced from T . If T has both the
left base l1 and the right base l2 (i.e., all the segments
begin from l1 and end at l2), then UE(T) is the portion
of UE(L(T)) lying between l1 and l2, that is, UE(T)
= UE(L(T))[l1, l2]. ✷

From the above property, if a set of line segments
has both the left base and the right base, we can treat
it as a set of lines. The problem of finding the upper
envelope of n lines is dual to that of finding the convex
hull of n points which can be solved both time and
cost optimally in O(logn) time using O(n) processors.
The key point of our prune technique here is to remove
the line segments which can be treated as lines from
the recursive process of the second division step, i.e.,
remove them from S[li−1, li].

For a set T of segments and two vertical lines
l1 and l2, where l1 lies on the left of l2, we can
divide T ′ = T [l1, l2] into two subsets: passing-
through-segment set Pas(T ′) and falling-in-segment
set Fal(T ′), where t ∈ Pas(T ′) if t′ begins from l1
and ends at l2 and t ∈Fal(T ′) if at least one end-
point of t′ lies in the slab between l1 and l2 ex-
cluding l1 and l2. It is easily seen that UE(T ′)
= UE(UE(Pas(T ′)) ∪ UE(Fal(T ′))). Thus, in the
second division step of the algorithm, UE(S[li, li+1])
= UE(UE(Pas(S[li, li+1])) ∪ UE(Fal(S[li, li+1]))).
From Property 1, UE(Pas(S[li, li+1])) can be found
by the upper envelope algorithm for lines. That is,
we can prune Pas(S[li, li+1]) from S[li, li+1]. Further-
more, from the definitions of Si and Fal(S[li, li+1]),
Ori(Fal(S[li, li+1]), S) = Si, thus, UE(Fal(S[li, li+1]))
= UE(Si)[li, li+1]. UE(Si)[li, li+1] can be easily gotten
from UE(Si) which has been found in the first divi-
sion step. Therefore, we remove the recursive process
from the second division step successfully and com-
plete it in O(logn) time using O(n) processors. We
get the formulas T (n) = T (n1/2) + O(logn) and P (n)
= max{n1/2P (n1/2), n}. Thus, T (n) = O(logn) and
P (n) = n. That is, the upper envelope of N line seg-
ments in the plane can be found both time and cost

1206
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.5 MAY 2001

optimally in O(logN) time using O(N) processors.
Algorithm FindUEWithBase(S) gives some other

results: (1) the upper envelope ofN line segments in the
plane can be found in O(N log logN) time sequentially
if the segments are sorted in slope and the segment
endpoints are sorted in x-coordinate, and (2) the upper
hull of N nonintersecting line segments can be found
in O(logN) time using O(N/ logN) processors, if the
segment endpoints are sorted in x-coordinate. For more
details, see [3].

5. Finding All the Farthest Neighbors of Con-
vex Polygons

In this section, we give some other instances, in which
the MDC is used more flexible and skillfully. Let P
= (p1,. . ., pn) be a convex polygon represented by the
sequence of the vertices listed in counter-clockwise or-
der. We use P [i . . . j] to denote the contiguous vertices
of P listed from pi to pj inclusive. We define distance
d(p, q) to be the length of the line segment connecting
p and q. Vertex q is said to be the farthest neighbor
of p in P , if d(p, q) ≥ d(p, q′) for any other vertex q′

of P . The farthest neighbor of p may be not unique.
The farthest neighbors problem of P is to find a far-
thest neighbor in P for each vertex of P . In this setion,
we first present a parallel algorithm which solves the
problem in O(log2 n/ log logn) time using O(n/ logn)
processors, and then using the MDC improve it to run
in O(log1+ε n/ log log n) time using O(n/ logε n) proces-
sors.

5.1 A Basic Algorithm

Let Q1 = (u0, u1, . . ., us−1) and Q2 = (v0, v1, . . ., vt−1)
be two subsequences of P = (p1, p2, . . ., pn), and let u
and v be the vertices of Q1 and Q2, respectively. Vertex
v is said to be the farthest neighbor of vertex u in Q2,
denoted as FN(u : Q2), if for any vertex w of Q2,
d(u, v) ≥ d(u,w). We use AFN(Q1 : Q2) to denote the
sequence (FN(u0 : Q2), FN(u1 : Q2), . . . , FN(us−1 :
Q2)). In the following we find AFN(Q1 : Q2). The
problem of finding all the farthest neighbors of a convex
polygon P can be solved by finding AFN(P : P).

We first show that if s ≥ log t, AFN(Q1 : Q2) can
be found in O(s) time using O(t/s) processors. The
algorithm is as follows.
(1) If s ≥ t, compute AFN(Q1 : Q2) by sequential
algorithm in O(s) time [13], else do the following steps.
(2) Divide Q2 into t/s subsequences such that the ith
one is Qi

2 = Q2[is . . . ((i+ 1)s− 1)] (0 ≤ i ≤ t/s− 1).
Compute AFN(Q1 : Qi

2) for each i, in parallel.
(3) Decide FN(u : Q2) for each vertex u of Q1 by
computing the maximum of FN(u : Q02), FN(u : Q12),
. . ., FN(q : Qt/s−1

2).
To avoid the concurrent reading of Q1 in Step (2),

we should first make t/s copies of Q1, which can be

Fig. 4 The property of the farthest neighbors.

done in O(log t) time using O(t/ log t) processors [11].
Both Q1 and Qi

2 (0 ≤ i ≤ t/s− 1) have only s vertices,
therefore, AFN(Q1, Qi

2) can be found in O(s) time se-
quentially [13]. Thus, step (2) can be executed in O(s)
time using O(t/s) processors. Step (3) can be executed
in O(log t) time using O(t/ log t) processors by prefix
maxima computing [11].

Lemma 1: Let Q1 and Q2 be two subsequences of
a convex polygon with s and t vertices, respectively.
AFN(Q1, Q2) can be found in O(s) time using O(t/s)
processors if s ≥ log t. ✷

The following property can be easily proven and it
leads us to find AFN(Q1 : Q2) with an ordinary DC.

Property 2: [5] Let ui and uj (i ≤ j) be the ith
and the jth vertices of Q1. If FN(ui : Q2) = vf and
FN(uj : Q2) = vg, then for any vertex u of Q1[i . . . j],
FN(u : Q2) belongs to Q2[f . . . g] (Fig. 4). ✷

Given a subsequence Q′
1 = (uh1 , uh2 , . . ., uhr

)
of Q1, where uh is the hth (h1≤h≤hr) vertex of
Q1, if AFN(Q′

1 : Q2) = (vk1 , vk2 , . . ., vkr
), then

Property 2 implies that AFN(Q1[hi . . . hi+1] : Q2) =
AFN(Q1[hi . . . hi+1] : Q2[ki . . . ki+1]) for all i (1 ≤ i
≤ r). Let d = log t, the following algorithm computes
AFN(Q1 : Q2).
Algorithm AllFarthestNeighbor(Q1, Q2)
[Input] Two subsequences of convex polygon P : Q1 =
(u0, u1, . . ., us−1) and Q2 = (v0, v1, . . ., vt−1)
[Output] AFN(Q1 : Q2)
(Step 1) If s ≤ d, find AFN(Q1 : Q2) by Lemma 1.
This completes the algorithm.
(Step 2) Let Q′

1 = (u0, u(s−1)/d, u2(s−1)/d, . . ., us−1),
i.e., the ith (0 ≤ i ≤ d) vertex of Q′

1 is the (i(s−1)/d)th
vertex of Q1. Find AFN(Q′

1 : Q2) by Lemma 1.
(Step 3) Let AFN(Q′

1 : Q2) = (vk0 , vk1 ,. . .,vkd
). Re-

cursively find AFN(Q1[i(s−1)/d . . . (i+1)(s−1)/d)] :
Q2[ki . . . ki+1]) for each i (0 ≤ i ≤ d−1), in parallel. ✷

Since d = log t, Step 1 and Step 2 can be executed
in O(d) time using O(t/d) processors by Lemma 1.
Step 3 is a recursive step. Let T (s, t) and P (s, t) de-
note the running time and the number of the processors
of the algorithm, and let ti = ki+1 − ki, we have the

CHEN and WADA: DESIGNING EFFICIENT PARALLEL ALGORITHMS WITH MULTI-LEVEL DIVIDE-AND-CONQUER
1207

following recurrences:

T (s, t) ≤
{
maxd−1

i=0 T (s/d, ti) +O(d), if s > d

O(d), if s ≤ d

P (s, t) ≤



max{

∑d−1
i=0 P (s/d, ti), t/d}, if s > d

O(t/d), if s ≤ d

Thus, T (s, t) = O(d log s/ log d) and P (s, t) = O(t/d).

Lemma 2: Let Q1 and Q2 be two subsequences of a
convex polygon with s and t vertices each. AFN(Q1 :
Q2) can be computed in O(d log s/ log d) time using
O(t/d) processors, where d = log t. ✷

We compute AFN(P : P) by setting Q1 = Q2 =
P and s = t = n. From Lemma 2, AFN(P : P) can be
computed in O(log2 n/ log logn) time using O(n/ logn)
processors.

5.2 Making the Algorithm Fast by the MDC

Let dh = 2log
h/(h+1) s (h ≥ 1), where s is the size of Q1

and h is a positive integer. Let Q′
1 = (x1,x2,. . .,xs′) and

Q′
2 = (y1,y2,. . .,yt′) be the subsequences of Q1 and Q2

with s′ and t′ vertices, respectively. We find AFN(Q′
1 :

Q′
2) by calling the following procedure ImprovAFN(Q

′
1,

Q′
2, h+1). AFN(Q1 : Q2) can be found by setting Q′

1

= Q1, Q′
2 = Q2, s′ = s and t′ = t.

Procedure ImprovAFN(Q′
1, Q

′
2, h+ 1)

(Base step) If h = 1, compute AFN(Q′
1 : Q′

2) by
Lemma 2 in O(d log s/ log d) time using O(t/d) proces-
sors. This completes the procedure. Now let h > 1. If
s′ ≤ dh, recursively compute AFN (Q′

1 : Q′
2) by Im-

provAFN (Q′
1, Q′

2, h). Else compute AFN (Q′
1 : Q′

2)
as follows.
(First division step) Select a subsequence Q̂1 =
(x0, x(s′−1)/dh

, x2(s′−1)/dh
, . . ., xs′−1) from Q′

1, where
xi(s′−1)/dh

is i(s′ − 1)/dhth (0 ≤ k ≤ dh) vertex
of Q′

1. Recursively compute AFN(Q̂1 : Q′
2) by

ImprovAFN(Q̂1, Q′
2, h).

(Second division step) Suppose that AFN (Q̂1 :
Q′
2) = (yj0 , yj1 , . . ., yjdh

). Divide Q′
1 into Q′

1(k) =
Q′
1[k(s′ − 1)/dh . . . (k + 1)(s′ − 1)/dh] and divide Q′

2

into Q′
2(k) = Q′

2[jk . . . jk+1] (0 ≤ k ≤ dh − 1). For
each i recursively compute AFN (Q′

1(k) : Q′
2(k)) by

ImprovAFN(Q′
1(k),Q′

2(k),h+ 1), in parallel. ✷

In the first division step, the division is not ob-
vious: Q′

1 is divided into Q̂1 and Q′
1 − Q̂1 and only

AFN(Q̂1 : Q′
2) is computed recursively. The output of

the second division step is AFN(Q′
1 : Q′

2), therefore,
the merge step is not necessary.

Lemma 3: If procedure ImprovAFN(Q′
1, Q

′
2, h) (h ≥

2) computes AFN(Q′
1, Q

′
2) in O(log1+1/h s′/ log d) time

using O(t′/ log1/h s′) processors, ImprovAFN (Q′
1, Q′

2,
h + 1) computes AFN(Q′

1, Q
′
2) in O(log1+1/(h+1) s′/

log d) time using O(t′/ log1/(h+1) s) processors.

Proof: Let T (s′, t′) be the running time and P (s′, t′)
be the number of the processors for finding AFN(Q′

1 :
Q′
2) by ImprovAFN(Q

′
1,Q

′
2,h + 1) (h ≥ 2), where the

number of the vertices of Q′
1 and Q′

2 are s′ and t′,
respectively. In ImprovAFN(Q′

1,Q′
2,h + 1), if s′ ≤

dh ImprovAFN(Q′
1,Q′
2,h) is called in Base Step, else

ImprovAFN(Q̂1,Q′
2,h) is called in First division step，

where |Q̂1| ≤ dh. According to the condition of this
lemma, they can be solved in O(log1+1/h dh/ log d) time
using O(t′/ log1/h dh) processors. Let tk = jk+1 − jk +
1 and M = maxdh−1

k=0 tk. In the second division step, dh

subproblems: finding AFN (Q′
1(k) : Q

′
2(k)) for each

of k (0 ≤ k ≤ dh − 1) are recursively solved by Im-
provAFN(Q′

1(k),Q
′
2(k),h+1), where the sizes of Q

′
1(k)

and Q′
2(k) are s′/dh and tk. Therefore, we have the fol-

lowing recurrences.

T (s′, t′)≤




T (s′/dh,M) +O(log1+1/h dh/ log d),
if s′ > dh

O(log1+1/h dh), if s′ ≤ dh

P (s′, t′)≤



max{

∑dh−1
i=0 P (s′/dh, ti),

O(t′/ log1/h dh)}, if s′ > dh

O(t′/ log1/h dh), if s′ ≤ dh

By recalling that log dh = logh/(h+1) s, from the re-
currences we can easily get T (s, t) = O(log1/(h+1) s
log1+1/h dh/ log d) = O(log1+1/(h+1) s/ log d), and
P (s, t) = O(

∑dh−1
i=0 ti/ log1/h dh) = O(t/ log1/(h+1) s).

✷

Theorem 1: Let Q1 and Q2 be two sequences
of a convex polygon with s and t vertices each.
AFN(Q1, Q2) can be computed in O(log1+1/h s/ log d)
time using O(t/ log1/h s) processors for any integer h ≥
1.

Proof: When h = 1, algorithm ImprovAFN(Q1,Q2,h)
finds AFN(Q1 : Q2) by Lemma 2 in O(d log s/ log d)
= O(log2 s/ log d) time using O(t/d) = O(t/ log s)
processors. In general, assume that algorithm
ImprovAFN(Q1,Q2,h) find AFN(Q1, Q2) in
O(log1+1/h s/ log d) time using O(t/ log1/h s) proces-
sors for h ≥ 1. By using Lemma 3, it finds
AFN(Q1 : Q2) in O(log1+1/(h+1) s/ log d) time us-
ing O(t/ log1/(h+1) s) processors. Therefore, it finds
AFN(Q1 : Q2) in O(log1+ε s/ log d) time using
O(t/ logε s) processors. ✷

For any given 0 < ε ≤ 1, let h = �1/ε�. By
recalling that d = log t and P has n vertices, al-
gorithm ImprovAFN(P, P, h) finds AFN(P : P) in

1208
IEICE TRANS. FUNDAMENTALS, VOL.E84–A, NO.5 MAY 2001

O(log1+ε n/ log logn) time using O(n/ logε n) proces-
sors for any ε ≥ 0.

Let A be a matrix having n rows and m columns
with real entries, let Ai and Aj denote the ith row and
the jth column of A, respectively, and let j(i) be the
smallest column index j such that A(i, j) equals the
maximum value in Ai. A is said to be monotone if
j(i1) ≤ j(i2) for all 1 ≤ i1 ≤ i2 ≤ n. A is totally mono-
tone if every submatrix of A is monotone. It is easy
to prove that the algorithm of computing AFN(P : P)
can be used for solving the row maxima problem of
totally monotone matrix [1]. Therefore, the row max-
ima problem of totally monotone matrix can be solved
in O(log1+ε n/ log log n) time using O(n/ logε n) proces-
sors for any ε ≥ 0.

6. Conclusions

We introduced a new technique called Multi-level
divide-and-conquer (MDC). The MDC is the same as
the ordinary DC except that one division step is re-
placed by more than one hierarchically organized divi-
sion step. We investigated the paradigm of MDC and
showed that it was an excellent method for designing
parallel algorithms. We also showed that by adjusting
the parameters and adding some other auxiliary ap-
proaches such as pruning technique, the MDC could
become much more efficient. To discuss the structures
and the mechanisms of the MDC, we used the algo-
rithms of the following problems: the convex hull prob-
lem of discs, the upper envelope problem of segments,
the farthest neighbors problem of convex polygons, and
the row maxima problem of totally monotone matrices.
The last two algorithms are first presented. We showed
that by using the MDC the results of the above problem
could be improved significantly. Our discuss is based on
the EREW PRAM, but the conclusions can be applied
to any parallel computation models.

References

[1] A. Aggarwal, M.M. Klawe, S. Moran, P. Shor, and R.
Wilber, “Geometric applications of a matrix-searching al-
gorithm,” Algorithms, no.2, pp.195–208, 1987.

[2] M.J. Atallah and S.R. Kosaraju, “An efficient parallel al-
gorithm for the row minima of a totally monotone matrix,”
J. Algorithms, vol.13, no.3, pp.394–413, 1992.

[3] W. Chen and K. Wada, “On computing the envelope of
segments in parallel,” Proc. 1998 International Conference
on Parallel Processing, 1998.

[4] W. Chen, K. Wada, K. Kawaguchi, and D.Z. Chen, “Find-
ing the convex hull of discs in parallel,” International J.
Computational Geometry and Applications, vol.8, no.3,
pp.305–319, 1998.

[5] W. Chen, T. Masuzawa, and N. Tokura, “Find all farthest
neighbors in convex polygons in parallel,” IEICE Technical
Report, COMP93-11, 1993.

[6] M.T. Goodrich, “Using approximation algorithms to design
parallel algorithms that may ignore processors allocation,”
Proc. 34nd Annual Symposium on Foundations of Com-

puter Science, pp.711–722, 1991.
[7] M.T. Goodrich, S.B. Shauck, and S. Guha, “Parallel meth-

ods for visibility and shortest-path problems in simple poly-
gons,” Algorithmica, vol.8, no.5/6, pp.461–486, 1992.

[8] S. Guha, “Parallel computation of internal and external
farthest neighbors in simple polygons,” J. Computational
Geometry & Applications, vol.2, no.2, pp.175–190, 1992.

[9] D. Hart and M. Sharir, “Nonlinearity of davenport-schinzel
sequences and of generalized path compression schemes,”
Combinatorica, no.6, pp.151–177, 1989.

[10] J. Hershberger, “Finding the upper envelope of n line seg-
ments in O(n log n) time,” Inf. Process. Lett., vol.33, no.4,
pp.169–174, 1989.

[11] J. JaJa, An Introduction to Parallel algorithms, Addison
Wesley Publishing Company, 1992.

[12] M. Sharir and P.K. Agarwal, Davenport-Schinzel Sequences
and Their Geometric Applications, Cambridge University
Press, 1995.

[13] S. Suri, Computing geodesic furthest neighbors in simple
polygons, J. Comput. Syst. Sci., no.39, pp.220–235, 1989.

[14] M. Yoshimori, W. Chen, and N. Tokura, “An efficient
convex hull parallel algorithm for discs,” IEICE Trans.,
vol.J78-D-I, no.5, pp.501–503, May 1995.

Wei Chen received the B.A. degree in
mathematics from Shanghai Marine Uni-
versity in 1982, and received M.E., and
Ph.D. degrees from the Department of In-
formation Engineering, Faculty of Engi-
neering Science, Osaka University in 1991
and 1994. Since 1994 she has been work-
ing at the Department of Electrical and
Computer Engineering, Nagoya Institute
of Technology. She is now an associate
professor of that university. Her research

interests include parallel and distributed computing, computa-
tional geometry and graph theory. She is a member of ACM,
IEEE, LA Symposium and IPSJ.

Koichi Wada graduated in 1978
from the Department of Information En-
gineering, Faculty of Engineering Science,
Osaka University, and received his M.S.
and Ph.D. degrees both from the same
university in 1980 and 1983, respectively.
He was a research associate at Osaka Uni-
versity during 1983–1984. In 1984 he
joined Nagoya Institute of Technology,
where he is currently a professor in the
Department of Electrical and Computer

Engineering. He was a visiting associate professor at University
of Minnesota, Duluth and University of Wisconsin, Milwaukee
during 1987–1988. His research interests include graph theory,
parallel/distributed algorithms and VLSI theory. Dr. Wada is a
member of IEEE, ACM, LA Symposium, Japan SIAM and IPSJ.

