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Vector Quantization of Speech Spectral Parameters

Using Statistics of Static and Dynamic Features

Kazuhito KOISHIDA†∗, Keiichi TOKUDA††, Takashi MASUKO†,
and Takao KOBAYASHI†, Regular Members

SUMMARY This paper proposes a vector quantization
scheme which makes it possible to consider the dynamics of input
vectors. In the proposed scheme, a linear transformation is ap-
plied to the consecutive input vectors and the resulting vector is
quantized with a distortion measure defined by the statistics. At
the decoder side, the output vector sequence is determined using
the statistics associated with the transmitted indices in such a
way that a likelihood is maximized. To solve the maximization
problem, a computationally efficient algorithm is derived. The
performance of the proposed method is evaluated in LSP pa-
rameter quantization. It is found that the LSP trajectories and
the corresponding spectra change quite smoothly in the proposed
method. It is also shown that the use of the proposed method
results in a significant improvement of subjective quality.
key words: vector quantization, dynamic features, spectral
quantization, LSP parameters

1. Introduction

Efficient quantization of the spectral envelopes is a ma-
jor concern in low bit rate coding of speech. A widely
accepted method for evaluating the quantization per-
formance is to measure the spectral distortion (SD) in
each frame and then compare average SD and the num-
ber of outliers [1]. However, these values are not al-
ways indicative of the perceived distortion. One reason
for this situation is that the evolution of the spectrum
is not considered. In fact, a number of studies have
demonstrated the importance of spectral dynamics [2]–
[4]. A common technique used in these methods is to
incorporate constraints for controlling the dynamics of
the spectral parameters. Kleijn and Hagen introduced
a constraint into the distortion measure of the codebook
search in the encoder [2]. The basic idea is to penalize a
large rate of change in the quantized spectral parame-
ters compared to the original. In [3], Knagenhjelm and
Kleijn presented a decoding scheme which smoothes the
trajectory of the parameters under the constraint that
the reconstructed parameters fall within the Voronoi
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regions associated with the transmitted quantization
index. Samuelsson et al. [4] used above constraints for
both the encoder and decoder.

In this paper, we present an alternative approach
to spectral quantization in which spectral dynamics is
taken into consideration [5], [6]. The proposed vector-
quantization (VQ) scheme works as follows: in the en-
coder side, a linear transformation is applied to the
consecutive input vectors. The linear transformation
used in this paper is designed so that the transformed
vector consists of static and dynamic features of the in-
put vectors. The transformed vector is then quantized
with a distortion measure defined by the statistics. In
the decoder side, using the statistics associated with the
transmitted indices, the output vector sequence is de-
termined in such a way that a likelihood is maximized.
To solve the maximization problem, a computationally
efficient algorithm is derived. The performance of the
proposed method is evaluated in LSP parameter quan-
tization. It will be shown that the proposed method
can generate the smoothly varying spectra and, as a
result, improve the subjective quality.

This paper is organized as follows. The proposed
VQ scheme is described in Sect. 2. In Sect. 3, we derive
a time-recursive algorithm for computing the output
vectors. Section 4 provides the experimental results.
In Sect. 5, several aspects of the proposed scheme are
discussed. Finally, conclusions are given in Sect. 6.

2. VQ Using Statistics of Linear Transform of
Consecutive Input Vectors

2.1 Preliminaries

A K-dimensional input vector at time t is denoted by
xt = [xt(1), xt(2), · · · , xt(K)]′ where the superscript ′

indicates matrix transpose. Let us consider a vector
Xt which consists of consecutive input vectors around
t (from time t − L− to t+ L+):

Xt =
[

x′
t−L− , · · · , x′

t−1, x
′
t, x

′
t+1, · · · , x′

t+L+

]′
.(1)

Using an N -by-S matrix w (S = (L− + L+ + 1)K)
whose row vectors are independent, we define a vector
zt as a linear transformation of Xt, i.e.,

zt = wXt (2)
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where the dimension of zt, N , must satisfy N > K.
The matrix w can be chosen according to the charac-
teristics of the input vectors. As an example, let the
vector zt include the current vector and its time deriva-
tive which is approximated by the first-order difference:

zt = [x′
t,∆x′

t]
′ (3)

where

∆xt = g (xt − xt−1) (4)

and g is a weighting coefficient. This can be accom-
plished by setting L− = 1, L+ = 0 and

w =
[

0K×K IK×K

−gIK×K gIK×K

]
(5)

where IK×K and 0K×K are the K-by-K identity ma-
trix and K-by-K null matrix, respectively.

In the proposed method, the vector zt is quantized
at the encoder and its index is transmitted to the de-
coder.

2.2 Encoding Process

The codebook C is modeled as a family of Gaussian
probability density functions Pi(·) such that each cell
is represented by an N -by-1 mean vector mi and N -
by-N covariance matrix U i:

C = {Pi(·) | 1 ≤ i ≤ I} , (I : codebook size) (6)

where

Pi(z) = N (z; mi, U i) (7)

and N is given by

N (z; mi, U i)

=
1

(2π)
N
2 |U i| 12

exp
[
−1
2
(z − mi)′U−1

i (z − mi)
]

.

(8)

The optimum index at time t, it, is found according to

it = arg min
1≤i≤I

d(zt, mi) (9)

where d(zt, mi) is the distortion measure between zt

and mi defined by

d(zt, mi) = − logPi(zt)
= − logN (zt; mi, U i)

=
1
2
(zt − mi)′U−1

i (zt − mi)

+
1
2
log |U i|+ N

2
log 2π. (10)

Instead of Eq. (10), a simplified one such as the Maha-
lanobis distance or the Euclidean distance is also appli-
cable.

The criterion for designing the codebook C is to let
overall distortion E[d(zt, mit)] be minimized over all
Pi(·), where E[·] denotes the expectation. In order to
design the codebook, the conventional algorithm, such
as the EM algorithm and the LBG algorithm, can be
used.

2.3 Decoding Process

For a given index sequence it (t = 1, · · · , T ), the output
sequence X̂ = [x̂′

1, x̂
′
2, · · · , x̂′

T ]
′ is determined in such

a way that the following likelihood is maximized with
respect to X̂:

P (Ẑ|C) =
T∏

t=1

Pit(ẑt) (11)

where

Ẑ = [ẑ′
1, ẑ

′
2, · · · , ẑ′

T ]
′ (12)

and

ẑt = wX̂t (13)

X̂t = [x̂′
t−L− , · · · , x̂′

t, · · · , x̂′
t+L+

]′. (14)

The maximization of Eq. (11) is equivalent to the max-
imization of

logP (Ẑ|C) = log
T∑

t=1

Pit(ẑt)

= −1
2

T∑
t=1

(ẑt − mit)
′U−1

it
(ẑt − mit)

−1
2

T∑
t=1

log |U it | −
NT

2
log 2π (15)

with respect to X̂. The first term of Eq. (15) can be
written in matrix form:

ε(X̂|C) =
T∑

t=1

(ẑt − mit)
′U−1

it
(ẑt − mit)

= (WX̂ − M)′U−1(WX̂ − M) (16)

where

M = [m′
i1 , m

′
i2 , · · · , m′

iT
]′ (17)

U = diag[U i1 , U i2 , · · · , U iT ] (18)
W = [w′

1, w
′
2, · · · , w′

T ]
′ (19)

and

wt =
[
0N×(t−L−−1)K , w, 0N×(T−t−L+)K

]
. (20)

The maximization of Eq. (15) leads to the minimization
of Eq. (16) with respect to X̂. Taking the derivative of
Eq. (16) with respect to X̂ and setting the result equal
to zero, we can determine the optimal vector sequence
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X̂ by solving

RX̂ = r (21)

where

R = W ′U−1W (22)
r =W ′U−1M . (23)

Since R is a TK-by-TK matrix, direct solution of
Eq. (21) requires O(T 3K3) operations. By utilizing the
fact thatR is a band matrix with (L−+L++1)K band-
width, the complexity of O(T (L−+L++1)2K3) is ob-
tained using an efficient technique such as the Cholesky
decomposition.

3. Time-Recursive Algorithm for Computing
Output Vectors

For spectral quantization in speech coding, the forego-
ing algorithm has several disadvantages listed below:

• A large value of T causes a large coding delay as
well as a high computational complexity, which is
generally unacceptable in most speech-coding ap-
plications.

• Since the output vectors are independently ob-
tained every T -frame, the continuity of the output
vectors between neighboring frames often breaks
by a small value of T .

It is therefore desirable to determine the output vectors
time-recursively with a small frame-delay. This can be
achieved by a time-recursive algorithm derived in this
section.

Before showing the time-recursive algorithm, we
describe a recursive algorithm which is an alternative
method to solve Eq. (21). The recursive algorithm is
then developed into the time-recursive algorithm.

3.1 Recursive Algorithm

Let us consider replacing the elements of W , w, with
w from time t to T , and this yields the following matrix
W

(t−1)
:

W
(t−1)

=
[
w′

1, · · · , w′
t−1, w

′
t, w

′
t+1, · · · , w′

T

]′
(24)

where

wt = [0N×(t−L−−1)K , w, 0N×(T−t−L+)K ]. (25)

In this case, the set of equations corresponding to
Eq. (21) can be written as

R
(t−1)

X
(t−1)

= r(t−1) (26)

where

R
(t−1)

= W
′(t−1)

U−1W
(t−1)

(27)

r(t−1) = W
′(t−1)

U−1M (28)

X
(t−1)

=
[
x′(t−1)

1 , · · · , x′(t−1)
t , · · · , x′(t−1)

T

]′
(29)

The matrix w is defined so that R
(0)
is a K-by-K block

diagonal matrix. For the transform matrixw in Eq. (5),
it is reasonable to choose

w =
[

0K×K IK×K

0K×K 0K×K

]
. (30)

Since R
(0)

is block diagonal, each element of X
(0)
,

x′(0)
t , can be obtained independently with O(K3) op-

erations (O(K) for diagonal covariance matrix).
Substituting wt for wt in Eq. (24), we can express

the set of equations corresponding to Eq. (21) as fol-
lows:

R
(t)

X
(t)
= r(t) (31)

where

W
(t)
=

[
w′

1, · · · , w′
t−1, w

′
t, w

′
t+1, · · · , w′

T

]′
. (32)

Using the above equations, we get the following rela-
tions:

R
(t)
= R

(t−1)
+ v′

tU
−1
it

vt (33)

r(t) = r(t−1) + v′
tU

−1
it

mit (34)
vt = wt − wt. (35)

It can be seen that the above relations are similar to
the time update recursion of the set of equations for
the RLS adaptive filtering [7]. On the analogy of the
derivation of the RLS algorithm, i.e., the application of
the matrix inversion lemma, we can derive a recursive
algorithm for obtaining X

(t)
from X

(t−1)
recursively.

The solution of Eq. (21), X̂, is obtained by setting X̂ =
X

(T )
.
A summary of the recursive algorithm is presented

in Table 1. In the table, the matrix P
(t)
represents

the inversion of R
(t)
. Since almost all the elements of

the vector vt equal to zero, Eq. (A.5) dominates the
computational complexity, which is O(T 2K3). If U it is
diagonal, it will be reduced to O(T 2K).

Table 1 Summary of recursive algorithm.

� = P
(t−1)

v′t (A.1)

� = vt� (A.2)

k = �
(
IN×N +U

−1
it
�
)−1

(A.3)

X
(t)

= X
(t−1)

+ k

(
U−1

it
mit − vtX

(t−1)
)

(A.4)

P
(t)

= P
(t−1) − kU−1

it
�′ (A.5)



1430
IEICE TRANS. INF. & SYST., VOL.E84–D, NO.10 OCTOBER 2001

Table 2 Summary of time-recursive algorithm.

Q = JaP
(t−1)
L J ′

a + P̃
(t)

L (B.1)

Y = JaX
(t−1)
L + X̃

(t)

L (B.2)

� = Qv′L (B.3)

� = vL� (B.4)

k = �
(
IN×N +U−1

it
�
)−1

(B.5)

X
(t)
L = Y + k

(
U

−1
it
mit − vLY

)
(B.6)

P
(t)
L = Q− kU−1

it
�′ (B.7)

3.2 Time-Recursive Algorithm

The time-recursive algorithm is derived by introducing
the sliding window concept of the RLS algorithm into
the recursive algorithm. The algorithm is capable of
updating the matrix P

(t)
and vector X

(t)
based on

the information of a finite number of frames. We note
that, while the recursive algorithm provides the optimal
output vectors for Eq. (21), the output vectors obtained
with the time-recursive algorithm are sub-optimal.

Table 2 provides a summary of the time-recursive
algorithm. In the algorithm, the matrix P

(t)

L and the
vector X

(t)

L are defined as a KL-by-KL matrix and
KL-by-1 vector, respectively, where L is the number
of frames required for updating them. Eqs. (B.1) and
(B.2) are key parts of the algorithm, in which old com-
ponents are discarded using matrix Ja:

Ja =




0K×K IK×K 0K×K · · · 0K×K

0K×K 0K×K IK×K
. . .

...
...

. . . . . . . . . 0K×K

...
. . .

. . . IK×K

0K×K · · · · · · 0K×K 0K×K




︸ ︷︷ ︸
KL

(36)

and new components are then added. In the table, P̃
(t)

L ,

X̃
(t)

L and vL are defined by

P̃
(t)

L = diag
[

0K×K , · · · ,0K×K , R̃
−1

t

]
(37)︸ ︷︷ ︸

(L−1)K

︸︷︷︸
K

X̃
(t)

L =
[
0, · · · , 0,

(
R̃

−1

t r̃t

)′ ]′
(38)︸ ︷︷ ︸

(L−1)K

︸ ︷︷ ︸
K

vL = wL − wL (39)

where

R̃t = Jbw
′
LU−1

it
wLJ ′

b (40)

r̃t = Jbw
′
LU−1

it
mit (41)

wL =
[
0N×K , · · · ,0N×K , w

]
(42)︸ ︷︷ ︸

(L−L−−L+)K

︸ ︷︷ ︸
(L−+L++1)K

wL =
[
0N×K , · · · ,0N×K , w

]
(43)︸ ︷︷ ︸

(L−L−−L+)K

︸ ︷︷ ︸
(L−+L++1)K

and

Jb =
[

0K×K , · · · ,0K×K︸ ︷︷ ︸
(L−1)K

, IK×K︸ ︷︷ ︸
K

]
(44)

It is obvious that the Eqs. (B.3) through (B.7) corre-
spond with the Eqs. (A.1) through (A.5) in Table 1,
respectively.

The value of L is determined by

L = max(Ddec, L−) + 1 (45)

where Ddec is the length of frame delay allowed in the
decoder.

The output vector at time t, x̂t is obtained as

x̂t = x
(t)
t−Ddec

(46)

where x
(t)
t−Ddec

is a vector contained in X
(t)

L

X
(t)

L =
[

x′(t)
t−(L−1), · · · , x′(t)

t

]′
. (47)

Note that, for Ddec ≥ L−, the output vector is always
chosen from the first column-vector in X

(t)

L .
The time-recursive algorithm has a computational

complexity of O(L2K3) (O(L2K) for diagonal covari-
ance). Since almost all the elements of Ja, Jb and vL

are equal to zero, Eq. (B.7) still dominates the compu-
tational complexity of the algorithm.

Finally, we mention the frame delay of the pro-
posed scheme. The overall frame delay D is given by

D = Denc +Ddec (48)

where Denc is the length of the frame delay at the en-
coder side. It is noted that Denc satisfies

Denc = L+ (49)

since the input vectors up to time (t+ L+) are needed
to compute the vector zt.

4. Experiments

In this section, we apply the proposed scheme with the
time-recursive algorithm to LSP parameter quantiza-
tion and investigate its performance.

4.1 Experimental Conditions

Speech signals sampled at 8-kHz are used for training
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(a) Original

(b) SVQ with (8+8) bits

(c) SVQ with (12+12) bits

(d) Proposed VQ with (8+8) bits and D = 20

(e) Proposed VQ with (8+8) bits and D = 10

(f) Proposed VQ with (8+8) bits and D = 5

(g) Proposed VQ with (8+8) bits and D = 1

(h) Proposed VQ with (8+8) bits and D = 0

Fig. 1 LSP trajectories (left side) and corresponding spectra (right side).

and evaluation. A 10th-order LP analysis is performed
every 10-ms using a 32-ms Hamming window. The LP
coefficients are then transformed into the LSP parame-
ters. The 10th-dimensional LSP vector is split into two
parts prior quantization: x

(l)
t and x

(h)
t which include

the first five and the remaining five LSP parameters,
respectively.

4.1.1 Conventional Method

For comparison purpose, split VQ (SVQ) is used to
quantize the vector x

(l)
t and x

(h)
t with the weighted

Euclidean distance [8]. The codebooks are trained by
the LBG algorithm.

4.1.2 Proposed Method

In the proposed method, the same transform matrix w
as Eq. (5) is applied to the input vectors, where L− = 1
and L+ = 0. The weighting parameter of g in the ma-
trix is set to 1/2 by informal listening tests. This value
gave higher performance than other values of g in the
informal tests. The transformed vectors z

(l)
t and z

(h)
t

are quantized with the Euclidean distance. Note that,
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in this case, the dimension of the quantized vectors, N ,
equals ten. It is also noted that, since Denc = L+ = 0,
the frame delay is caused only by the decoder, i.e.,
D = Ddec.

The codebooks for the proposed scheme are gen-
erated in the following procedure. The training LSP
vectors are transformed by the matrix w. Using the
transformed vectors, the LBG algorithm is performed
to generate the mean vectors of the codebook. After
the transformed vectors are encoded by the Euclidean
distance, the diagonal covariance matrix for each cell
is calculated from the mean vector and the vectors as-
signed to the cell.

4.2 LSP Trajectories, Spectra and Spectral Steps

Figure 1 shows the trajectories of the LSP parameters
and the corresponding spectra. In the figure, (A+B)
indicates that A and B bits are allocated to the first
and second splits, respectively. It is seen that the
trajectroies of the conventional quantizers move step-
wise, especially for lower bit rate. On the other hand,
the trajectories are significantly smoother in the pro-
posed method; accordingly the spectra of the proposed
quantizers change smoothly. It seems that, in the pro-
posed scheme, the system with a larger delay generates
smoother spectra.

Figure 2 shows the spectral steps before and after
quantization to verify the spectral smoothness. The
spectral steps are obtained from the same speech as
Fig. 1 and calculated from the RMS log-spectral differ-
ence between adjacent frames. It is shown from the
figure that, in the regions where the original spectral
steps change slowly, rapid changes occur in the steps
of the SVQ. This is due to the fact that the same in-
dex is often used in successive frames. On the other
hand, the spectral steps of the proposed method can
be seen to mimic the steps of the original, especially in
the steady-state regions.

4.3 Listening Test

A DMOS test was conducted to evaluate the subjective
performance of the proposed method. Six persons lis-
tened with headphone to four sentences uttered by two
male and two female speakers. The reference signal is
the original speech, and the test signals are the speech
obtained with the seven quantizers in Fig. 1. The test
speech was generated in the following way. The LP-
residual was computed using the unquantized LP coef-
ficients. The test speech was reconstructed by exciting
the quantized synthesis filter with the residual. The
synthesis filter used the LP coefficients which are con-
verted from the quantized LSP parameters. The LSP
parameters were not interpolated, i.e., they were up-
dated every 10-msec frame.

Figure 3 shows the test result including DMOS val-

(a) Original

(b) SVQ with (8+8) bits

(c) SVQ with (12+12) bits

(d) Proposed method with (8+8) bits and D = 20

(e) Proposed method with (8+8) bits and D = 10

(f) Proposed method with (8+8) bits and D = 5

(g) Proposed method with (8+8) bits and D = 1

(h) Proposed method with (8+8) bits and D = 0

Fig. 2 Spectral steps of adjacent frames. The dotted lines cor-
respond to the original spectral steps.

ues and confidence intervals (95%). It is clear that, if
the frame delay is allowed, the proposed quantizers with
(8+8) bits achieve a significant improvement over the
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Fig. 3 Results of subjective test.

SVQ with (12+12) bits. The proposed quantizer with
no delay is found to slightly outperform the SVQ with
(12+12) bits. We have observed from listening that the
reconstructed speech is quite smooth and natural in the
proposed scheme, while discontinuity is annoying in the
conventional SVQ.

Another interesting result is that there is no sig-
nificant difference in subjective performance among the
proposed quantizers with frame delay (D > 0). This
result suggests that the smooth spectra can be ob-
tained with a small delay and reasonable complexity
(e.g., O(K) for D = 1).

5. Discussions

Although the performance of the recursive algorithm
was not measured in the listening test, it can be con-
sidered to be the same as the performance of the time-
recursive algorithm with D = 20. This is because
the difference between the outputs of the recursive and
time-recursive algorithms is negligible for a large value
of D. For example, if we choose D = 20, the average
and maximum spectral distortions are 1.1 × 10−4 dB
and 5.4× 10−2 dB, respectively, for the sentences used
in the listening tests, where the parameter T of the re-
cursive algorithm is set to be the total number of frames
in one sentence.

From the test results, the proposed scheme with
D = 0 outperforms the SVQ with (8+8) bits. One rea-
son is to take the delta parameters into consideration
to determine the best index in the encoder. Another
reason is the time-recursive algorithm. While a larger
value of D gives a solution closer to the optimal one,
the algorithm still provides a reasonably good approxi-
mation of the optimal output vectors even if D = 0. In
this case, the time-recursive algorithm determines the
output vectors using the statistics of the static and dy-
namic parameters of the current and previous frames
(The number of frames in the sliding window, L in
Eq. (45), is 2 for D = 0).

The decoders in [3] and [4] also have an ability to
control the dynamics of the output vectors. An ad-
vantage of the proposed scheme over those methods is
the delta parameters. In the decoders of [3] and [4],
the delta parameters have to be estimated from the
output vectors, because they are unknown from the in-
dices. On the other hand, dynamic features are avail-
able for the decoder of the proposed scheme, since they
are transmitted together with the static features. In
addition, the output vectors of the proposed scheme
are reconstructed from statistics of both static and dy-
namic feature in such a way that the likelihood defined
in Eq. (11) is maximized with respect to the output vec-
tors. The time-recursive algorithm is one efficient way
to compute output vectors based on the above crite-
ria, and enables us to obtain the output vectors time-
recursively.

As shown in Figs. 1 and 2, the proposed scheme at
low bit rates is unable to follow the rapid changes in
some cases such as transition frames; accordingly the
intelligibility of the output speech may degrade. The
reason is that, as the bit rate is lower, the codebooks
contain fewer entries for describing rapid changes (be-
cause the number of frames with rapid changes is small
in speech). However this situation will be improved
at higher bit rates, since the codebooks accommodate
more entries for representing rapid changes, e.g., some
entries have large values of delta parameters.

In the experiments, we consistently used the pa-
rameters L− = 1, L+ = 0 and transform matrix w
defined in Eq. (5). The improved performance of the
proposed method could be achieved by larger values of
L− and L+. Further research is needed to find the best
setting.

6. Conclusions

This paper presented a VQ scheme using statistics of
linear transform of consecutive input vectors. The pro-
posed scheme was applied to LSP parameter quanti-
zation, in which our focus was on controlling the dy-
namics of the quantized parameters. It was shown that
the proposed method can generate smoothly varying
spectra and improve the subjective quality of the syn-
thesized speech. These results indicated that the pro-
posed method has the ability to appropriately control
the dynamics using statistical information.

One aspect of the proposed scheme was revealed
in this paper. We believe that the proposed scheme
is useful in other situations, such as image coding and
waveform coding, by selecting the linear transformation
function according to the input characteristics.
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