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It is a furidamental task to determine the distribution of basic random variables in structural reliability evaluation. In the present paper, a three-

parameter distribution, directly defined in terms of mean value, deviation and skewness, is suggested. The new distribution can be applied (1) as a

candidate distribution in fitting the statistical data of basic variables and generally presenting two-parameter distributions with small skewness, (2) to

realize normal transformation and generate random samplings for random variables with unknown cumulative distribution functions in order to include

them into structural reliability analysis, and (3) to provide a moment reliability index for the cases where the first-three moments of the performance

function can be easily obtained. Some numerical examples are presented, the simplicity, generality and flexibility of the distribution are investigated,

the applicability and efficiency of the distribution are demonstrated, and the distributions of some basic random variables are discussed.
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1. INTRODUCTION

In structural reliability evaluation, the basic random variables, which rep-
resent uncertain quantities, such as loads, environmental factors, material
properties, structural dimensions and variables introduced in order to ac-
count for modeling and prediction errors, are generally assumed to have a
known cumulative distribution function (CDF) or probability density func-
tion (PDF), It is a fundamental task to determine the distribution of the basic
random variables.

In order to determine the distribution of a basic random variable, the
basic method is to fit the histogram of the statistical data of the variable by
selecting a candidate distribution'"!. A Bayesian approach in which the distri-
bution is assumed to be a weighted average of all candidate distributions in
which the weights representing the subjective probabilities of each candidate
being the true distribution, was suggested by Der Kiureghian & Liu®?. The
problem arises as to how to select the candidate distributions and the
weights.

As candidate distributions selected to fit the statistical data of a basic
random variable, two-parameter distributions such as the well known nor-

mal, lognormal, Weibull and Gamma distributions are often used, in which

the parameters of the candidate distribution are generally determined from
the mean value and deviation of the statistical data. After the two parameters
are determined, the distribution form and the high-order dimensionless cen-
tral moments, such as skewness, will be determined, and which may not be
the same as those of the statistical data of the random variable.

Using the practical data collected by Ono et al.*!, two histograms repre-
senting the uncertainty included in the properties of H-shape structural steel
are shown in Fig. 1, where Fig.1.a corresponds to the section area and Fig.1.b
the residual stress at the flange. From Fig.1, one can see that the coefficient
of variation corresponding to Fig.1.a is very small (0.0514) while the skew-
ness is so lafge (0.7085), and the coefficient of variation corresponding to
Fig.1.b is very large (0.7492) while the skewness is not quite large (0.823).
The skewness of -normal, lognormal, Weibull and Gamma distributions that
have the same mean value and deviation of the data in Fig.1.a are readily
obtained as 0, 0.1555, -0.9121 and 0.1024 respectively, and none of them
can match the true skewness (0.7085) of the data. Similarly, the skewness of
normal, lognormal, Weibull and Gamma distributions that have the same
mean value and deviation of the data in Fig.1.b are obtained as 0, 1.7819,

0.6834 and 1.4984 respectively. One can also see that none of them can
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Fig. 1 Two Histogram Examples of Practical Data

match the true skewness (0.823) of the data. Therefore, the two-parameter
distributions are not flexible enough to reflect the skewness of statistical data
of a random variable, and distributions which can be determined by effec-
tively using the information of skewness as well as the mean value and de-
viation of the statistical data are required.
In the present paper, a three-parameter distribution, directly defined in
terms of mean value, standard deviation and skewness, is suggested. The
.new distribution, having characteristics of simplicity, generality and flexibil-
ity, can be applied as a candidate distribution in fitting the statistical data of
basic random variables and generally presenting two-parameter distributions
‘with small skewness, and to realize normal transformation and generate ran-
“dom samplings for random variables with unknown CDFs in order to include

them into structural reliability analysis.

2. A THREE-PARAMETER DISTRIBUTION

As ground rules for definition of the three-parameter distribution, the follow-

ing requirements are stipulated:

(1) Flexibility. -- The distribution should be flexible enough to effectively
reflect the characteristics of skewness, i.e., beside the two parameters
determined form the mean value and deviation, the third parameter
should effectively include the influence of skewness.

(2) Simplicity. -- The procedure needed for determining the parameter and
computing the PDF/CDF of the distribution should be convenient.

(3) Generality. -- The distribution should be generally effective for a large
range of skewness, and able to be used to generally present two-param-
eter distributions using their first three moments.

In order to satisfy the three requirements above, a three-parameter distri-

bution is defined using the following CDF and PDF:

Fx)= tp[j]z(\/ 1+22% + 44555 -V —2/12)] )

9[217(\/1 24 v aai gt V- 2/12)]

6\/1 +22%+ 4/1(%)

fx= 2

in which @ and ¢ are the CDF and PDF of a standard normal random vari-
able, i, oand A are the three parameters of the distribution.
In order to make Eqs. 1 and 2 operable, A should be limited in the

range of | /1| <1/42 _ The random variable x is defined in the following

ranges:
x-
—esigbe Lo1) for 1< 0 (3a)
x-
_z%—%is o.'uSw for A>0 (3b)

From Eqs. 1 and 2, the relationship between the random variable x and

the standard normal random variable u can be easily understood as

14222+ 420355 -V1-24%) )
x=0(-A+V1-2A2 u+Au)+p (5)

Using Eq. 5, the first three moments of x are obtained as:

Hx=u | £(x-n)7]=o? | ©

E[(f%”)s} =64-42° @

From Eqgs. 6 and 7, one can see that the mean value and the standard
deviation of x are equal to the parameters g and o, respectively of the
distribution. The third dimensionless central moment, i.e., the skewness,
is only a function of parameter 2 and is independent of u and o. Therefore,
the distribution can be determined by three parameters, mean value g,
standard deviation o and skewness ¢, of a random variable. )

According to Eq.4, the normal transformation is simply realized using
only the first three moments of the variable. Equation 4 is essentially the
third-moment standardization function!,

For | /1| <<1 , the item of A% in the right of Eq. 7 can be neglected and

then, the parameter A can be simply approximated as
A=l @®)

In order to investigate this approximation, the variations of parameter
A with respect to skewness &; obtained using both Eqs. 7 & 8 are depicted
in Fig. 2. From Fig. 2, one can see that when the absolute value of skew-
ness is small (e.g. |u3|S 1), A is approximately proportional to «,, and

Eq. 8 approximates Eq.7 very well in the range of |ot3|< 1 .
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Fig.2  Relationship between A and .,
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Substitute Eq.8 into the Egs. 1 and 2, a simple three-parameter distri-

bution can be obtained.

F(x) = w{a%(\/ 9+1Lod+ 60,55 -1/9-13 )] o

303{0%3(\/9 + %a% +6a3(x;'u) - \/9—%(1% )]
fx=

= (10)
G\/9+%a§+6a3(x—o.l£)
Definition range of x:
x—u
—es X _-2%3—1-‘20:3 for @, <0 (11a)
-3 1 2 Hco
G, 25T for o, >0 (11b)

Particularly, for ,=0, the definition range of x can be easily under-
stood as -00<(x-p)/0<,%. For a,=-1, the definition range of x can be ob-
tained as - 00<(x-p)/0<1.583 and for &,=1, -1.583<(x-p)/o< 0.

The relationships between x and u are expressed as:

uza%(\/9+%a§+6a3(#) «\/9—%0@) (12)

x:o‘(—éa; +%,/9—%oc% u+%oc3u2)+,u (13)

The first three moments are obtained as:

Hxl=u , H(x-w)’]-o? ﬁ[(ﬁ”ﬂﬂz (14)

From Eq. 14, one can understand that the mean value, standard devia-

tion and skewness of x are equal to the three parameters y, o and a,, re-
spectively, of the distribution. That is to say, the distribution is directly
defined in terms of mean value, standard deviation and skewness of a ran-
dom variable. Since the distribution in Eqs. 9 and 10 is defined in terms of
the CDF and PDF of a standard random variable which is considered most
common in practical use, the CDF/PDF are convenient to compute. There-
fore, the distribution satisfies the requirements of simplicity described pre-
viously.

For a standardized random variable x =(x-p)/o, the standard form of

Eqs. 9 and 10 can be easily given as

0-5_|l|||l11l!IlI[|lIllllllllllll|I!!IIII
0(3:0.0
——-o—a3=—042
—A—a}:—0.4
3=—0.6
—D—oc3=—0.8

PDF

1III|TIII|I!IIIYIII|I\I
l‘ %

=]

I

(=

04

i

03

0.2

0.1

RN EEERE NN NN RN

et b b

Y
-4 -3 -2 -1 0- 1 2 3

»

Fig. 3 PDF of the Standard Three-Parameter Distribution (a,<0)

F(x)= 0[0‘%(\/9 + %a% +6063x, — \/9 - %oc% )] a5s)

34&5(\/9 +Jod+ 6oy, —\/9-1ad)

\/9 + %a% + 6013

fx) = 16)

Since Egs. 9 and 10 are very simple and are defined directly in terms
of the mean value, standard deviation and skewness of a random variable,
the distribution is proposed as the thre¢-parameter distribution in the
present paper.

Particularly, when «, approaches 0, the limit of Eq. 9 can be obtained

as

iy [F) = 5] an

That is to say, the distribution approaches normal distribution when
the skewness approaches 0.

The PDFs of the standard three-parameter distribution for >0 and
,<0 are shown in Figs. 3 and 4. When ,=0, the PDF degenerates as that of
the standard normal distribution and is depicted as a thick solid line in Figs.
3 and 4. From Figs. 3 and 4, one can see that the distribution reflects the
characteristics of skewness obviously. Therefore, the distribution satisfies
the requirements of flexibility described previously. As investigated in the
ensuing sections, the distribution also satisfies the requirements of general-

ity described previously.

3. APPLICATIONS AND INVESTIGATIONS
3.1 Application as a Candidate Distribution

In order to investigate the efficiency of the proposed three-parameter
distribution in fitting statistical data of a random variable, the first example
uses the practical data of H-shape structural steel described in the introduc-
tion. The fitting result of the histogram of the ratio between measured values
and nominal values for the section areas is shown in Fig. 5, in which the
PDFs of the normal and lognormal distributions whose mean values and de-

viations are equal to those of the data, and the PDF of the proposed three-
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Table 1 Results of x ? Test for Section Area
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Fig. 6 Data Fitting for the Residual Stress of H-Shape Structural Steel

Table 2 Resuits of x 2 Test for Residual Stress

Intervals Freq. Predicited Frequency Goodness of fit Intervals Freq. | Predicited Frequency Goodness of fit
Nor. Log.  Pres. Nor. Log.  Pres. Nor. Log.  Pres. * Nor. Log.  Pres.
<0.908 9 387 353 17.1 228 196 3.83 <0.1H11 15 326 654 235 | 948 109  3.08
0.908-0.938 | 85 69.3 722 859 354 227 001 0.111-0.222 72 454 732 619 ] 156 0.02 1.66
0.938-0.967 | 181 123 129 154 268 208 467 0.222-0.333 88 670 959 711 | 657 066 154
0.967-0.996 | 155 160 162 166 013 028 079 0.333-0.444 54 716 660 658 | 433 217 211
0.996-1.025 | 141 150 146 131 054 017 072 0.444-0.555 38 554 371 442 | 544 002 0.88
1.025-1.054 | 66 102 975 83.1 12.9 102 354 0.555-0.667 31 310 195 252 | 000 675 134
1.054-1.083 35 50.5 49.1 44.5 4.77 406 203 0.667-0.778 16 12.5 10.1 12.6 0.96 3.40 0.89
1.083-1.113 | 34 182 193 21.1 13.6 1.2 790 0.778-0.889 3 367 529 576 | 012 099 132
>1.113 5 4.75 5.95 8.96 | 6.67 228 038 >0.889 3 091 632 390 | 4.81 175  0.21
Sum 718 | 718 718 718 91.8 70.8 239 Sum 320 320 320 320 473 267 130

Note: Nor. = Normal, Log. = Lognormal, Pres. = Present

parameter distribution Eq. 10 whose mean value, deviation and skewness are

equal to those of the data, are depicted. Figure 5 reveals the following:

(1) The PDF of the normal distribution has the greatest difference from the
histogram of the statistical data among the three distributions. Since nor-
mal distribution is a symmetric distribution (0O skewness), it obviously
can not be used to fit the histogram that has such a large skewness
(0.7085).

(2) The PDF of the lognormal distribution is also very different from the
histogram of the statistical data. Although the lognormal distribution
can reflect skewness in some degree, the skewness is dependent on the
coefficient of variation. Since the coefficient of variation for this data is
very small (0.051), the skewness of the lognormal distributions corre-
sponding to this coefficient of variation is too small (0.1555) to match
that of the data (0.7085).

(3) Since the skewness of the three-parameter distribution is equal to that of
the statistical data, it fits the histogram much better than the normal and
lognormal distributions.

The results of the Chi-square test of this data are listed in Table 1, in

which the goodness of the fit test is obtained using the following equation“]:

T= f —i(O'E_E’) (18)

i=1

where O, and E| are the observed and expected frequencies, respectively. k is

Note: Nor. = Normal, Log. = Lognormal, Pres. = Present

the number of categories used , and T is the goodness of the fit test.

From Table 1, one can see that the goodness of the fit test of the pro-
posed distribution (23.86) is much smaller than those of normal (91.80) and
lognormal (70.76) distributions. That is to say, the proposed distribution is
more suitable to this statistical data.

Similarly, the fitting result of the histogram of the ratio between mea-
sured residual stress and yield stress is shown in Fig. 6, the results of the Chi-
square test of this data are listed in Table 2. From Fig. 6, one can see that
since the skewness of the lognormal distributions corresponding to this data
(1.7819) is much larger than that of the data (0.7492), the proposed distribu-
tion fits the histogram much better than the normal and lognormal distribu-
tions. From Table 2, one can see that the goodness of the fit test of the pro-
posed distribution (13.03) is much smaller than those of normal (47.32) and
lognormal (26.77) distributions. That is to say, the proposed distribution is

more suitable to this statistical data.

3.2 Distributions of Some Variables Used in Structural Reliability
As an application in presenting the distributions of some random vari-
ables used in structural reliability, the uncertainties included in some proper-
ties of structural steel are analyzed using the statistical data collected by Ono
etal”. The data were collected from 1030 papers and reports published in

the journals and reports of the following institutions during the past 30
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3
years™:

Architecture Institute of Japan (AlJ),

Japanese Society of Civil Engineers (JSCE),
Japanese Society of Steel Construction (JSSC),
American Society of Civil Engineers (ASCE),
Welding Research Council, etc.

Therefore, the data have quite good generality to reflect the uncertain-
ties of the basic variables. The statistical results for some basic variables are
listed in Table 3. In Table 3, the yield stress o, ultimate stress g, Young's
modulus E and elongation correspond to SS41 material™' without distinc-
tion of the section types; the section area and thickness coneépond to rolled
and welded H-shape steel without distinction of the kind of steel; the re-
sidual stress o, corresponds to the part of the flange of the welded H-shape
steel, and Poisson's ratio is for all kinds of steel and all types of sections
because the amount of data are very limited.

Since these variables were generally treated as normal or lognormal
distribulions“', in order to investigate which distribution fits the statistical
data better, the results of the Chi-square test for normal, lognormal and the
three-parameter distributions are listed in Table 3. In Table 3, the
goodnesses of the fit test are obtained from Eq. 18, and the smallest
goodnessses of fit among the three distributions are underlined. From Table
3, one can see that
(1) The skewnesses of all the random variables are positive. According to

the statistical experience of the writers of the present paper, the basic

random variables presenting the uncertainties included in structural
properties generally have positive skewnesses.

(2) For Young's modulus, the goodness of fit of the normal distribution
(20.8) is smaller than those of lognormal (25.4) and the three-parameter
(27.0) distributions, while for elongation, the goodness of fit of the log-
normal distribution (7.24) is smaller than those of normal (61.3) and the
three-parameter (10.5) distributions. That is to say, the normal and log-
normal distributions are suitable to Young's modulus and elongation,
respectively.

(3) For yield stress, Poisson's ratio, section area and residual stress, the

goodness of fit test of the proposed three-parameter distribution (13.4,

Table 3 Distributions of Some Basic Random Variables

Basic Variables| N k Moments Goodness of fit test

u o o, | nor. log. pres.
o, (tcm?) 2195 3.05510364 10512 721 | 183 | 134
o, (tem?) 1932 4549 £ 0.317 1 0.153| 743 | 49.2 | 55.1

E (10*t/cm?) 626
Elongation (%) { 1572
Poisson's Ratio | 165
Section Area*' | 718
g, * 320
Thickness*! 884

2.082 | 0.096 | 0.163]| 20.8 | 254 | 27.0
282215216 | 0491} 61.3 | 7.24 | 105
0.283 1 0.029 1 0.639| 315 | 16.1 [12.6
0.990 }0.051 10.709 | 91.8 ] 70.8 | 23.9
0.356 | 0.193] 0.823| 473 |26.7 | 13

0.986 }0.045]0.649] 115 | 84.8 | 409

~N 0 0NN NN

Note: *1 Measured value/Nominal value
*2 Measured residual stress/ Measured yield stress
Nor. = Normal, Log. = Lognormal, Pres. = Present

12.9,23.9, 13.9) are much smaller than those of the normal (72.1,31.5,
91.8,47.3) and lognormal (18.3, 16.1, 70.8, 26.7) distributions. It means
that the three-parameter distribution is more suitable for these variables
than normal and lognormal distributions.

(4) For ultimate stress and thickness, although the goodness of fit test of the
three-parameter distributions is relatively small among the three distri-
butions, the goodness of fit test is still quite large( 55.1 and 40.9). This
may be because the first three moments are not enough to express the
probability characteristics of the random variables. The use of higher

order moments may be required and further studies are needed.

3.3 Comparison with some two-parameter distributions

Using the first three moments of a specific two-parameter distribution, a

three-parameter distribution can be easily defined with the aid of Egs. 9

and 10 or Egs. 15 and 16, and the three-parameter distribution can be con-

sidered as an approximation or a presentation of the two-parameter distri-
bution since they have the same first three moments. In order to investigate
the generality and flexibility of the proposed three-parameter distribution,
the second example considers the comparison of PDFs with the Gamma,

Weibull and lognormal distributions, all of which are two-parameter distri-

butions.

The results of the comparison are depicted in Figs. 7, 8 and 9, respec-
tively. InFigs. 7, 8 and 9, the PDFs of the Gamma, Weibull and lognormal
distributions are depicted as thin solid lines and those of the three-param-
eter distribution, which is defined using the same first three moments of
the corresponding two-parameter distribution, are depicted as thick dash
lines. For each two-parameter distribution, the comparisons are conducted
in four cases of different values of coefficients of variation V=0.1,0.2,0.3
and 0.4, which corresponds to the mean values of u= 25, 30, 35 and 40
respectively.

Figures. 7, 8 and 9 reveal the following:

(1) Except in the case in which V=0.4 of the lognormal distribution, the
thick dash lines almost coincide with the thin solid lines in all the in-
vestigated cases of the three two-parameter distributions. That is to
say, the three-parameter distribution can be generally used to approxi-
mate or present a two-parameter distribution using the first three mo-
ments of the distribution.

(2) For the case in which V=0.4 of the lognormal distribution, the differ-
ences between the thick dash line and the thin solid line are significant
when x is smaller than 30. In this case the skewness is equal to 1.264
which is beyond the simplification condition |G3 l <1 of Egs. 9 and
10. This is a caution when one uses the proposed three-parameter dis-

tribution.

3.4 Application as a moment reliability index

For a performance function G(X), where X is the vector of basic random
variables, if the first three moments of G(X) can be obtained, the probability
of failure, which is defined as the probability of G <0 can be readily ob-
tained using the proposed three-parameter distribution.

For standardized random variable x =(G-41,,)/0, a standard normal ran-
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dom variable u can be transformed using the relationship Eq. 12:
u:a’—3(\/9+%a§+6a3xs ~\/9—%a§) (19)
Since
Prob[G < 0] = Prob{x_v <- %(G;—] = Prob{xs <- ﬂSM] (20)

a third-moment reliability index can be given as

B = 01;3(;(\/9 - %a%c - \/9 M %O@G = 6036Pswm ) @n

where f3, is the second-moment reliability index, @, is the skewness of
G.

If G(X) is approximated as a second-order surface, the first three mo-
ments can be easily obtained and Eq. 21 can be directly used as a second-
order third-moment reliability index. In many cases, the performance func-
tion is expressed as a linear sum of independent random variables in the

original space:
GX)= ,§ axj 2)

the first three moments of G(X) can also be easily obtained as

He= ,5::1 ai; (23a)
ol= ,-i‘l alo? (23b)
0360 = ,2'1 “,3’6,3‘0‘3/‘ (23¢)

then the third-moment reliability index can be easily obtained using Eq.
21. .
The third example considers the following performance function, a

plastic collapse mechanism of a one-bay frame'®!.

GX)=x| +2xy + 2x3+ x4 — 5x5— 5x¢ 24)

The variables x, are statistically independent and lognormally distributed
and have means of y =..=u,=120, #,=50 and =40, respectively, and
standard deviations of 6,=...=0,=12, 6,=15 and 6,=12, respectively.

Because all of the random variables in the performance function shown
in Eq. 24 have a known PDF/CDF, the reliability index can be readily ob-
tained using the First-Order Reliability Method(FORM)'"\. The FORM re-
liability index is ,=2.348, which corresponds to a failure probability of
P,=0.00943. The true value of the failure probability is P,=0.0121'.

The skewnesses of variables x, can be easily obtained as a, =...=a,,=
0.301, a,=,=0.927, respectively. Using Eq.23, the mean value, standard
deviation and skewness of G(X) are obtained as =270, 6,=103.27 and
«,;=-0.5284. Using the first three moments of G(X), the second- and third-
moment reliability index are readily obtained as f,,=2.6145 and §3,,=2.2674
respectively. The probability of failure corresponding to the third-moment
reliability index is equal to 0.0117, which is closer to the true value 0.0121
than that of FORM.

3.5 Application to Reliability Analysis Including Variables with un-
known CDF

In first- and second-order reliability methods(FORM/SORM), the ba-
sic random variables are assumed to have a known CDF because the normal
transformation (x-u transformation) and its inverse lran.sformalion (u-x
transformation) are generally realized by using the CDF of the random vari-
ables. In practical applications, the cumulative distribution functions of
some random variables are unknown, and the probabilistic characteristics of
these variables may be expressed using only statistical moments. In order to
include the random variables with unknown CDF into FORM/SORM, the x-
u and u-x transformations can be easily realized using u, o, and a, instead

of the cumulative distribution function with the aid of Eqs. 12 and 13, in
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which the rélationship between x and u is expressed as an explicit function
of u, o, and a,. This implies that all the random variables with unknown
CDFs are assumed to obey the proposed three-parameter distribution.

Furthermore, since random variable x is expressed as an explicit func-
tion of u as shown in Eq. 12, random samples can be easily generated based
on those of normal random variable u, which are considered to be among the
most common in practical use. By this method, the random variables with
unknown CDFs can also be included into Monte-Carlo simulation of struc-
tural reliability analysis.

The fourth example considers the following simple performance func-
tion, a simple compressive state of a structural column.

GX)=Ax| x;—x3 (25)
Where A is the nominal section area, x, is a random variable presenting the
uncertainty included in A, x, is yield stress and x, is a compressive load.
Assume the column is made of H-shape structural steel with a section of
H300X 200'® and material of SS41!, then A=72.38¢m?. The CDFs of x,
and x, are unknown, the only information about them ére their first three
moments as listed in Table 3, i.e., #,=0.990, 6,=0.051, «,,=0.709,
1,=3.055 t/em?, 0,=0.364, @,,=0.512. x, is assumed as a lognormal vari-
able with mean value ,=150¢ and standard deviation 5,=45.

Although the CDFs of x, and x, are unknown, since their first three
moments are known, the x-u and u-x transformations can be easily realized
using Eqs. 12 and 13 instead of Rosenblatt transformation and FORM can
be readily conducted with results of 8,=1.2635, P=0.1032. Furthermore,
using Eq.13, the random sampling of x, and x, can be easily generated
without using their CDFs, and the Monte-Carlo simulation can be thus eas-
ily conducted. The probability of failure is obtained as P]:O. 1012 when the
number of samplings is taken to be 10,000.

4. CONCLUSIONS
A three-parameter distribution is suggested. The new distribution, hav-
ing characteristics of simplicity, generality and flexibility, can be applied in
many aspects of structural reliability. From the investigation of this paper, it
is found that:
(1) The distribution can be used as a candidate distribution in fitting the sta-
tistical data of basic random variables. Since the distribution reflects the
. skewness of a random variable effectively, it generally fits the histo-
grams of basic variables better than two-parameter distributions.

(2) Some two-parameter distributions, such as Gamma, Weibull and log-

normal distributions that have small skewnesses, can be generally pre-
sented by the proposed three-parameter distribution.

(3) For some performance functions, such as second-order performance
functions in standard space, or linear performance functions in origi-
nal space, of which the first-three moments can be easily obtained, the
proposed distribution can be easily applied to obtain a moment reli-
ability index.

(4) Since the random variable x that obeys the proposed distribution is ex-
pressed as an simple explicit function of u in terms of the first-three
moments, it is qliite easy to apply it to iriclude random variables with
unknown CDFs into FORM/SORM analysis and Monte-Carlo simula-
tion.

(5) The basic random variables presenting the uncertainties included in
structural properties generally have positive skewnesses. Normal and
lognormal distributions are suitable to Young's modulus and elongation,
the proposed distribution is generally suitable to yield stress, Poisson's
ratio, section area and residual stress.

(6) The range of the third dimensionless central moment, i.e., the skewness
a,, for which the proposed three-parameter distribution is operable, is
|0!3| <1 . Further study is required for random variables that have an

extremely large absolute value of skewness.
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