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Dynamics of anisotropy on decaying homogeneous turbulence
subjected to system rotation
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~Received 9 January 2001; accepted 6 July 2001!

The dynamics of the anisotropy of the Reynolds stress tensor and its behavior in decaying
homogeneous turbulence subjected to system rotation are investigated in this study. Theoretical
analysis shows that the anisotropy can be split into two parts: polarization and directional
anisotropies. The former can be further separated into a linear part and a nonlinear part. The
corresponding linear solution of the polarization anisotropy is derived in this paper. This solution is
found to be equivalent to the linear solution of the anisotropy. While proposing a method to
introduce the polarization anisotropy into an isotropic turbulence, direct numerical simulation
~DNS! of the rotating turbulence with or without the initial anisotropy is carried out. The linear
solution of the anisotropy agrees very well with the DNS result, showing that the evolution of the
polarization anisotropy is mainly dominated by the linear effect of the system rotation. With an
immediate rotation rate, the coupling effect between the system rotation and nonlinear interactions
causes an energy transfer from the region near the pole to the region near the equator in wave space.
This type of transfer causes an anisotropic distribution of the kinetic energy between the pole and
equator, which relates closely to the directional anisotropy and the two-dimensionalization. In
addition, we find that the presence of the initial polarization anisotropy does not affect the evolution
of the directional anisotropy, while the presence of the initial directional anisotropy greatly
influences the evolution of the polarization anisotropy. ©2001 American Institute of Physics.
@DOI: 10.1063/1.1398040#
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I. INTRODUCTION

Rotating flows find numerous industrial applications
engineering as well as in geophysics, astrophysics, and
teorology. The turbulence properties of the rotating flow
blade passages of radial pumps and gas or steam turb
determine the efficiency of these devices. Therefore,
study of the rotating turbulence is interesting from the vie
points of both turbulence modeling and fundamental
search. To date, a number of researchers have studied
ing turbulence that includes decaying homogene
turbulence~e.g., Jacquinet al.1 and Mansouret al.2!, turbu-
lent shear flow~e.g., Bardinaet al.3 and Salhi and Cambon4!,
and turbulent channel flow ~e.g., Johnston et al.,5

Kristoffersen and Anderson,6 and Nakabayashi and Kitoh7!
with theoretical, experimental, and numerical metho
These studies show that the main influences of system r
tion on turbulence are three-fold.

First is the linear effect of the Coriolis term on turb
lence. Any turbulence statistic with the Coriolis term in
governing equation reflects this linear effect explicitly. T
classical Taylor–Proudman theorem8 clearly illustrates this
linear effect of the system rotation. Based on the lin
theory, Leblanc and Cambon9 analyzed instability features o
the rotating shear flow.

The second influence is the so-called ‘‘scrambling
fect’’ due to the nonlinear interaction between the veloc
components of the rotating turbulence. A number of turb
lence statistics such as kinetic energy, energy dissipa
2911070-6631/2001/13(10)/2912/11/$18.00
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rate, and energy transfer function, are affected by the scr
bling effect, though there are no explicit rotation terms
their governing equations. This effect explains why syst
rotation inhibits the decay of kinetic energy. Using a certa
assumption, Cambonet al.10 expressed this effect into an ex
plicit form and showed that, the stronger the scrambling
fect, the slower the decay of the kinetic energy.

The third influence is a coupling effect between the s
tem rotation and the nonlinear interactions~‘‘coupling ef-
fect’’ hereafter!. It is found that, within a certain range o
rotation rates, this effect is closely related to the Reyno
stress anisotropy and the two-dimensionalization phen
enon in rotating turbulence. However, this effect is sub
and remains unclear. In this paper, we divide the effect of
Coriolis force into three-fold just for discussion convenienc
In fact, the three-fold effects are coexisting and affect o
another. For example, the linear effect of the strong rotat
finally results in the steady two-dimensional mode, but
two-dimensionalization is due to the nonlinear effect.

Our main objective in this paper is to investigate t
dynamics of the anisotropy of the Reynolds stress tensor
its behavior in homogeneous decaying turbulence subje
to system rotation. Using the rapid distortion theory~RDT!,
Kassinos and Reynolds11 provided a linear solution for the
second-order spectral tensor of the one-point velocity co
lation in rotating or axisymmetric systems. Mansouret al.12

obtained a linear solution for the anisotropy tensor by ado
ing a model spectral tensor. Cambon and Jacquin13 discussed
the anisotropic behavior of the Reynolds stress tensor
2 © 2001 American Institute of Physics
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splitting the anisotropy tensor into two parts: the directio
and polarization anisotropies. For convenience, in this pa
we extend the concepts of the directional and polariza
anisotropies from wave space to physical space. Based
theoretical analysis, we derive the linear solution of the
isotropy of the Reynolds stress tensor, which is also equ
lent to the linear evolution of the polarization anisotrop
While proposing a method to introduce the polarization
isotropy into an initially isotropic turbulence, DNS of th
rotating turbulence with or without the initial anisotropy
conducted. The linear and coupling effects of the system
tation on the anisotropic features of the Reynolds stresse
discussed. Finally, the relationship between the energy tr
fer and the anisotropy is also demonstrated based on
DNS results.

The remainder of this paper is arranged as follows. T
governing equations of the rotating flow are given in the n
section. In Sec. III we present a linear solution for the a
isotropy of the Reynolds stresses. A numerical method in
ducing the polarization anisotropy into an initially isotrop
turbulence is proposed in Sec. IV. The DNS results and
cussion are given in Sec. V, in three subsections that fo
respectively, on~a! the linear effect of system rotation on a
anisotropy tensor,~b! the coupling effect on anisotropy ten
sor, and~c! the direction of local energy transfer. In Sec. V
we briefly summarize the present analysis.

II. GOVERNING EQUATIONS

The Navier–Stokes~N–S! and continuity equations fo
incompressible flow without mean velocity in a rotating sy
tem read as

]u

]t
12VÃu52“P2vÃu1n¹2u, ~1!

“"u50, ~2!

where P5p/r2(VÃr )"(VÃr )/21u"u/2 and t is time. u,
v, V, and r are vectors of velocity, vorticity, rotation rate
and position, respectively,r, p, andn are density, pressure
and kinetic viscosity, respectively. Applying the Fouri
transform with the continuity condition, the Navier–Stok
equations in wave space can be derived from Eq.~1!,

S ]

]t
1nk2D û~k!1

2V"k

k2 @kÃû~k!#

52 (
k2p2q50

S 12
k

k2 k"D @v̂~p!Ãû~q!#. ~3!

Here k, p, and q are the wave number vectors andk2

5k"k. An overcaret ˆ denotes the Fourier transform. The s
ond term on the left-hand side is the Coriolis term. The
lenoidal condition implies that the velocity vectorû(k) is
located on the plane normal to the wave number vectok.
The following decomposition for the velocity vectorû(k) is
useful:

û~k!5j11N~k!1j21N~2k!5 (
s561

jsN~sk!. ~4!
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This is the so-called ‘‘complex helical waves decompo
tion’’ ~Lesieur,14 Waleffe,15 and Cambon13!, and in this paper,
it is used to analyze the effect of the Coriolis term on turb
lence. The orthogonal basisN(sk) is defined asN(sk)
5e2(k)2Ise1(k). The componentsj11 andj21 are the plus
and minus helical modes, respectively. Herek, e1

5kÃa/ukÃau ande25kÃe1/ukÃe1u form a direct orthonor-
mal frame called the Craya–Herring frame~Herring16!,
wherea is an arbitrary constant vector. In this paper, we
a5(0,0,1). Then, the components ofN(sk) are given by

N~sk!5
1

kAk1
21k2

2 @k1k32Iskk2 ,k2k31Iskk1 ,

2~k1
21k2

2!#T, ~5!

where the superscriptT denotes a transposed operator. Su
stituting the complex helical waves decomposition into E
~3!, the evolution equations of the helical modes read as

S ]

]t
1nk2D jsk

5 (
k1p1q50

(
sp ,sq

~spp2sqq!g* jsp
* jsq

*

1Iskgkjsk
. ~6!

The right-hand side has been written in a symmetric form
p andq. Hereg* 52(Nsp

* ÃNsq
* •Nsk

* )/4 is a geometrical fac-

tor depending on the shape and the orientation of the t
~k,p,q!, which satisfies the conditionk1p1q50. The triplet
(sk ,sp ,sq) is ~61, 61, 61! and gk52V cosu, whereu is
the angle betweenk and V. Since thek3 axis is set as the
rotation axis,u is also equivalent to the azimuthal angle
the spherical coordinates.

III. LINEAR SOLUTION OF ANISOTROPY TENSOR

A. Linear solution of spectral tensor

Using the complex helical waves decomposition, t
general form of the second-order spectral tensor is given

Û i j ~k!5^ûi* û j&5e~k!Pi j ~k!1Re@Z~k!Ni~k!Nj~k!#

1I« i j l klh~k!/k2, ~7!

where ^ & denotes the ensemble average andPi j (k)5d i j

2kikj /k2 is the classic solenoidal projector.d i j and« i j l are
the Kronecker delta and the alternation tensor, respectiv
Heree, h, andZ are spectrums of energy, helicity, and com
plex deviator, respectively, defined by

e~k!5
1

2
^û~k!"û* ~k!&5 (

s561
^js~k!js* ~k!&,

h~k!5
1

2
^û~k!"v̂* ~k!&5k (

s561
^sjs~k!js* ~k!&, ~8!

Z~k!52^j11~k!j21* ~k!&.

One should note that Eq.~7! is valid for any anisotropic flow,
not only axisymmetric without mirror symmetry. In physic
space, the turbulence kinetic energy and helicity are defi
by ^u"u&/2 and^u"v&/2, respectively. The complex deviato
is only defined in wave space, and it represents a part of
e or copyright; see http://pof.aip.org/about/rights_and_permissions
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Reynolds stress anisotropy in physical space. The co
sponding governing equations ofe, h, andZ can be derived
from Eqs.~6! and ~8!,

S ]

]t
12nk2De~k!5Te~k!,

S ]

]t
12nk2Dh~k!5Th~k!, ~9!

S ]

]t
12nk22I4V cosu DZ~k!5Tz~k!.

The right-hand sides are the transfer functions ofe, h, andZ,
respectively, corresponding to the nonlinear correlations
the turbulent velocity. Cambonet al.10 numerically solved
the system of equations~9! by closing with an isotropic
EDQNM procedure accounting for resonant and nonreson
interactions~EDQNM2!. The linear solutions ofe, h, andZ
are obtained by omitting the right-hand sides of the sys
equations:

e~k,t !5e~k,0!e22nk2t,

h~k,t !5h~k,0!e22nk2t, ~10!

Z~k,t !5Z~k,0!e22nk2teI4Vt cosu.

In this paper, we introduce two parameters for further ana
sis. One is the phase differencef0(k) between the two com
plex helical modes, i.e.,j215gj11e2 lf0, where g is the
ratio of the moduliuj21u/uj11u. The other is a relative helic
ity coefficient,a(k), defined by

a~k!5
h~k!

ke~k!
5

^j11j11* 2j21j21* &

^j11j11* 1j21j21* &
. ~11!

The definitions ofe(k) and h(k) in Eq. ~8! show thata5
11 and21 correspond to a turbulent field with the max
mum and the minimum helicity, i.e., the Beltrami field, an
a50 corresponds to a turbulent field without helicity. Usin
these two parameters, the helicity and complex devia
spectrums can be expressed in terms of the energy spec
e(k,0) as

h~k,t !5e~k,0!e22nk2tka~k!,
~12!

Z~k,t !5e~k,0!e22nk2tA12a~k!2eI @f0~k!14Vt cosu#.

The general spectral tensor is then brought into the follow
form:

Û i j ~k,t !5e~k,0!e22nk2t$Pi j ~k!1A12a~k!2

3Re@eI @f0~k!14Vt cosu#Ni~k!Nj~k!#

1Ia~k!« i j l kl /k%. ~13!

It is the general form of the linear solution for the secon
order spectral tensor. For convenience, we only consider
turbulence without helicity and omit the viscosity, i.e.,n
50 anda50. This simplification yields
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Û i j ~k,t !5e~k,0!$Pi j ~k!

1Re@el @f0~k!14Vt cosu#Ni~k!Nj~k!#%. ~14!

Kassinos and Reynolds11 showed an equivalent form of Eq
~14! by using the rapid distortion theory~RDT! in the inves-
tigation of the model for rotating homogeneous turbulenc

B. Formulation for anisotropy tensor

The Reynolds stress tensor and its anisotropy tensor
respectively, defined by

Ri j 5^ui~x!uj~x!&5E Re@Û i j ~k!#dk, ~15!

bi j 5Ri j /q22d i j /3, ~16!

whereq25Rii 52*e(k)dk. Using the general form ofÛ i j ,
the anisotropy tensor of the Reynolds stress can be split
two parts,bi j 5bi j

e 1bi j
z , with

bi j
e 5E @e~k!2e~k!#Pi j ~k!dk/q2, ~17!

bi j
z 5E Re@Z~k!Ni~k!Nj~k!#dk/q2, ~18!

wheree(k)5*e(k)dA(k)/4pk2 is the shell-averaged spec
trum and *( )dA(k) denotes integration on the shell wit
radiusk5uku. Obviously,bi j

e characterizes the departure
e(k) from the shell-averaged spectrume(k), and it only ex-
ists when the distribution ofe(k) depends both on the mag
nitude and the direction~azimuthal angleu of the spherical
coordinates! of the wave number vector. Hence,bi j

e is called
the ‘‘directional anisotropy’’ in some reports~Cambon
et al.10 and Cambon and Jacquin13!. On the other hand,bi j

z

denotes the departure of the spectral tensor from an isotr
distribution on the plane perpendicular to the wave num
vector, and is called the ‘‘polarization anisotropy’’~Cambon
and Jacquin13!.

It is beneficial here to repeat some theoretical statem
of Kassinos and Reynolds11 on homogeneous rotating turbu
lence before discussing the anisotropic behavior of
Reynolds stress tensor. They argued that the Reynolds s
tensor only is not sufficient to describe a homogeneous
bulence with system rotation, since the Reynolds stress d
not have key information about the dimensionality of t
turbulence structure, although it carries information ab
the turbulence components. Therefore, two new second-o
tensors, the structure dimensionality (Di j ) and the structure
circulicity (Fi j ), are introduced into their study on turbu
lence modeling.Di j andFi j are defined by

Di j 5 K ]cn

]xi

]cn

]xj
L , Fi j 5 K ]c i

]xn

]c j

]xn
L , ~19!

where c i is the component of the vector potential corr
sponding to the fluctuation velocity. The velocity compone
is then given byui5« ist]cs /]xt . When the Fourier trans
forms of the vector potential and the velocity are used in E
~19!, one obtains
e or copyright; see http://pof.aip.org/about/rights_and_permissions
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Di j 52E kikj

k2 e~k!dk5q2S d i j

3
22bi j

e D ,

~20!

Fi j 5E « inm« j ts

knkt

k2 Ûms~k!dk5q2S d i j

3
1bi j

e 2bi j
z D .

Note thatDii 5Fii 5Rii 5q2. The anisotropy tensors forDi j

andFi j are, respectively, defined by

yi j 5Di j /q22d i j /3, xi j 5Fi j /q22d i j /3. ~21!

The relations betweenbi j
e ,bi j

z , andyi j ,xi j are then given by

bi j
e 52yi j /2, bi j

z 52~2xi j 1yi j !/2. ~22!

The continuity equation leads tobi j 1yi j 1xi j 50. According
to the theoretical statement of Kassinos and Reynolds,11 yi j

andxi j carry the structure information of turbulence, whic
is not included inbi j . Equation~22! indicates thatbi j

e andbi j
z

also carry the structure information of turbulence. Hen
when two terms of set (bi j ,yi j ,xi j ) or set (bi j ,bi j

e ,bi j
z ) are

known, we know that there is enough information to descr
a homogeneous turbulence subjected to system rotation

Using the axisymmetric conditione(k)5e(k,u) which
is satisfied in a rotating system and the inviscid linear so
tion of the spectral tensor, the Reynolds stress can be fur
expressed in the following form:

Ri j ~ t !5q2
d i j

3
1E @e~k,u!2e~k!#Pi j ~k!dk

1E Re@e~k,u!el @f0~k!14Vt cosu#

3Ni~k!Nj~k!#dk. ~23!

Assuming thate(k,u)5e(k) f (k,u), the directional anisot-
ropy tensorbi j

e is brought into the following form:

bi j
e ~ t !5

1

q2 E e~k!Pi j ~k!@ f ~k,u!21#dk, ~24!

where f (k,u) is a nondimensional distribution function. Th
polarization anisotropybi j

z can further be split into a linea
part bi j

zl and a nonlinear partbi j
zn , where

bi j
zl~ t !5

1

q2 E e~k!Re@eI @f0~k!14Vt cosu#Ni~k!Nj~k!#dk,

~25!

bi j
zn~ t !5

1

q2 E e~k!Re@eI @f0~k!14Vt cosu#Ni~k!Nj~k!#

3@ f ~k,u!21#dk.

Note thatPi j (k) andNi(k)Nj (k) are geometric tensors an
do not vary with rotation rate or time. Hence, the linear te
eI (f014Vt cosu) and the distribution functionf (k,u) com-
pletely determine the evolutions of these anisotropy tens
The DNS results in Sec. V show thatf (k,u) only varies with
the coupling effect of the system rotation. Thus,bi j

e mainly
reflects the coupling effect of system rotation. On the ot
hand,bi j

z mainly reflects the linear effect of the system ro
tion due to the strong linear effect from the ter
el (f014Vt cosu), although the coupling effect also acts on t
evolution ofbi j

zn through the termf (k,u)21. Equations~24!
loaded 29 Aug 2010 to 133.68.192.91. Redistribution subject to AIP licens
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and ~25! indicate that the linear solution ofbi j
e exists only

with f (k,u)Þ1, and the evolution ofbi j
z is influenced by the

presence ofbi j
e .

C. Linear solution of anisotropy tensor

In the spherical coordinate system (k,u,w), the
Reynolds stress tensor can be expressed as

Ri j ~ t !5E
0

`E
0

pE
0

2p

k2Û i j ~k,t !sinudwdudk. ~26!

Mansouret al.12 adopted a model for the spectral tensorÛ i j

proposed by Cambonet al.17 and Shihet al.18 and derived a
linear solution of the anisotropybi j with one parameter and
two undetermined functions. However, their linear soluti
of bi j contains a number of coefficients, and the initial a
isotropy does not relate to their model parameter. Here
present a simpler form forbi j with only one parameter tha
determines the initial anisotropy of the homogeneous tur
lence.

In the rotating frame, the spectral tensorÛ i j satisfies not
only the axisymmetric condition but also the reflection
symmetry about the equator plane with the real symme
Û i j* (k)5Û i j (2k). Hence, Eq.~26! can be brought into the
following form:

Ri j ~ t !5E
0

`E
0

p/2

4pk2Û i j ~k,t !sinududk. ~27!

This equation then becomes integrable assuming a sphe
distribution, e(k,u)5e(k), i.e., f (k,u)51 and f0(k) is a
constant. The integral is

Ri j ~ t !5q2~0!S d i j

3
1~d i j 23d i3d j 3!b~Vt ! D , ~28!

with

b~Vt !5
cosf0

2 S cos~4Vt !

~4Vt !2 2
sin~4Vt !

~4Vt !3 D
2

sinf0

2 S sin~4Vt !

~4Vt !2 1
cos~4Vt !21

~4Vt !3 2
1

8Vt D .

~29!

Equation~28! is the linear solution of the Reynolds stre
tensor for the inviscid rotating homogeneous turbulence. T
corresponding linear solution of the anisotropy tensor
given by

bi j
e ~ t !5bi j

e ~0!50,

bi j
zn~ t !5bi j

zn~0!50, ~30!

bi j ~ t !5bi j
zl~ t !5~d i j 23d i3d j 3!b~Vt !.

Since

lim
Vt→0

bi j ~ t !52~d i j 23d i3d j 3!cosf0/6, ~31!
e or copyright; see http://pof.aip.org/about/rights_and_permissions
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the initial anisotropy is determined completely by the sin
parameter,f0 . In addition, it is verified that the assumptio
of f (k,u)51 is reasonable by comparing the linear soluti
with the DNS results.

IV. GENERATION OF INITIAL ANISOTROPY

First, a precomputation is carried out until a timet0

52.5~s! to obtain a numerically isotropic turbulent field. Th
velocity gradient skewness is about20.5 at this time, show-
ing that the nonlinear correlation of the turbulence is bu
completely~Orszag and Patterson19!. The helical modes of
this initially isotropic turbulent field can be expressed simp
as

j11
0 ~k,t0!5uj11

0 ~k,t0!uexp~ If11!,
~32!

j21
0 ~k,t0!5uj21

0 ~k,t0!uexp~ If21!,

wheref11 andf21 are the phases ofj11
0 andj21

0 , respec-
tively. In order to submit the DNS of rotating turbulence wi
or without the initial anisotropy, we propose a numeric
method to introduce the polarization anisotropy into the i
tropic turbulent field. Using the phase differencef0 and the
relative coefficient of helicitya, Eq. ~32! becomes

j11~k,t0!5A~11a!e0

2
exp@ If11#,

~33!

j21~k,t0!5A~12a!e0

2
exp@ I ~f112f0!#,

wheree05uj11
0 u21uj21

0 u2 is the kinetic energy of the isotro
pic turbulence att0 . The states of the turbulent field ar
shown in Table I, corresponding to different values off0 and
a. Table I shows that the turbulence remains isotropicuz
u50) whenf0 is randomly distributed in wave space. With
constant distribution off0 , Eq. ~33! introduces the complex
deviator (uZuÞ0) into the turbulence. However, one can fin
from Table I that only the real part of the complex devia
introduces the polarization anisotropy into the system, wh
the imaginary part cannot change the anisotropy of the
tially isotropic homogeneous turbulence.

In addition, Eq.~33! also effectively introduces helicity
into the turbulent field. Polifke and Shtilman20 used a ran-
dom phase method to introduce the helicity into the fie
based on the definition of the helicity spectrum. However
needs many complex procedures to obtain an effective fi
with only small helicity. Whenf0 in Eq. ~33! has a random
to 133.68.192.91. Redistribution subject to AIP licens
t

l
-

r
e
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,
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distribution, one can introduce the helicity into the turbule
field simply with parametera only, which determines the
intensity of the helicity. Using a similar method to introduc
the initial helicity into the turbulent field, Morinishiet al.21

investigated the helicity effects on the rotating turbulence
detail.

V. DNS RESULTS AND DISCUSSION

In this paper, we simulate the homogeneous decay
turbulence subjected to system rotation using DNS with
pseudospectral method. The Coriolis and viscous term
the N–S equations are treated using an integrating fa
technique to integrate them analytically. With using the co
plex helical waves decomposition, Yeung and Zhou22 and
Smith and Waleffe23 used a similar technique to simula
forcing turbulence. The numerical stability analysis and d
tailed scheme for this technique are introduced in Ref.
The other terms in the N–S equations are integrated b
fourth-order Runge–Kutta explicit method. The simulati
domain is a (2p)3 periodic box, and the spectral mode num
ber is set to 128 in each direction. The kinetic viscosity a
the time increment aren50.01 (m2/s) andDt50.01 (s), re-
spectively. Some of the statistics of the initial field are p
sented in Table II. Here,K0 (m2/s2), «0 (m2/s3), Rel and S
are kinetic energy, energy dissipation rate, Reynolds num
based on the Taylor microscale, and the skewness facto
(2]u1 /]x1) at the initial time. Two sets of simulation~sets
A and B! are performed in this study. Set A is the DNS
homogeneous turbulence with the initial polarization anis
ropy. The results are used to verify the linear solution of
anisotropy withV50,10~rad/s!, corresponding to Table I
Set B is the DNS of homogeneous turbulence without
initial polarization anisotropy, and its results are used to
vestigate the coupling effect on the anisotropy with a se
of rotation rates. All the simulations are carried out witho
the initial helicity (a50).

TABLE II. Statistics of an initial turbulent field att052.5 ~s!.

K0 «0 Rel S

0.201 26 0.0567 53.4 0.4960
e or copyright; see http://pof.aip.org/about/rights_and_permissions
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A. Linear effect of system rotation
on anisotropy tensor

In this subsection, the DNS results of set A are used
the following discussion. The time evolution of the nond
mensional kinetic energy is shown in Fig. 1, where the
scissa is the lapse time nondimensionalized by«0 /K0 . As
demonstrated in many studies~e.g., Jacquinet al.,1 Morinishi
et al.,24 and Squireset al.25!, decay of the kinetic energy i
inhibited by the system rotation. It is also inhibited by t
presence of the initial polarization anisotropy~in casesf0

50° and 180°! in the stationary frame. In a strong rotatin
system, this inhibition effect of the initial polarization aniso
ropy is small. However, even in the initially isotropic cas
of f0590° and 270°, the decay of the kinetic energy in t
stationary frame is slower than that whenf05random. It
can be considered to be the effect of the phase disturb
when a certain value of the phase differencef0 is introduced
into the turbulent field. The phase disturbance destroys
nonlinear interactions of the turbulence~Murakami et al.26!
and leads to a weakened energy transfer by the same me
nism as that of the system rotation.

Figure 2 shows the anisotropy invariant map~AIM ! of
the Reynolds stresses. IIb and IIIb are the second and thir

FIG. 1. Evolution of kinetic energy.

FIG. 2. Anisotropy invariant map~AIM ! of Reynolds stresses.
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invariants of the anisotropy tensorbi j , respectively, defined
by

IIb52bi j bji /2, IIIb52bi j bjkbki/3. ~34!

The figure shows that the casesf050° and 180°, corre-
sponding to the axisymmetric expansion~AXE! and contrac-
tion ~AXC! states~Kassinos and Reynolds11!, approach the
origin ~isotropic state! with the time evolution. In the case
f0590° and 270°, although their states are initially isotr
pic, the values of2IIb increase with the time evolution
along the limit line of AXC and AXE, and return to th
origin again in a later stage of their evolution. The evoluti
of anisotropy is shown more quantitatively in the next fi
ures. Figure 3 shows the DNS result for the evolution ofbi j .
Only b33 is shown in the figure sinceb33522b11522b22

when the rotating or axisymmetric flow is considered. In t
cases off050° and 180°, the anisotropy in the stationa
frame decays gradually due to the viscosity, while in t
rotating system it decreases rapidly to a nearly isotropic s
within about one period of its oscillation. In the initiall
isotropic cases off0590° and 270°,b33 evolves with little
variation in the stationary frame. While in the rotating sy
tem, it shows a ‘‘pulse’’ at the initial period of the evolutio
and then returns to zero with a slight oscillation. It corr
sponds to the behavior of its invariants in Fig. 2. These D

FIG. 3. Evolution ofbi j ~DNS results!.

FIG. 4. A comparison between DNS results and a linear solution ofbi j .
e or copyright; see http://pof.aip.org/about/rights_and_permissions



o
4

in
rs
r
o
l-

e
e
n
o
i

re
.
he

-

th
ec
y

re
i

l

y-
e

es
the
tion.
and
ffect
e-
the

ec-

-

lue

-
ery

se
n.
nt,
ce
n an

the
al

ry
e
e

sed

t
that

2918 Phys. Fluids, Vol. 13, No. 10, October 2001 Morinishi, Nakabayashi, and Ren

Down
results are well described by the linear solution of the anis
ropy tensor, at least in the first period of evolution. Figure
shows a comparison between the DNS results ofbi j (bi j

e

1bi j
zn1bi j

zl) and the linear solutions~bi j
zl only!. It shows that

the linear solutions agree very well with the DNS results
the first period of the evolution. Hence, at least in the fi
period of the evolution ofbi j

z , one can say that the linea
effect of the system rotation is dominant. The evolutions
bi j

e and bi j
zn are shown in Figs. 5 and 6, respectively. A

though the linear solutions ofbi j
e and bi j

zn are zero becaus
f (k,u)51, the DNS results ofbi j

e andbi j
zn are generated du

to the nonlinearity, showing that the distribution functio
f (k,u) is changed by the coupling effect. The evolution
bi j

zn also takes on some oscillations. However, compared w
the initial values ofbi j

zl , the values ofbi j
e andbi j

zn are small.
As shown in Fig. 5, the evolution ofbi j

e does not depend on
the presence of the initial polarization anisotropy. A mo
detailed discussion aboutbi j

e is given in the next section
Sincebi j

zl can be estimated by the inviscid linear solution, t
value ofbi j

zn (bi j
zn5bi j 2bi j

e 2bi j
zl) in Fig. 6 is a little different

from the real value ofbi j
zn , which includes the effect of vis

cosity.

B. Coupling effect on anisotropy tensor

The above analysis shows that the linear effect of
system rotation does not act on the evolution of the dir
tional anisotropybi j

e . The coupling effect on the energ
spectrume(k,u) and behavior ofbi j

e are investigated here
using the DNS results of set B.

Some of the properties of the coupling effect are p
sented here first. The evolution of the kinetic energy
shown in Fig. 7, where the symboln denotes the numerica
solutions of the Stokes equations~omitting the convective
term in the N–S equations!. The figure shows that the deca
ing behavior of the kinetic energy in a strong rotating fram

FIG. 5. Evolution of directional anisotropy.

FIG. 6. Evolution of the nonlinear part of polarization anisotropy.
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@e.g.,V5100~rad/s!# is almost the same as that of the Stok
equations. Obviously, the decaying behavior according to
Stokes equations does not depend on the system rota
Hence, the differences between the solutions of the N–S
the Stokes equations for each rotation rate indicate the e
of the nonlinear interaction. The nonlinear interaction d
creases with increasing rotation rates, so the effect of
nonlinear interaction is inhibited by the rotation.

The energy spectrumse(k,u) with V50, 5 and 100
~rad/s! are presented in Figs. 8~a!, 8~b!, and 8~c!, respec-
tively. In the stationary frame, the value of the energy sp
trum decreases with increasing wave numberk and does not
depend on the azimuthal angleu. Therefore, an isotropic dis
tribution of the energy spectrum on the shell with radiusk
can be imaged. At the intermediate rotation range, the va
of the energy spectrum decreases with increasingk at u
5const, and decreases with increasing cosu at k5const.
Hence, the value ofe(k,u) near the equator (cosu50) is
larger than that near the pole (cosu51). Although e(k,u)
still exhibits a decreasing behavior withu in high wave num-
ber regions, the distribution ofe(k,u) approaches an isotro
pic distribution again when the system rotation becomes v
strong, when we compare the scale of Fig. 8~c! with Fig.
8~b!. In this case, the coupling effect is negligible becau
the nonlinear interaction is inhibited by the strong rotatio
Consequently, only when the coupling effect is domina
i.e., both the nonlinear interaction and the Coriolis for
have a certain value, does the energy spectrum take o
anisotropic distribution. The deviation ofe(k,u) from an iso-
tropic one can be considered an indicator of the level of
coupling effect, which then closely related to the direction
anisotropybi j

e , as shown in Eq.~24!.
The time evolutions ofb33

e are shown in Figs. 9~a! and
9~b!. In the rotating system,b33

e increases with time, al-
though its initial value is almost zero. In the stationa
frame, b33

e does not vary with time due to the lack of th
coupling effect. Hereb33

e increases with the increase in th
rotation rate for 0<V<2.51~rad/s!, and the increasing rate
of b33

e decreases when the rotation rate is further increa
@V.2.51~rad/s!#. The evolution ofb33

e for V5100~rad/s! is
almost the same as that forV50, since the coupling effec
becomes negligibly small in this case. Then, we can say

FIG. 7. Evolution of kinetic energy.
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the directional anisotropyb33
e directly reflects the level of the

coupling effect.
Jacquinet al.1 showed the fact that the range of Ross

number for anisotropization effects has an upper and a lo
limit by looking at the integral length scale through the
experimental results. Here we show the limits of the Ros
number for the anisotropyb33, b33

e , andb33
z in Fig. 10 att

2t053 ~s! against the initial Rossby numbers~at t5t0!. The
macro-Rossby number RoL, and micro-Rossby numbers Rol

and Rov, are defined by

FIG. 8. Distribution of the energy spectrum att2t051 (s). ~a! V
50 (rad/s);~b! V55 (rad/s);~c! V5100 (rad/s).
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RoL5u8/~2VL !, Rol5u8/~2Vl!,
~35!

Rov5v8/~2V!5A15Rol.

Here L5u8K/« and l5A15u8/v8 denote a typical length
scale and Taylor microscale, respectively, whereu8 and v8
are rms velocity and vorticity fluctuations, and« is the dis-
sipation rate of the kinetic energy. Figure 10 shows thatb33

e

and b33
z are both produced by the system rotation and c

tribute oppositely to the evolution ofb33. The value ofb33
e

varies with the rotation rate and reaches a peak value

FIG. 9. The evolution of directional anisotropy.~a! Low rotation rate;~b!
high rotation rate.

FIG. 10. The variation of anisotropy with Rossby numbers.
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about Rol>0.4, corresponding to the maximum coupling e
fect. In this paper, one can find that the anisotropy and
two-dimensionalization are excited at a range of RoL,1 and
Rol.0.01, which is larger than the intermediate range
RoL,1 and Rol.1 introduced by Cambonet al.10

C. Direction of local energy transfer

The effects of the system rotation on the local ene
transfer between the pole and the equator are investigate
this section to understand why the energy spectrum dep
from an isotropic one.

Figure 11 shows the profiles of the energy transfer fu
tion of rotating turbulence. The absolute value of the ene
transfer function decreases with an increasing rotation r
The higher the rotation rate, the smaller the absolute valu
the energy transfer function. WhenV5100~rad/s!, the en-
ergy transfer from the low to high wave number becom
nearly zero. As with the decay of the kinetic energy, t
energy transfer is also inhibited by the system rotation. Th
phenomena are usually demonstrated by the so-ca
‘‘scrambling effect’’ of the system rotation. However, th
scrambling effect provides no information about the dire
tion of the energy transfer.

Using the helical modes, one finds that the energy tra
fer function can be expressed as

T~k!5 (
k1p1q50

(
sk ,sp ,sq

2~spp2sqq!

3Rê g* jsk
* ~k!jsp

* ~p!jsq
* ~q!&. ~36!

From this expression, one knows that the kinetic ene
transfer is a sum of all detailed triad interactions^jsk

jsp
jsq

&.
There are two helical modes for a wave number vector,
eight possible interactions numbered from 0 to 7 following
binary order are allowed in the triad~k, p, q!, which satisfies
k1p1q50 according to the helical mode signs (sk ,sp ,sq),
i.e.,

0[~1,1,1 !, 1[~1,1,2 !, 2[~1,2,1 !,

3[~1,2,2 !, 4[~2,1,1 !, 5[~2,2,1 !, ~37!

6[~2,1,2 !, 7[~2,2,2 !.

FIG. 11. The variation of an energy transfer function with the rotation ra
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Waleffe15,27used the ‘‘instability assumption’’ to evaluate th
direction of the energy transfer. He classifies these inte
tions into two types: the ‘‘forward’’ and the ‘‘reverse’’ inter
actions with their wave number scales~k, p, q! and helical
mode signs (sk ,sp ,sq). A forward interaction transfers the
energy from a low to a high wave number, while a reve
interaction transfers the energy from a high to a low wa
number. According to the instability assumption,15 when the
wave numbers of the triad~k, p, q! are given ask,p<q,
the triad interactions 0, 3, 4, and 7 are ‘‘reverse’’ interactio
corresponding to a reverse cascade to the lowest wave n
ber k; while the triad interactions 1, 2, 5, and 6 are ‘‘fo
ward’’ interactions, corresponding to a forward cascade fr
k to higher wave numbersp andq. Now, the energy transfe
function @Eq. ~36!# can be brought into the following form:

T~k!5(
i 50

7

T~ i !~k!,

~38!

T~ i !~k!5 (
k1p1q50

2~spp2sqq!

3Rê g* jsk
* ~k!jsp

* ~p!jsq
* ~q!&.

Then, a forward and a reverse cascade energy transfer f
tions,T(F)(t) andT(R)(t) are, respectively, defined, as

T~F !~ t !5E @T~1!~k,t !1T~2!~k,t !1T~5!~k,t !

1T~6!~k,t !#dA~k!, ~39a!

T~R!~ t !5E @T~0!~k,t !1T~3!~k,t !1T~4!~k,t !

1T~7!~k,t !#dA~k!. ~39b!

Figure 12 shows the variation ofT(F)(t) and T(R)(t) with
increase of the rotation rate at wave numbersk56, 10, and
20, respectively. Here,T(t)5T(F)(t)1T(R)(t) is the total en-
ergy transfer function. The figure shows that both the f
ward and the reverse cascades exist in the turbulence.
quantity of the forward cascade is always larger than tha
the reverse one, and the total energy transfer only takes

.
FIG. 12. The variation of forward and reverse cascades with a rotation
@p,q>k, t2t051 (s)#.
e or copyright; see http://pof.aip.org/about/rights_and_permissions
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forward form. In addition, Fig. 12 also shows that the scra
bling effect of the system rotation inhibits both the forwa
and reverse cascades, and the total effect is to decreas
total energy transfer to almost zero.

Some of the properties of the energy transfer in the
tating turbulence can be seen in Fig. 13, which shows
distribution of the energy transfer functionT(k,u) with dif-
ferent rotation rates. The black region in Fig. 13 denotes
negative value ofT(k,u) and the other region is positive
where the deep gray region denotes a relatively large pos
value. Hence, the kinetic energy is transferred from the bl
region to the other regions. The figure shows that, in the c
of V50 ~rad/s!, a forward energy cascade from low to hig
wave number is dominant. On the other hand, whenV
55 ~rad/s!, the negative value enlarges its area near the p
It means that the kinetic energy is transferred in thek andu
directions. The energy transfer in the direction ofk is a cas-
cade from low to high wave number, while the transfer in t
direction ofu can be considered a local energy transfer fr
the pole to the equator on the shell with radiusk. In cases of
strong rotation, such asV5100~rad/s!, the kinetic energy
transfer function is randomly distributed in thek2u plane,

FIG. 13. Distribution of the energy transfer function att2t051 (s). ~a!
V50 (rad/s);~b! V55 (rad/s);~c! V5100 (rad/s).
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and the mean value of the energy transfer function
proaches zero, as shown in Fig. 11. We can conclude f
these results that the local energy transfer is caused by
coupling effect that mainly occurs in cases of moderate
tation, because no local energy transfer exists in both w
and strong rotation cases. Strong rotation inhibits not o
the local energy transfer from the pole to the equator but a
the cascade from low to high wave number. These two ty
of energy transfer directly induce different distributions
kinetic energy, as shown in Fig. 8. Morinishiet al.24 verified
the anisotropic distribution of the kinetic energy in a rotati
system by providing the anisotropic velocity distributions
wave space.

To provide some idea of the local energy transfer fro
the pole to equator, for example, we show in Fig. 14 t
value of the energy transfer function on the shell with rad
k520. Here,Tequ denotes the energy transfer function ne
the equator of the shell with radiusk5const, defined by

Tequ~ t !5 (
k1p1q50

45°<u<135°

@2Pi jm~k!Im^ûi~k!

3û j~p!ûm~q!&#uk5p5uku5const, ~40!

with Pi jm5kmPi j 1kj Pim , while Tpole denotes the energy
transfer function near the pole of the shell with radiusk
5const,

Tpole~ t !5T~ t !2Tequ~ t !, ~41!

where

T~ t !5 (
k1p1q50

@2Pi jm~k!Im^ûi~k!

3û j~p!ûm~q!&#uk5p5uku5const. ~42!

Here, 2(Tequ1Tpole), the rate of total energy transfer be
tweenk and the other wave numbers, is also plotted in
figure for considering the detailed conservation property
the energy transfer function. The figures show that the
ergy transfer to the other wave numbers2(Tequ1Tpole) is
small, and almost all the energy transfer occurs between
pole and the equator. When (t2t0)V increases to a certain

FIG. 14. Direction of the local energy transfer.
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value,Tequ keeps a positive value andTpole a negative value.
Then, one can say that the kinetic energy of the rotat
turbulence is locally transferred from the region near the p
toward the equator. From the above analysis, we found
the coupling effect causes a local energy transfer from
pole to the equator. Moreover, this local energy transfer
troduces the anisotropic distribution of the energy spectr
e(k,u) and then the anisotropy of the Reynolds stress ten

VI. CONCLUDING REMARKS

In this paper, the effect of the system rotation on t
anisotropy of the Reynolds stresses is investigated by u
theoretical analysis and DNS results. Based on the gover
equations of the rotating turbulence and the complex hel
wave decomposition, we derived a simple form of the line
solution of the anisotropy. In addition, the useful relations
between the anisotropic formalism developed by Cam
and co-workers and the one by Reynolds and co-workers
revealed. A numerical method to introduce the anisotro
into an initially isotropic turbulence is then proposed. Usi
this method, the DNS of homogeneous rotating turbule
with and without initial anisotropy is carried out to inves
gate the linear and coupling effects on the anisotropy.

Theoretical analysis shows that the anisotropy can
split into two parts: the polarization anisotropy and dire
tional anisotropy, and the polarization anisotropy can furt
be separated into a pure linear part and a nonlinear part
the linear solution of the~polarization! anisotropy agrees
well with the DNS results for the initial evolution period, th
linear effect of the system rotation determines the evolut
of the polarization anisotropy. We found that the presence
the polarization anisotropy inhibits the decay of the kine
energy in the stationary frame, while in the rotating syste
the initial polarization anisotropy decays rapidly with th
time scale (t2t0)V and the inhibition effect becomes sma
With a moderate rotation rate, the coupling effect cause
local energy transfer from the pole to the equator. Moreo
this local energy transfer introduces the anisotropic distri
tion of the energy spectrume(k,u) and then the anisotrop
of the Reynolds stress tensor. The directional anisotropy
rectly reflects this anisotropic energy distribution, and the
closely related to the coupling effect.
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