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The dynamics of the anisotropy of the Reynolds stress tensor and its behavior in decaying
homogeneous turbulence subjected to system rotation are investigated in this study. Theoretical
analysis shows that the anisotropy can be split into two parts: polarization and directional
anisotropies. The former can be further separated into a linear part and a nonlinear part. The
corresponding linear solution of the polarization anisotropy is derived in this paper. This solution is
found to be equivalent to the linear solution of the anisotropy. While proposing a method to
introduce the polarization anisotropy into an isotropic turbulence, direct numerical simulation
(DNS) of the rotating turbulence with or without the initial anisotropy is carried out. The linear
solution of the anisotropy agrees very well with the DNS result, showing that the evolution of the
polarization anisotropy is mainly dominated by the linear effect of the system rotation. With an
immediate rotation rate, the coupling effect between the system rotation and nonlinear interactions
causes an energy transfer from the region near the pole to the region near the equator in wave space.
This type of transfer causes an anisotropic distribution of the kinetic energy between the pole and
equator, which relates closely to the directional anisotropy and the two-dimensionalization. In
addition, we find that the presence of the initial polarization anisotropy does not affect the evolution
of the directional anisotropy, while the presence of the initial directional anisotropy greatly
influences the evolution of the polarization anisotropy. 2@01 American Institute of Physics.
[DOI: 10.1063/1.1398040

I. INTRODUCTION rate, and energy transfer function, are affected by the scram-
bling effect, though there are no explicit rotation terms in
Rotating flows find numerous industrial applications intheir governing equations. This effect explains why system
engineering as well as in geophysics, astrophysics, and mestation inhibits the decay of kinetic energy. Using a certain
teorology. The turbulence properties of the rotating flow inassumption, Camboet all° expressed this effect into an ex-
blade passages of radial pumps and gas or steam turbinphicit form and showed that, the stronger the scrambling ef-
determine the efficiency of these devices. Therefore, théect, the slower the decay of the kinetic energy.
study of the rotating turbulence is interesting from the view-  The third influence is a coupling effect between the sys-
points of both turbulence modeling and fundamental retem rotation and the nonlinear interactiofgoupling ef-
search. To date, a number of researchers have studied rotétct” hereaftej. It is found that, within a certain range of
ing turbulence that includes decaying homogeneousotation rates, this effect is closely related to the Reynolds
turbulence(e.g., Jacquiret al! and Mansouet al?), turbu-  stress anisotropy and the two-dimensionalization phenom-
lent shear flow(e.qg., Bardinat al® and Salhi and Camb8py  enon in rotating turbulence. However, this effect is subtle
and turbulent channel flow(e.g., Johnstonetal,®  and remains unclear. In this paper, we divide the effect of the
Kristoffersen and Anderschand Nakabayashi and Kitbh  Coriolis force into three-fold just for discussion convenience.
with theoretical, experimental, and numerical methodsln fact, the three-fold effects are coexisting and affect one
These studies show that the main influences of system rotanother. For example, the linear effect of the strong rotation
tion on turbulence are three-fold. finally results in the steady two-dimensional mode, but the
First is the linear effect of the Coriolis term on turbu- two-dimensionalization is due to the nonlinear effect.
lence. Any turbulence statistic with the Coriolis term in its Our main objective in this paper is to investigate the
governing equation reflects this linear effect explicitly. Thedynamics of the anisotropy of the Reynolds stress tensor and
classical Taylor—Proudman theor®mlearly illustrates this its behavior in homogeneous decaying turbulence subjected
linear effect of the system rotation. Based on the lineato system rotation. Using the rapid distortion the¢RDT),
theory, Leblanc and Cambbdanalyzed instability features of Kassinos and Reynoldsprovided a linear solution for the
the rotating shear flow. second-order spectral tensor of the one-point velocity corre-
The second influence is the so-called “scrambling ef-lation in rotating or axisymmetric systems. Mansetiral 12
fect” due to the nonlinear interaction between the velocityobtained a linear solution for the anisotropy tensor by adopt-
components of the rotating turbulence. A number of turbuing a model spectral tensor. Cambon and Jacquiiscussed
lence statistics such as kinetic energy, energy dissipatiothe anisotropic behavior of the Reynolds stress tensor by
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splitting the anisotropy tensor into two parts: the directionalThis is the so-called “complex helical waves decomposi-
and polarization anisotropies. For convenience, in this papeion” (Lesieur-* Waleffe® and Cambol), and in this paper,
we extend the concepts of the directional and polarizatiorit is used to analyze the effect of the Coriolis term on turbu-
anisotropies from wave space to physical space. Based onlence. The orthogonal basis(sk) is defined asN(sk)
theoretical analysis, we derive the linear solution of the an=e¢?(k) —Ise!(k). The components. ; andé_, are the plus
isotropy of the Reynolds stress tensor, which is also equivaand minus helical modes, respectively. Heie &
lent to the linear evolution of the polarization anisotropy. =kXa/|kXa| ande?=kXe!/|kXet| form a direct orthonor-
While proposing a method to introduce the polarization an-mal frame called the Craya—Herring framélerring'®),
isotropy into an initially isotropic turbulence, DNS of the wherea is an arbitrary constant vector. In this paper, we set
rotating turbulence with or without the initial anisotropy is a=(0,0,1). Then, the components N{sk) are given by
conducted. The linear and coupling effects of the system ro-

. . . 1

tation on the anisotropic features of the Reynolds stresses are gk = k-K~—Iskks KoK=+ Iskk
discussed. Finally, the relationship between the energy trans- . ks + kg[ e 2 v

fer and the anisotropy is also demonstrated based on the 2 Lot

DNS results. —(kitka)]', )

The remainder of this paper is arranged as follows. Theyhere the superscrifk denotes a transposed operator. Sub-
governing equations of the rotating flow are given in the nexktituting the complex helical waves decomposition into Eq.
section. In Sec. Il we present a linear solution for the an<3), the evolution equations of the helical modes read as
isotropy of the Reynolds stresses. A numerical method intro- 5
ducing the polarization anisotropy into an initially isotropic ( + 2) _ -

—+ vk = S,Pp—S
turbulence is proposed in Sec. IV. The DNS results and dis- ot gsk k+p§q:0 spz,sq (SpP—Sq4)9 gspgsq
cussion are given in Sec. V, in three subsections that focus, +| 5
respectively, ora) the linear effect of system rotation on an Skgkfsk' ©®)
anisotropy tensorb) the coupling effect on anisotropy t€n- The right-hand side has been written in a symmetric form in

sor, and(c) the direction of local energy transfer. In Sec. VI, b andq. Hereg* = — (N* XN§q~ NZ)/4 is a geometrical fac-

we briefly summarize the present analysis. tor depending on the shape and the orientation of the triad

(k,p,q), which satisfies the conditida+ p+q=0. The triplet
(Sk:Sp,Sg) is (£1, =1, 1) and g,=2() cosh, where 0 is
the angle betweek and . Since thek; axis is set as the

The Navier—Stoke$N—S) and continuity equations for rotation axis,é is also equivalent to the azimuthal angle of
incompressible flow without mean velocity in a rotating sys-the spherical coordinates.

Il. GOVERNING EQUATIONS

tem read as
au Ill. LINEAR SOLUTION OF ANISOTROPY TENSOR
— [ _ 2
ot T20Xu=—VII-eXu+ vV, () A, Linear solution of spectral tensor
V-u=0, ) Using the complex helical waves decomposition, the

o general form of the second-order spectral tensor is given by
whereIl=p/p— (QXr)-(Q2Xr)/2+u-u/2 andt is time. u,

w, Q, andr are vectors of velocity, vorticity, rotation rate, Uij (k)= (0¥ ;) =e(k) P;; (k) + R Z(K)N; (k)N; (k)]
and position, respectively, p, and v are density, pressure, 5

and kinetic viscosity, respectively. Applying the Fourier aijkih(k)7k%, @)
transform with the continuity condition, the Navier—Stokeswhere () denotes the ensemble average d@gl(k)= d;;

equations in wave space can be derived from (&j. —kik; /k? is the classic solenoidal projectaf; andej; are
the Kronecker delta and the alternation tensor, respectively.
d 20k g
EJF vk? | G(k) + T[kxg(k)] Heree, h andZ are spectrums of energy, helicity, and com-

plex deviator, respectively, defined by

k . . 1
= 2 (1—Fk-)[w<p>xu<q>]. 3 e(k)= 5 (0(k)0* (k)= 3 (&(K)E(K),

Here k, p, and q are the wave number vectors amkd 1

=k-k. An overcaret " denotes the Fourier transform. The sec- h(k)= E(O(k)-&)* (k))y=k E (s&s(k) &2 (K)), (8)
ond term on the left-hand side is the Coriolis term. The so- s==l

lenoidal condition implies that the velocity vecta(k) is Z(K)=2(&, 1(K) £ 1(K)).

located on the plane normal to the wave number vektor . ] . .

The following decomposition for the velocity vecta¢k) is ~ One should note that E¢7) is valid for any anisotropic flow,

useful: not only axisymmetric without mirror symmetry. In physical
space, the turbulence kinetic energy and helicity are defined
G(K) =&, N(K)+ & N(—K) £N(sK). 4) by (u-u)/2 and(u-w)/2, respectively. The complex deviator

= is only defined in wave space, and it represents a part of the
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Reynolds stress anisotropy in physical space. The corre- 0, (k,H)=e(k 0){P; (k)
sponding governing equations ef h andZ can be derived N N
from Egs.(6) and(8), +Ref e'l oo+ a0teostN, ()N (k) ]} (14)

d 5 . Kassinos and Reynoltlsshowed an equivalent form of Eq.

St T 2vk?e(k)=Te(k), (14) by using the rapid distortion theofRDT) in the inves-
tigation of the model for rotating homogeneous turbulence.

d

i 2Vk2> h(k)=T"(k), (9 B. Formulation for anisotropy tensor

5 The Reynolds stress tensor and its anisotropy tensor are,

E+2vk2—|4Q Cose)z(k):TZ(k). respectively, defined by

The right-hand sides are the transfer functiongdf andz, Rij :<Ui(X)Uj(X)>=f Re Uj;(k)]dk, (15
respectively, corresponding to the nonlinear correlations of

the turbulent velocity. Camboet all° numerically solved b;; =Ry /q?— &;/3, (16)

the system of equation®) by closing with an isotropic

EDQNM procedure accounting for resonant and nonresonartthereq?=R;;=2[e(k)dk. Using the general form df;;,
interactions(EDQNM2). The linear solutions o€, h andZ the anisotropy tensor of the Reynolds stress can be split into
are obtained by omitting the right-hand sides of the systenfWo parts,bj; =bf; +bfj, with

equations:

e(k t):e(k O)e—Zszt :j [e(k)_e(k)]P”(k)dk/qz, (17)
h(k,t)=h(k,0)e—2vk2t, (10 biZj =j Re[Z(k)Ni(k)Nj(k)]dk/qZ, (18
Z(k,t)=2Z(k,0)e~ 2Ktgl40t cost, wheree(k) = [e(k)dA(k)/4mk? is the shell-averaged spec-

trum and [()dA(k) denotes integration on the shell with
radiusk=|k|. Obviously,bf; characterizes the departure of
e(k) from the shell- averaged spectruatk), and it only ex-
ists when the distribution oé(k) depends both on the mag-
nitude and the directiofazimuthal angled of the spherical
coordinatesof the wave number vector. Hendxpfj is called

In this paper, we introduce two parameters for further analy-
sis. One is the phase differengg(k) between the two com-
plex helical modes, i.e{_;=y&, e '%, wherey is the
ratio of the moduli|é_,|/|&, 1|. The other is a relative helic-
ity coefficient, a(k), defined by

h(k) (gngl—g_lgtl) the “directional anisotropy” in some report¢Cambon
a(k)= - o (1) etall® and Cambon and Jacqdih On the other handy?
ke(k) — (£:18%1+E 18" )) isotropi
denotes the departure of the spectral tensor from an isotropic
The definitions ofe(k) andh(k) in Eqg. (8) show thata= distribution on the plane perpendicular to the wave number

+1 and —1 correspond to a turbulent field with the maxi- vector, and is called the “polarization anisotropyCambon
mum and the minimum helicity, i.e., the Beltrami field, and and Jacquity).

a=0 corresponds to a turbulent field without helicity. Using It is beneficial here to repeat some theoretical statements
these two parameters, the helicity and complex deviatopf Kassinos and Reynolffson homogeneous rotating turbu-
spectrums can be expressed in terms of the energy spectrdgnce before discussing the anisotropic behavior of the

e(k,0) as Reynolds stress tensor. They argued that the Reynolds stress
) tensor only is not sufficient to describe a homogeneous tur-
h(k,t)=e(k,00e” > ka(k), bulence with system rotation, since the Reynolds stress does
(12 not have key information about the dimensionality of the
z(k,t):e(k,o)e—bkzt\/l_a(k)Te'Wo(kat cosd] turbulence structure, although it carries information about

the turbulence components. Therefore, two new second-order
The general SpeCtraI tensor is then brOUght into the fO”OWIngensorS the structure d|mens|ona||® Q and the structure

form: circulicity (Fj;), are introduced into their study on turbu-
~ ok > lence modelingD;; andF;; are defined by
Ujj(k,t)=e(k,00e” " {Pj;(k) + V1 — a(k)
I I I I
x Rd e[ 0(k)+40t costIN (KN (k N n_7n - e
de (N (k)] D= e x| Fi=\ 3y e (19
+|a(k)8”|k|/k} (13)

where ; is the component of the vector potential corre-
It is the general form of the linear solution for the second-sponding to the fluctuation velocity. The velocity component
order spectral tensor. For convenience, we only consider this then given byu;= g;5;di/s/ 9%, . When the Fourier trans-
turbulence without helicity and omit the viscosity, i.e., forms of the vector potential and the velocity are used in Eq.
=0 anda=0. This simplification yields (19), one obtains
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kik; 5 5 . and (25) indicate that the linear solution df; exists only
Dij =2j 2 elkdk=g (?_Zbij : with f(k,6)# 1, and the evolution ob?, is influenced by the
(20) Presence obf .

KoK ~ Sii _ . .
Fij :f EinmEjts |:2 U, {k)dk=g? %eriej _bizj ) C. Linear solution of anisotropy tensor
In the spherical coordinate systemk,§,¢), the

Note thatDj; =F; =R;j=q?. The anisotropy tensors f@;; Reynolds stress tensor can be expressed as

andF;; are, respectively, defined by

o (o (27
yij=Dij /9% = 813, xi=Fi; /97— /3. (21) Ri,-(t)zf f f k20, (k,t)sin 6d pd fdl k. (26)
The relations betweeb; ,bf; , andy;; ,x;; are then given by 07070
bﬁ- =—yijl2, bizj = —(2xij +yij)/2. (22 Mansouret al*? adopted a model for the spectral tenﬁbr

proposed by Camboet all” and Shihet al® and derived a
linear solution of the anisotroply; with one parameter and
two undetermined functions. However, their linear solution
of b;; contains a number of coefficients, and the initial an-
isotropy does not relate to their model parameter. Here we
present a simpler form fdo;; with only one parameter that

: : i . determines the initial anisotropy of the homogeneous turbu-
known, we know that there is enough information to descrlbqence

a homogeneous turbulence subjected to system rotation. . ~ -
9 ) y In the rotating frame, the spectral tendgy; satisfies not

Using the axisymmetric conditioa(k) =e(k,6) which only the axisymmetric condition but also the reflectional
is satisfied in a rotating system and the inviscid linear solu- y Y

tion of the spectral tensor, the Reynolds stress can be furthes,ﬁmmetry about the equator plane with the real .symmetry
expressed in the following form: Ufj(k)=Uj;(—k). Hence, Eq(26) can be brought into the
following form:

The continuity equation leads tm; +y;; + xj; = 0. According

to the theoretical statement of Kassinos and Reyn’élgfﬁ,
andx;; carry the structure information of turbulence, which
is not included irb;; . Equation(22) indicates thabf; andby;
also carry the structure information of turbulence. Hence

when two terms of sethy; ,y;j ,x;;) or set bj; ,bfj ,bf;) are

Sii
Rij<t>=q2%+f [e(k, 0) —e(k)]P;; (k)dk o e
Ri,-(t):f J 47k2U;; (K, t)sin od odk. (27)
0Jo

+ I[ ¢o(k) + 40t cosd]
f Reek.d)e This equation then becomes integrable assuming a spherical

A _ distribution, e(k, 8) =e(k), i.e., f(k,0)=1 and ¢o(k) is a
X NiCkON; (k) ]k 23 constant. The integral is

Assuming thate(k, §) =e(k)f(k,#), the directional anisot-

ropy tensorbiej is brought into the following form: R (1) =q2(0) ﬁ+(5~ —35»35-3)b(0t)) 29)
i 3 ij i3Yj )
1
03(0= o3 | e00Py(KIT(k.6)-1]dk, e
wheref(k, #) is a nondimensional distribution function. The CoSdy [COA0L)  Sin(401)
polarization aniso'[ropjoizj can further be split into a linear b(Qt)= 0( 0?2 e )
part bizj' and a nonlinear pait;;", where 2 (4021) (401)
1 singg [ sin(4Qt) cog40Qt)—1 1
by(t) = EZJ e(k)Re e'lPotk) + 40t eostIN; (k)N (k) Jdk, “ 72 |T@an? T @anT sat)

(25) (29

Equation(28) is the linear solution of the Reynolds stress

tensor for the inviscid rotating homogeneous turbulence. The
x[f(k,6)—1]dk. corresponding linear solution of the anisotropy tensor is

Note thatP;;(k) andN;(k)N;(k) are geometric tensors and given by

do not vary with rotation rate or time. Hence, the linear term

1
bIZJn(t) — ? f e(k) Rq:el[¢o(k)+4ﬂt COSF)]NI(k)NJ(k)]

gl(¢o+40tcosd) ang the distribution functiorf(k,6) com- bf; (t)=b5(0)=0,
pletely determine the evolutions of these anisotropy tensors. n n
The DNS results in Sec. V show thi(tk, 6) only varies with bij(t) =bj;(0)=0, (30

the coupling effect of the system rotation. Thbﬁ, mainly
reflects the coupling effect of system rotation. On the other
hand,bizj mainly reflects the linear effect of the system rota-
tion due to the strong linear effect from the term
g!(¢ot40tcosd) aithough the coupling effect also acts on the  |im by; (1) = — (8, — 3835)3)COSho/6, (31)
evolution ofbj" through the ternf(k, §) — 1. Equationg24) Qt—0

bij (1) =b7(t) = (& — 351363 b(Q1).

Since
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TABLE 1. Initial states of a turbulent field.

Morinishi, Nakabayashi, and Ren

o ¢o | et | AR | Re[z] | Im[Zo)] by=bi, State
@ o e(k) ake(k) |Z[{cos gy | 1Z](sin o) by by b
1 Arbitrary | e(k) ke(k) 0 0 0 0 0 Isotropic
Random e(k) 0 0 0 0 0 0 Isotropic
0° e(k) 0 —-1/6 —-1/6 1/3 Anisotropic
0 90° e(k) 0 0 e(k) 0 0 0 Isofropic .
180° —e(k) 0 1/6 1/6 —-1/3 Anisotropic
270° 0 —e(k) 0 0 0 Isotropic

the initial anisotropy is determined completely by the singledistribution, one can introduce the helicity into the turbulent
parameterg,. In addition, it is verified that the assumption field simply with parameter only, which determines the
of f(k,0)=1 is reasonable by comparing the linear solutionintensity of the helicity. Using a similar method to introduce
with the DNS results. the initial helicity into the turbulent field, Morinishét al*
investigated the helicity effects on the rotating turbulence in

IV. GENERATION OF INITIAL ANISOTROPY detail.

First, a precomputation is carried out until a timg
=2.5(s) to obtain a numerically isotropic turbulent field. The
velocity gradient skewness is abou0.5 at this time, show-
ing that the nonlinear correlation of the turbulence is built
completely(Orszag and Pattersbi The helical modes of In this paper, we simulate the homogeneous decaying
this initially isotropic turbulent field can be expressed simplyiyrbulence subjected to system rotation using DNS with a
as pseudospectral method. The Coriolis and viscous terms in
the N—S equations are treated using an integrating factor
technique to integrate them analytically. With using the com-
plex helical waves decomposition, Yeung and Ztoand
Smith and Waleffé® used a similar technique to simulate
. . ) ... forcing turbulence. The numerical stability analysis and de-
tively. In order to submit the DNS of rotating turbulence with tailed scheme for this technique are introduced in Ref. 24.

or without the initial anisotropy, we propose a numerical . ) ;
method to introduce the polarization anisotropy into the iso-The other terms in the N—S equations are integrated by a

. ) : . fourth-order Runge—Kutta explicit method. The simulation
tropic turbulent field. Using the phase differengg and the L N
relative coefficient of helicityy, Eq. (32) becomes domain is a (2r)° periodic box, and the spectral mode num-

ber is set to 128 in each direction. The kinetic viscosity and
(1+a)e the time increment are=0.01 (nf/s) andAt=0.01(s), re-
Er1(ktg) = Texli|¢+1]:
(1-a)e

spectively. Some of the statistics of the initial field are pre-
——exill($.1- o)),

V. DNS RESULTS AND DISCUSSION

£11(k,to) =[%1 (K to) [exp(l 4 1),
&21(kto) =12 1k, to) [exp(l 1),
where¢ ., , and¢_; are the phases @f , and&® |, respec-

(32

sented in Table Il. Here, (m%s?), e (m?s’), Re, and S

are kinetic energy, energy dissipation rate, Reynolds number
based on the Taylor microscale, and the skewness factor of
(—duq/dx,) at the initial time. Two sets of simulatiofsets

A and B) are performed in this study. Set A is the DNS of
homogeneous turbulence with the initial polarization anisot-
ropy. The results are used to verify the linear solution of the
anisotropy with{) =0,10(rad/9, corresponding to Table I.
Set B is the DNS of homogeneous turbulence without the
initial polarization anisotropy, and its results are used to in-

?ewatTorquZII#ﬂ(]) )tlntol ﬂlﬁ turbullencte. :c-|t(?1wever, olne (c:ian_ﬂ?d vestigate the coupling effect on the anisotropy with a series
rom fable at only the real part ot thé complex devialor .\ yiation rates. All the simulations are carried out without

introduces the polarization anisotropy into the system, while[he initial helicity (&=0).
the imaginary part cannot change the anisotropy of the ini-
tially isotropic homogeneous turbulence.

In addition, Eq.(33) also effectively introduces helicity
into the turbulent field. Polifke and ShtilmZhused a ran-
dom phase method to introduce the helicity into the field
based on the definition of the helicity spectrum. However, it Ko €9 Re, S
needs many complex procedures to obtain an effective field ;541 26
with only small helicity. Wheng,, in Eg. (33) has a random

(33
& 1(k,tg)=

wheree®=|£° |2+ £°,|? is the kinetic energy of the isotro-

pic turbulence at,. The states of the turbulent field are
shown in Table I, corresponding to different valuesfgfand

a. Table | shows that the turbulence remains isotropic (

|=0) whendgy, is randomly distributed in wave space. With a
constant distribution o, Eg. (33) introduces the complex

TABLE II. Statistics of an initial turbulent field aiy=2.5 ().

0.0567 53.4 0.4960
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FIG. 1. Evolution of kinetic energy. FIG. 3. Evolution ofb;; (DNS results.

invariants of the anisotropy tensby;, respectively, defined

A. Linear effect of system rotation by
on anISOtrOpy tensor Il b= — bljb“/Z, ”lb: - bljbjkka/3 (34)
The figure shows that the caseég=0° and 180°, corre-
sponding to the axisymmetric expansi@XE) and contrac-
tion (AXC) states(Kassinos and Reynold$, approach the
origin (isotropic statgwith the time evolution. In the cases
$o=90° and 270°, although their states are initially isotro-
pic, the values of—Il, increase with the time evolution
along the limit line of AXC and AXE, and return to the
origin again in a later stage of their evolution. The evolution
of anisotropy is shown more quantitatively in the next fig-

In this subsection, the DNS results of set A are used fo
the following discussion. The time evolution of the nondi-
mensional kinetic energy is shown in Fig. 1, where the ab
scissa is the lapse time nondimensionalizedegyK,. As
demonstrated in many studiésg., Jacquiret al,* Morinishi
et al,?* and Squirest al?®), decay of the kinetic energy is
inhibited by the system rotation. It is also inhibited by the
presence of the initial polarization anisotrofip casesg
=0° and 1807 in the stationary frame. In a strong rotating
system, this inhibition effect of the initial polarization anisot- ures. Figure 3 shows the DNS result for the evolutioiof
ropy is small. However, even in the initially isotropic cases :

. . S ; Only bs;z is shown in the figure sincbz;=—2b;=—2b,,
of (1?0_90 and 2.70 . the decay of the kinetic energy in thewhen the rotating or axisymmetric flow is considered. In the
stationary frame is slower than that whemn=random. It

. X cases ofpo=0° and 180°, the anisotropy in the stationary
can be considered to be the effect of the phase dlsturbanc'.pame decoays gradually due to the viscosity, while in the

yvhen a certain valqe of the phase d|ﬁgrerdq)e|s introduced rotating system it decreases rapidly to a nearly isotropic state
into the turbulent field. The phase disturbance destroys thﬁ/ithin about one period of its oscillation. In the initially

noglllnezr mteractloss ogthe turbulen(:lflurt;akar:met al®) Hsotropic cases ofs,=90° and 270°ha; evolves with little
and leads to a weakened energy transfer by the same mechag;qiion in the stationary frame. While in the rotating sys-

nlsrr::.as thazt o;the s%stem'rotftlon.' ant M) of tem, it shows a “pulse” at the initial period of the evolution
igure 2 shows the anisotropy invariant mggiM) o and then returns to zero with a slight oscillation. It corre-

the Reynolds stresses,, land Ill, are the second and third sponds to the behavior of its invariants in Fig. 2. These DNS

Linear DNS
. "y . -

iégg" f 0 ———= ¢~90°
® ¢ ,=Random Vs : ——- Pl 800

04 - ¢ ,=270

. - I .
—-0.01 0.01 b L I N N N
0 20 40
4Q ()

FIG. 2. Anisotropy invariant mapAIM) of Reynolds stresses.

FIG. 4. A comparison between DNS results and a linear solutidn;of
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FIG. 5. Evolution of directional anisotropy. 01 &  stokes Eq.
Q=100
results are well described by the linear solution of the anisot- [}~ Q=00
ropy tensor, at least in the first period of evolution. Figure 4 6 : 5 s
shows a comparison between the DNS resultsb,(j)(biej t-ty

+b7"+ b)) and the linear solutiongb;] only). It shows that
the linear solutions agree very well with the DNS results in
the first period of the evolution. Hence, at least in the first
period of the evolution obizj , one can say that the linear )

effect of the system rotation is dominant. The evolutions of &-9.,{2=100(rad/9] is almost the same as that of the Stokes
b¢ and b?" are shown in Figs. 5 and 6, respectively. Al- éguations. Obymusly, the decaying behavior according to t.he
though the linear solutions di$ and b?" are zero because Stokes equations does not depend on the system rotation.

f(k,0)=1, the DNS results ob® and b2" are generated due Hence, the differences between the solutions of the N-S and

to the nonlinearity, showing itjhat the distribution function the Stokes equations for each rotation rate indicate the effect
f(k,0) is changed by the coupling effect. The evolution of of the nonlinear interaction. The nonlinear interaction de-
bi" also takes on some oscillations. However, compared witisreases with increasing rotation rates, so the effect of the

the initial values ob?' . the values ob® andbZ" are small. nNonlinear interaction is inhibited by the rotation.
r ; ) The energy spectrums(k,§) with Q=0, 5 and 100

As shown in Fig. 5, the evolution (h‘ﬁ- does not depend on R
the presence of the initial polarization anisotropy. A more(rad/s are presented in Figs.(®, 8(b), and &c), respec-
tively. In the stationary frame, the value of the energy spec-

detailed discussion abOLhiﬁ is given in the next section. e -
Sinceb}' can be estimated by the inviscid linear solution, thetrum decreases with increasing wave numband does not
depend on the azimuthal angleTherefore, an isotropic dis-

value ofbf" (bf"=b;; — b7 — bizj') in Fig. 6 is a little different ~ ~“P<! : _
from the real value ob?", which includes the effect of vis- tribution of the energy spectrum on the shell with radkus
cosity. can be imaged. At the intermediate rotf_;lt|0r1 range, the value
of the energy spectrum decreases with increasinat 6
=const, and decreases with increasing &@g k= const.
Hence, the value o&(k,f) near the equator (cas=0) is

The above analysis shows that the linear effect of thQarger than that near the pole (@osl). Although e(k, 6)
System rotation does not act on the evolution of the d|reCSt|” exhibits a decreasing behavior W|ﬂqn h|gh wave num-
tional anisotropybfj . The coupling effect on the energy per regions, the distribution @f(k,d) approaches an isotro-
spectrume(k,§) and behavior ob;; are investigated here pic distribution again when the system rotation becomes very
using the DNS results of set B. strong, when we compare the scale of Figc)8with Fig.

Some of the properties of the coupling effect are pre-g(p). In this case, the coupling effect is negligible because
sented here first. The evolution of the kinetic energy isthe nonlinear interaction is inhibited by the strong rotation.
shown in Fig. 7, where the symbdl denotes the numerical Consequently, only when the coupling effect is dominant,
solutions of the Stokes equatioismitting the convective je  both the nonlinear interaction and the Coriolis force
term in the N-S equationsThe figure shows that the decay- have a certain value, does the energy spectrum take on an
ing behavior of the kinetic energy in a strong rotating frameanijsotropic distribution. The deviation etk, 6) from an iso-
tropic one can be considered an indicator of the level of the
coupling effect, which then closely related to the directional
ani:sotropybiej , as shown in Eq(24).

The time evolutions ob$; are shown in Figs. @ and
9(b). In the rotating systemb$; increases with time, al-
though its initial value is almost zero. In the stationary
frame, b3, does not vary with time due to the lack of the
coupling effect. Hereb3; increases with the increase in the
rotation rate for @) <2.51(rad/9, and the increasing rate

_0.4 s . . ‘ of b3; decreases when the rotation rate is further increased
0 20 1@ 40 [Q>2.51(rad/9]. The evolution ob3; for Q=100(rad/9 is
0 almost the same as that f¥=0, since the coupling effect
FIG. 6. Evolution of the nonlinear part of polarization anisotropy. becomes negligibly small in this case. Then, we can say that

FIG. 7. Evolution of kinetic energy.

B. Coupling effect on anisotropy tensor

0.2
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FIG. 8. Distribution of the energy spectrum at-t,=1(s). (@ Q

=0 (rad/s);(b) Q=5 (rad/s);(c) Q=100 (rad/s).

R0”=w'/(2Q))=\15Ra". 39
Here L=u'K/e and\=+/15u'/w’ denote a typical length
scale and Taylor microscale, respectively, wheteand o’

are rms velocity and vorticity fluctuations, amds the dis-
sipation rate of the kinetic energy. Figure 10 shows tifat
and b3, are both produced by the system rotation and con-
tribute oppositely to the evolution df;;. The value ofb3,
varies with the rotation rate and reaches a peak value at

0.05}

the directional anisotroply3, directly reflects the level of the
coupling effect.

Jacquinet al! showed the fact that the range of Rossby
number for anisotropization effects has an upper and a lower
limit by looking at the integral length scale through their
experimental results. Here we show the limits of the Rossby
number for the anisotroplgss, b3;, andb’; in Fig. 10 att
—t,=3(s) against the initial Rossby numbe(att=t,). The
macro-Rossby number Roand micro-Rossby numbers Ro
and R@, are defined by

5
-0.05}
I 16‘2 16" Ro
L Wl | " s ROA
1072 10° 102 .
i ! | 1l ! RO
1072 10° 107

FIG. 10. The variation of anisotropy with Rossby numbers.
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FIG. 11. The variation of an energy transfer function with the rotation rate.
FIG. 12. The variation of forward and reverse cascades with a rotation rate

[p,g=k, t—ty=1 (s)].
about RO=0.4, corresponding to the maximum coupling ef-

fect. In this paper, one can find that the anisotropy and thgy|effe'®27 used the “instability assumption” to evaluate the

two-dimensionalization are excited at a range of R@ and grection of the energy transfer. He classifies these interac-
R0'>0.01, which is larger than the intermediate range ofiions into two types: the “forward” and the “reverse” inter-

: 10 ) . , :

Ro"<1 and R6>1 introduced by Camboat al: actions with their wave number scalés p, 9 and helical
o mode signs $,S,,Sq). A forward interaction transfers the

C. Direction of local energy transfer energy from a low to a high wave number, while a reverse

The effects of the system rotation on the local energynteraction transfers the energy from a high to a low wave
transfer between the pole and the equator are investigated fiimber. According to the instability assumptionyhen the
this section to understand why the energy spectrum departéave numbers of the triatk, p, q) are given ak<p=q,
from an isotropic one. the triad interactions 0, 3, 4, and 7 are “reverse” interactions,

Figure 11 shows the prof”es of the energy transfer funccorresponding to a reverse cascade to the lowest wave num-
tion of rotating turbulence. The absolute value of the energyer k; while the triad interactions 1, 2, 5, and 6 are “for-
transfer function decreases with an increasing rotation ratevard” interactions, corresponding to a forward cascade from
The higher the rotation rate, the smaller the absolute value df to higher wave numbers andg. Now, the energy transfer
the energy transfer function. Whed=100(rad/9, the en-  function[Eg. (36)] can be brought into the following form:
ergy transfer from the low to high wave number becomes 7
nearly zero. As with the decay of the kinetic energy, the  T(k)=>, T (k),
energy transfer is also inhibited by the system rotation. These =0
phenomena are usually demonstrated by the so-called (38
“scrambling effect” of the system rotation. However, the TO(k)= 2 2(sph—5s49)

scrambling effect provides no information about the direc- k+p+q=0
tion of the energy transfer. X Re(g* £ (K)&* (p) £ (q)).
Using the helical modes, one finds that the energy trans- 9 % P65 )
fer function can be expressed as Then, a forward and a reverse cascade energy transfer func-

tions, T(M(t) and T(R(t) are, respectively, defined, as

To= 2 X 2(Sp—540)
K*P+a=0 s.5p .5 T‘F)(t):f [TOKH+TA(k,t)+TO (k1)
X Re(g* &5 (K) €5 (P)€5 (A))- (36)
890G PED) FTO(K,11AAK), (393

From this expression, one knows that the kinetic energy
transfer is a sum of all detailed triad mteractlc{rggkgspgsq). T<R>(t)=f [TOK, 1)+ Tk, t) + T@(k,t)
There are two helical modes for a wave number vector, so
eight possible interactions numbered from 0 to 7 following a +TD(k,t)]dAK). (39b)

binary order are allowed in the tridld, p, q), which satisfies

. . . F R .
k-+p-+q=0 according to the helical mode signs,(s, .S,). Figure 12 shows the variation @ "(t) and T(®(t) with

increase of the rotation rate at wave numbes6, 10, and

e 20, respectively. Herd(t) =T (t) + T®)(t) is the total en-
O=(+,+,+), 1=(+,+,-), 2=(+,—,+), ergy transfer function. The figure shows that both the for-
3=(+,—,—), 4=(—,+,+), 5=(—,—,+), (37 ward and the reverse cascades exist in the turbulence. The

R L quantity of the forward cascade is always larger than that of
6=(—,+,—), 7=(—,—,—). the reverse one, and the total energy transfer only takes on a
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FIG. 14. Direction of the local energy transfer.

and the mean value of the energy transfer function ap-
proaches zero, as shown in Fig. 11. We can conclude from
these results that the local energy transfer is caused by the
coupling effect that mainly occurs in cases of moderate ro-
tation, because no local energy transfer exists in both weak
and strong rotation cases. Strong rotation inhibits not only
the local energy transfer from the pole to the equator but also
the cascade from low to high wave number. These two types
of energy transfer directly induce different distributions of
kinetic energy, as shown in Fig. 8. Moriniséi al?* verified

the anisotropic distribution of the kinetic energy in a rotating
system by providing the anisotropic velocity distributions in
wave space.

To provide some idea of the local energy transfer from
the pole to equator, for example, we show in Fig. 14 the
value of the energy transfer function on the shell with radius
k=20. Here, T®%" denotes the energy transfer function near
the equator of the shell with radilks=const, defined by

FIG. 13. Distribution of the energy transfer functiontatt,=1 (s). (a)
0 =0 (rad/s);(b) Q=5 (rad/s);(c) =100 (rad/s).

forward form. In addition, Fig. 12 also shows that the scram-  Teay¢)— E [— Pijm(K)IM(T;(k)

bling effect of the system rotation inhibits both the forward k+p+q=0
. 45°< 9= 135°
and reverse cascades, and the total effect is to decrease the A A
total energy transfer to almost zero. X 0j(P) Urn( @) )] k=p= k| = const (40)

Some of the properties of the energy transfer in the roy;ip Pijm=KmPij + K;Pim, While TPl denotes the energy
tating turbulence can be seen in Fig. 13, which shows thgansfer function near the pole of the shell with radkis

distribution of the energy transfer functidr(k, ) with dif- =const,
ferent rotation rates. The black region in Fig. 13 denotes the o .
negative value off(k,#) and the other region is positive, TP =T(t) — TN, (41)

where the deep gray region denotes a relatively large positivghere

value. Hence, the kinetic energy is transferred from the black

region to the other regions. The figure shows that, in the case T(t)= 2 [— Py (K)IM(0;(K)
of Q=0 (rad/9, a forward energy cascade from low to high k+pTg=0 Hm '
wave number is dominant. On the other hand, wk&n N -

=5 (rad/9, the negative value enlarges its area near the pole. X 0;(P) 8rn( @) Tli=p= | = const. (42

It means that the kinetic energy is transferred inklend @  Here, — (T®%+TP°9) the rate of total energy transfer be-
directions. The energy transfer in the directionkdé a cas- tweenk and the other wave numbers, is also plotted in the
cade from low to high wave number, while the transfer in thefigure for considering the detailed conservation property of
direction of 6 can be considered a local energy transfer fromthe energy transfer function. The figures show that the en-
the pole to the equator on the shell with radkusn cases of ergy transfer to the other wave numberg T®%+ TP%9) s
strong rotation, such aQ =100(rad/9, the kinetic energy small, and almost all the energy transfer occurs between the
transfer function is randomly distributed in tle- # plane, pole and the equator. Whemn—t,){) increases to a certain
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