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It is well known that the correlation between the Smagorinsky model and the subgrid scale stress is
low, while the model based on the scale similarity assumption has considerably higher correlation.
However, the scale similarity model by itself was found to be insufficiently dissipative. Therefore,
the model is usually used together with the Smagorinsky model. Model coefficients are commonly
computed using the two-parameter dynamic procedure. Nevertheless, the dynamic two-parameter
mixed model still does not work well for wall bounded flows, since the model predicts a high value
of the wall shear stress. In this study, we propose a modification to the two-parameter dynamic
procedure for wall bounded flows, which removes that defect: the Smagorinsky paraingtes,
computed exactly the same way as in the dynamic Smagorinsky model, then the other parameter,
C_, is computed dynamically &g is known. This ensures that the mixed model provides proper
wall shear stress and mean velocity profile. Computational tests are done for turbulent channel flow
where the Reynolds numbers based on the channel half-width and wall friction velocity are 395 and
1400. To remove the ambiguity regarding the accuracy of the finite difference scheme, we use high
(up to 12th order accurate fully conservative finite difference schemes in a staggered grid system.
© 2001 American Institute of Physic§DOI: 10.1063/1.1404396

I. INTRODUCTION method (Ghosaf), particularly in the approximation of the
convection term. This means that even if we use the exact
The objective of this study is to present a modification tosubgrid scale stress, the computed flow field will be contami-
the dynamic two-parameter mixed model for large eddynated by the numerical error. This connection between the
simulation of wall bounded turbulent flow. It is well known subgrid scale modeling and numerical error has been mostly
that the correlation between the Smagorinsky model and theverlooked. To remove the ambiguity regarding the accuracy
subgrid scale stress is low, while the model based on thef the finite difference scheme, we use mixed order fully
scale similarity assumption by Bardire al* has consider- conservative finite difference schemes in a staggered grid
ably higher correlatiorifor example see Horiut? However, system proposed by Morinistt al.® where higher(up to
the scale similarity model by itself was found to be insuffi- 12th) order accurate discretization is used in homogeneous
ciently dissipative. Therefore, the model is usually used todirections and second order accurate discretization with con-
gether with the Smagorinsky model. Model coefficients aresiderably higher resolution than that for the higher order
commonly computed using the dynamic proced@@ang scheme is used in wall normal direction. Computational tests
etal,® Vreman etal,® Salvetti and Banerje®,Horiuti®).  are done in the turbulent channel flow and the Reynolds
Nevertheless, the dynamic two-parameter mixed model stilhumbers based on the channel half-width and wall friction
does not provide proper wall shear stress and mean velocityelocity are 395 and 1400.

profile for wall bounded flows(Sarghini et al.’). In this The present paper is organized as follows. In Sec. Il the
study, we propose a modification to the two-parameter dybasic equations of the large eddy simulation and existing
namic procedure, which removes this defect. dynamic subgrid scale models are introduced, and a recom-

It is important to note that the defect of the scale simi-mended modification to the dynamic two-parameter mixed
larity model is sometimes concealed when the large eddynodel is presented. In Sec. lll the numerical method for the
simulation is performed with the standard second order finitehannel flow simulation is outlined. In Sec. IV computational
difference scheme. The reliability of the results of large eddyresults of the revised dynamic two-parameter mixed model
simulation is strongly affected by both the reliability of the are compared with those of the standard Smagorinsky, the
subgrid scale model and the accuracy of the numericallynamic Smagorinsky, and the standard dynamic two-
parameter mixed model. The proposed maodification to the
dAuthor to whom correspondence should be addressed: electronic mailynamic two-parameter mixed model is justified there as

morinisi@cfd.mech.nitech.ac.jp well.
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1. BASIC EQUATIONS FOR THE LARGE EDDY _ 1 <£ij|\/|”.>

SIMULATION AND SUBGRID SCALE MODELS (CSA)2= — 5 o - 9
The bgsic equations for _the large e_ddy simulation of in-_|n this paper the dynamic Smagorinsky model given by Egs.

compressible flows are the filtered Navier—Stokes and conties) and (9) is called DSM. In addition to this, the standard

nuity equations given by Smagorinsky model with the wall damping functifis used
a_Ui+ du;u; Iy _ a_ﬁJr ., 9%U; " for comparison:
ot (9XJ &Xj aXi L?X] (9XJ ' — y+ 13
(CSA):CSO 1_eX - E (A1A2A3) y (10)
Ju;
3_><i: . (2) where A;=h; (i=1,2,3h; are grid spacings and y*

) ) ) o =u,y/v is the wall coordinatdy is the distance from the
Here u; is the velocity component inx; direction §  \4|). Note that an alternative wall damping function can be
=1,2,3,)p is the pressure divided by the densityjs the | ,sad!5 The model given by Eqs(5) and (10) with Cg,
kinematic viscosity, and is time. The summation rule is _q 10 is called SM.
assumed for repeated indices. The overbdenotes the fil-
tering operatoru; and p compose the resolved, grid scale g pynamic two-parameter mixed model
(G flow field. 7j;=uju;j—u;u; is the subgrid scaléSG9

stress which should be modeled. The dynamic two-parameter mixed model of Salvetti

and Banerjeis based on the scale similarity model of Bar-
. l . . .
A. Dynamic Smagorinsky model dinaet all and the Smagorinsky eddy viscosity modfel.

In the dynamic subgrid scale model, the identity of Ger-  7; =C(U;u;— G;0)* —2(CsA)?[S]S; - (11)

10 ; ; ; )
manoet al" between the grid and test fields is used to de The two parameter€s andC, , are computed by minimiz-

termine the parameter in the subgrid scale model ing the square of the errd@DTM=Eﬁ-’TMEﬁ’TM, where the
Li=Ti— 7, 3  errorE;™ is given by
= DTM _ _ A2
where the subtest stredg; is defined asT;;=u;u;—U;d;, Eij =L — CLH +2(Csh)"My;, (12
and the resolved stregy; is defined as = L, = —
I Hij=(Uiuj_Uin)_(Uin_Uin). (13)
Eij:Uin_Uiuj. (4)

Following the standard procedure for the plane channel flow,
In the standard dynamic subgrid scale model the Smagorirthe system for the two parameters is expressed as
sky eddy viscosity modé&l is assumed for both the subgrid

and subtest stresses: Au A 2%2 _ <_§in;§> (14)
_ Asr Ap|l2Cs] [ —AXLyMy) ]
S — 1({du; du;
mh=-2(CA)?[SIS;, S =3 (a_x: (9—)(:) : where mgtrixA that appears in the left-hand side of Eiy)
is given by
Q_/o9c < \1/2 _
e oaa A 1[aG o Aot Al | —A2HEMY AMMM.S |
T5=—2(CA)288;, $j=§(a—xﬁ+&—xf), a Rl [ AXHIMy) AYMy M)
i i

Solving the system Eq14), we obtain the following rela-
|§|:(2§j§j)1/2_ (6) tions forC_ and (CsA)*:

The superscript *" denotes the trace free operator :<£inﬁ><MijMij>—<£ijMij><HﬁMij>

E.Tij—.%.ﬁikak). The model parameteCs is computed by CL (MM (HEHE ) = (HEMy)? (19
minimizing the square of the erro@=E;E; (Lilly*9), o o
where the erroE;; is given by (Ch)= - 1 (LM (R HEG) — (L Hip (R M)
. —, S 2 (MM (HEHE) —(HEMy)?
Eij=Lij +2(CsA)°Myj, (7 (17)

In this study, the dynamic mixed model given by Edl)

o with coefficientsC, and (CgA)? determined by Eqs(16)
anda?=(A/A)? is the square value of the test to grid filter and(17) is called DTM.

widths ratio. In this study we take®=5%°~2.92. It corre-

sponds t&8 A, = 5A;,A,=A,, andA;=5A;. Assuming C. Recommended modification to the dynamic two-

Cs is a function ofx, and taking the average in thg—x,  Parameter mixed model

plane(denoted by-)) we obtain the following equation for The system for the least square problem, Eg)), is
(CsA)%: sensitive to the error on the right-hand side vector when the

Mij:a2|g|sij_|§|§j, 8
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condition numberthe square root of the maximum to the TABLE I. Computational cases.

minimum eigenvalues ratjoof matrix A, Eq. (15), is large.
As will be shown later, the condition number is very large for Case 1| Case 2| Case 3| Case 4 Case 5
the wall bounded flows and DTM does not provide appropri- Re. 305 1400
ate wall shear stress. Therefore, DTM does not predict th
mean velocity profile correctly. To remove this problem, we| [ 27 H
propose a modification to the dynamic two-parameter mixe(
subgrid scale model. A nearly ill-posed least square problen Ly 2H
can be stabilized by introducing an approximation to matrix I onH/3
A. As it will be shown later,|A,|<|Ay| for the wall 3 mi/
bounded flow a_nd, conseque_ntly, r_natA_xcan be approxi- N, 24 39 48 64 96
mated by the triangular matrix, which, in turn, leads to the
following system of equations: N, 64 96
A Ap CL2 _ <_£in?}> } 18 N; 2 39 48 64 96
0 Anll2B AN M) + 1034 | 776 | 517 | 388 | 916
The second line of Eq18) gives the Smagorinsky parameter M 03, 76 ' i :
Cs exactly the same way as in DSNEQ. (9)], and the re- h; 0.6~ 34.1 1.0 ~ 86.46
sulting mixed model has enough SGS dissipation for GS
turbulence energy. The other parameter can be stably con h;f 34.5 | 259 | 172 | 129 30.5

puted asCg is known:
_<[£ij+2(C5A)2Mij]Hﬁ> (19
- (HHE) ' A semi-implicit time marching method is used. The dif-
fusion term in the wall normal direction is treated implicitly
with the Crank—Nicolson method, and a third order Runge—
Kutta (RK3) method of Spalaret all” is used for all other
terms. The splitting method by Dukowicz and Dvinskys
used to enforce the solenoidal condition. The resulting dis-
crete Poisson equation for the pressure is solved using a dis-
crete Fourier transform in the periodic directions and a tri-
In this study the numerical tests for several subgrid scaleliagonal direct matrix solver in the wall normal direction.
models, described in the previous section, are performed udhe time increments for the simulation at,R&895 and 1400
ing fully developed plane channel flow at Reynolds numberare At=2.5x10"2 and 5.0<10™ 4, respectively; these sat-
of 395 and 1400. The flow field is assumed to be periodic insfy the stability condition for RK3.
the streamwisex;) and spanwisexs) directions. The Rey- Table | summarizes the grid resolution for all the com-
nolds number (Re=uH/v) is based on the channel half- putational cases in this study. The computational box for all
width H and the wall friction velocityu,. The treatment of the cases is 2HX2H X27H/3. Cases 1-4 correspond to
the convection terrfthe second term on the left-hand side of the flow at Re=395 and different grid resolutions in the
Eqg. (1] is important for unsteady turbulent numerical simu- periodic directions. Case 5 corresponds to the flow at higher
lations at high Reynolds number. Fully conservative higheReynolds number Re=1400. The grid spacings in the peri-
(2nd, 4th, 8th, and 12jhorder accurate finite difference odic directions are uniform. The wall normal grid is stretched
schemes proposed by Morinisgii al® are used for the con- using a hyperbolic-tangent function
vection term in the periodic directions. The second order %)) tanH y(2j/N,—1)]
accurate scheme with a volume weighted interpolation 2U = LA Lah
(Kajishima®) in the wall normal direction X,) (combined H tanf y] ’
properly with higher order discretization in homogeneous diwherexz(j) is the wall normal grid point for, in the stag-
rections is used to remove the ambiguity regarding both thegered grid system ang,(0) andx,(N,) correspond to the
conservation properties of the nonuniform meshes and theywer and upper walls, respectively. The stretching param-

wall boundary treatment. eter,y, is taken to be 2.75 and 2.95, respectively, for the flow
The filtering operations in the dynamic subgrid scaleat Re=395 and 1400.

models are done in the periodic directions. The test filtering
with the filter widthA,=2h; and the additional grid filtering V. LES RESULTS AND DISCUSSION

Notice that system Eq(18) still holds the condition of
a(QP™)/5C =0. The revised dynamic mixed model given
by Eqg.(11) with Egs.(9) and(19) is called DTMR.

IIl. NUMERICAL METHOD AND COMPUTATIONAL
CASES

j=0,...N2,

with the filter widthKi= h; in x;, i=1,3, direction are done, A Dependence of the LES result on the order of
respectively, as follows: accuracy of the finite difference scheme and on grid
- resolution
f(xp)= &[f(x;i—hp)+4F(x)+f(x+hy)], (20)

- Figures 1 and 2, respectively, show the effect of the or-
f(x)= 55 [f(x;—hy)+22f(x)+f(x;+h))]. (22 der of the accuracy of finite difference scheme on the profiles

Downloaded 29 Aug 2010 to 133.68.192.91. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



Phys. Fluids, Vol. 13, No. 11, November 2001

oo} Case?2
——— 2nd FDM
--------------- 4th FDM
L - 8th FDM
————— 12th FDM
10f
M ~
b -
0 o}
0 of
0 o}
o DNS,
ok Moser et al. (1999)
v Case 2, No SGS,
. Spectral
AT 0 e 10
¥

A recommended modification to the dynamic 3403

20f 4th FDM

Case 1

Ut

o DNS,
Moser et al. (1999)

FIG. 1. The effect of the order of accuracy of the finite difference scheme orFIG. 3. The effect of grid resolution on the mean streamwise velocity profile

the mean streamwise velocity profile for the channel flow g=R85 (Case
2) using SM, DSM, DTM, DTMR, and No SGS.

of mean streamwise velocity; (U;=(u;),) and stream-
wise grid scale velocity fluctuation] (u;= \{U7)— (U1)?)

of the channel flow at Re=395 (Case 2 using SM, DSM,
DTMR, and No SGS. The ensemble averaging overxhe
—X3 plane and time is denoted Ky), . In the figures, vari-
ables with superscript+” are normalized by the wall fric-
tion velocity u, and the viscous length scalé, (6,

(
; v Case 2, No SGS, Spectral

0 200 +
y

for the channel flow at Re=395 using SM, DSM, DTM, DTMR, and No
SGS with the fourth order accurate finite difference scheme.

=v/u,). The simulations without a subgrid scale model are
labeled as No SGS. In these figures the DNS data by Moser
et al!® are also plotted. The computational results with the
2nd, 4th, 8th, and 12th order accurate finite difference
schemes in periodic directions are denoted, respectively, as
2nd, 4th, 8th, and 12th FDM. The results of a spectral
(Fourier—Chebyshgvsimulation corresponding to Case 2
without a subgrid scale model are also plotted in Figs) 1
and Ze). Note that in the spectral simulation the wall normal
grid distribution is different from that of Case 2 because the
Gauss—Lobatto points are used. The discretizatangrid
filtering) effect of the spectral method makes the mean ve-
locity profile and the peak value of the velocity fluctuation
lower than the DNS data, and the results of the higher order
finite difference scheme are closer to the spectral one as
shown in Figs. le) and Ze). In addition, the error of the
second order scheme is considerably larger than those of the
higher order schemes and shifts up the mean velocity profile
and the peak value of the velocity fluctuation. This indicates
that the discretizationigrid filtering) effect of the finite dif-
ference scheme by itself makes the mean velocity profile
lower than the DNS data, while the truncation error of the
finite difference scheme acts as an effective subgrid scale
stress and shifts up the mean velocity profile and the peak
value of the velocity fluctuation. With an increase in the
order of accuracy, the results using SM, DSM, DTM, and
DTMR converge as shown in Figs(al—1(d) and Za)—2(d).

It indicates that the effects of the truncation error are added
to the results of the large eddy simulations. The mean veloc-
ity profile of DTM converges to a lower one than the DNS

FIG. 2. The effect of the order of accuracy of the finite difference scheme orflata with an increase in the order of accuracy, and the result
the streamwise grid scale velocity fluctuation profile for the channel flow atof DTM with the second order scheme looks best in Fig.

Re,=395 (Case 2 using SM, DSM, DTM, DTMR, and No SGS.

1(c). However, the computational results with the second or-
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FIG. 6. The mean streamwise velocity profiles for the channel flow simu-
lation at Re=395 (Case 2 using SM, DSM, DTM, DTMR, and No SGS
with the fourth order accurate finite difference scheme.

(Cases 2—4 The mean velocity profiles of SM, DSM, and
o DNS, i DTMR converge to the DNS data with an increase in grid

¢ Moseretal (1999)  (a) SM resolution, while the mean velocity profile of DTM con-
0 ' 500 . 200 verges to a lower one than the DNS result. This indicates that
y models SM, DSM, and DTMR have good asymptotic prop-

erties regarding grid resolution, while DTM does not.
FIG. 4. The effect of grid resolution on the streamwise grid scale velocity Figure 5 shows the skin friction (:oeffi(;ientcf
fluctuation profile for the channel flow at Re395 using SM, DSM, DTM, =27'w/(PU§1), for the cases which appeared in Fig. 3, where
DTMR, and No SGS with the fourth order accurate finite difference scheme. . . .
7w is the wall shear stressy is the density, andU,
= 1/(2H)ffEU1 dx, is the bulk mean velocity. Th€; value

der scheme are contaminated by large numerical error, an‘g the DNS data by Moseet al.™ is also plotted. The high

+ +
: . : : - = +
therefore, in order to estimate the subgrid scale models Wlthntercept(constantB) of the log-law[U, ('1/K)'In.y B] i
. : : ._for DSM is due to the low value of the skin friction coeffi-
the scheme, we would require considerably higher resolution. . :
. cient, while the low intercept of the log-law for DTM and No
than for higher order schemes.

Figures 3 and 4, respectively, show the effect of gridSGS is due to the high value of the skin friction coefficient.

resolution on the profiles of the mean streamwise velocity
and streamwise grid scale velocity fluctuation of the channe
flow at Re=395 using SM, DSM, DTMR, and No SGS with

the fourth order finite difference scheme. The grid resolu-  The effect of the subgrid scale model would be better
tions corresponding to Cases 1—4 are shown in Table I. Witgstimated in numerical simulation with little or no numerical

an increase in the grid resolution, the results of finite differ-error. As demonstrated in the previous section, the large nu-
ence calculations converge. The numerical error of Case 1 i@erical error of the second order scheme makes it inappro-

considerably larger than those of the finer resolution case@riate for the model estimation. LES is considered to be a
useful prediction tool for unsteady turbulent flow when di-

rect numerical simulations are prohibitively expensive. This
means that LES basically aims at simulations with relatively

. Model comparison for Case 2 with the fourth order
cheme

Caf“ Cai” Ca;“ Ca;e‘ coarse grid resolution. Thus in this subsection, the perfor-
0.009 mances of the subgrid scale models are checked using fourth
SM 4th FDM, &,*=3h," order accurate finite difference scheme on a relatively coarse

grid corresponding to Case 2.

Figure 6 shows the profiles of mean streamwise velocity
using SM, DSM, DTM, DTMR, and No SGS. The difference
between the mean velocity profiles for No SGS and the DNS
results should be properly compensated by a subgrid scale
model. The mean streamwise velocity profiles of the simula-
tions using SM, DSM, and DTMR are shifted up when com-

0.005 , , , , , pared to the result of the simulation without a subgrid scale
0 40 - 80 model. The profiles using SM and DTMR coincide well with
the DNS data, while the mean velocity with DSM is too
FIG. 5. The skin friction coefficient for the channel flow simulation at Re large. On the other hand, the two-parameter dynamic mixed

=395 using SM, DSM, DTM, DTMR, and No SGS with the fourth order rT_]OdeI (DTM_) dqu_ not compensate the Qiﬁerence properly,
accurate finite difference scheme. since the skin friction coefficient of DTM is almost the same

0.008}
U\
0.007}

0.006f
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£ Case 2, 4th FDM

Case 2, 4th FDM

T~

+ 400

FIG. 9. The profiles of the model paramet@g for the channel flow simu-

—1 — . . lation at Re=395 (Case 2 using SM, DSM, DTM, and DTMR with the

0 200 y 400 fourth order accurate finite difference scheme.

FIG. 7. The profiles of grid scale velocity fluctuations for the channel flow o .

at Re=395(Case 2 using SM, DSM, DTM, DTMR, and No SGS with the by &g5= _<7'ij Sij>t+<7'ij>t<3j>t . The different behavior of

fourth order accurate finite difference scheme. the SGS models is also reflected in different energy
interchange mechanisms as was pointed out by Sarghini

7 ecinati +
as that of No SGS, as shown in Fig. 5. Figure 7 shows th&tal" The bulk  mean SGS dissipation,esgs,
profles of grid scale velocity fluctuations (u,, =1/(2H) [ " fledgsdXz, for SM, DSM, DTM, and DTMR
=\(2)—(u,)?, @=1,2,3 and the grid scale Reynolds are 3.8 1073, 4.53<107%, 2.58<10 3, and 3.8% 1073_, _
shear stresgu;u,=(UiU);—(U3)(Us)] using SM, DSM, respectively. The larger value of the bulk mean SGS dissipa-
DTM, DTMR, and No SGS. The peak value of the stream-tion corresponds to the smaller value of the skin friction
wise velocity fluctuation of the simulation without a subgrid coefficient. The DSM model is too dissipative and gives
scale model is higher than that of the DNS data. The defecgmaller skin friction and larger mean velocity as shown in
of the finite difference simulation is not cured completely by Fig. 6. The DTM model is less dissipative, and yields the
the addition of the Smagorinsky modé8M and DSM. The larger skin friction and smaller mean velocity. In particular,
streamwise velocity fluctuation of the DNS is not computedtthL part of the dissipation is negative in the region around
from the filtered field, and the rms fluctuations for the largey ~10. TheCg part of the dissipation is not enough and the
eddy simulation should be smaller than or equal to the DNSlefect of the scale similarity model is not cured if the model
data. The peak values of the streamwise velocity fluctuatioparameters are estimated through the dynamic procedure of
obtained with the DTM and DTMR models are better thanDTM. The reason the defect is not cured by DTM is ex-
those obtained with the SM and DSM models. plained as follows: Horiufiestimated the correlation coeffi-
Remember that the scale similarity model by itself wascients between the exact subgrid scale stress computed from
found to have insufficient SGS dissipation for GS turbulence2 DNS data and those obtained using different subgrid scale
energy, and therefore the model is used together with th&nodels and found that for the channel flow the correlation
Smagorinsky eddy viscosity model as the mixed model tg-oefficient of DTM is 0.87-0.90, while the correlation coef-
remove the defect. Figure 8 shows the SGS dissipation prdicient of DSM is 0.03—-0.35. This implies that the correlation
files using SM, DSM, DTM, and DTMR. Th€g and C, of the scale similarity model to the exact subgrid scale stress
parts of the SGS dissipation are also plotted in the figureis much higher than that of the Smagorinsky model. This
The SGS dissipation that appears in the transport equation énbalance makeSs smaller if the two parameters are solved
GS turbulence energikgs= 5((Uju;);— (U;)«(U;)) ] is given simultaneously. However, the low correlation of the Smago-

0.03
Case 2, 4th FDM SM 3}K Case 2, 4th FDM
Total (lines) T DSM - T DTM
T — T DTM N —— DTMR
0.018} / T » N
Ty [N & e DI
W
oF A & ]
nt
v Cgpartof DTM 4 G partof DTM
-} ¥ GCspartof DTMR 2 Cy part of DTMR o ‘ , .
—0.01 % 50 5" 100 0 200 5 400

FIG. 8. The profiles of the SGS dissipation of the GS turbulence energy foFIG. 10. The profiles of the model parametgy for the channel flow
the channel flow simulation at Re395 (Case 2 using SM, DSM, DTM, simulation at Re=395 (Case 2 using DTM and DTMR with the fourth
and DTMR with the fourth order accurate finite difference scheme. order accurate finite difference scheme.
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FIG. 11. The profiles of the effective Reynolds shear stress for the channel ] ]
flow simulation at Re=395 (Case 2 using SM, DSM, DTM, and DTMR  FIG. 13. The profiles of the element ratid8,,/A;y| and [Ay /A, of

with the fourth order accurate finite difference scheme. matrix A, Eq. (15), for the channel flow simulation at Re395 using DTM
with the fourth order accurate finite difference scheme.

rinsky model also keepS, large even if the part of the scale
similarity model is estimated later as in DTMR. The pro-
posed modification makes use of this property.

Figures 9 and 10 show the profiles of the parametzys

ively. Th is pl
a.nd C ,_rzespectliezy € pggameteﬂ?s '.S plotted - as Figures 12 and 13, respectively, show the condition
sigr{(CsA) ]‘/(CsA), /(h1hohg) ™ The profile, denoted as, \her and elements ratidbA;,/Ayy| and [Ayy/A,,)) for
SM, shows the traditionaCs value with the wall damping matrix A, Eq. (15). The condition number and the ratios are

function defined in Eq(10). The Cs profile of DTMR s estimated by using an instantaneous flow field of DTM with

almost the same as that of DSM. Thig value of DTM iS o iane averaging. The condition number is very large near
much lower than that of DSM, DTMR, and the traditional the wall, and the magnitude o&,, is considerably larger

value, and this results in smaller GS energy dissipation fofy o, A These results support the basis of the revised pro-
DTM. The C, proﬂk_a of DTMR is almqst Fhe Same as that (_)f cedure for wall bounded turbulent shear flows. In addition,
DTM, and the merit of the scale similarity model is kept in the elemenf, in Eq. (18) cannot be neglected with respect
DTMR' i ) to A1;. Thus matrixA cannot be further approximated by the
Figure 11 shows the profiles of the subgrid scale and th%iagonal matrix. In the core region, sinCéoc0.0l, CLod,

€Md|A,1 /A, %0.01,A,; cannot be neglected with respect to
A,,. This may restrict the application of the revised model to
wall bounded turbulent flows.

This implies that the skin friction coefficieriand therefore
the wall shear stregss sensitive to the model parameteg,
while it is passive to the model paramet@y . This point
will be elaborated later.

stress ;) is denoted as SGS, and thg parts of the sub-
grid scale stresfthe second term on the right hand side of
Eqg. (11)] of DTM and DTMR are also plotted as symbols in
the figurg. The effect_ive Reynolds shear stres:rs, iE" the SUR. secondary effect of the Smagorinsky and scale

of the grid and subgrid scale shear stressgsi{” + 7;,), is similarity models

labeled as G$SGS. Note that the order of the mean veloc- - ]

ity profiles shown in Fig. 6 corresponds to the magnitude of ~ 1he addition of the subgrid scale stress model should
the effective Reynolds shear stress close to the wall and do&gduce the mean velocity of the constant mean pressure gra-
not follow the magnitude of the subgrid scale shear stress. ffient flow if the model does not act upon the grid scale
rather corresponds to th&s part of the subgrid scale stress. fluctuating field. However, the discreter filtering) effect of

10° o0l Case 2, 4th FDM o
[ 4th FDM, DTM No SGS )
[ [
T 4 Case 1 Sl
e} 10 L NGO\ s
E'VF 0 NN
3
c 1o}
ie]
g 10%
© T Moser et al. (1999)
)
0 1 . 0
10 0 , >
10° 10" 5 102 10 10 y+ 10

FIG. 12. The profiles of the condition number of mathixEq. (15), for the FIG. 14. The effect of the paramet€r, of the Smagorinsky mod¢Eqgs.
channel flow simulation at Re395 using DTM with the fourth order ac- (10) and(5)] on the mean streamwise velocity profile for the channel flow at
curate finite difference scheme. Re,=395 (Case 2 with the fourth order accurate finite difference scheme.
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IO R\ FIG. 17. The effect of the paramet€ig, of the Smagorinsky mod¢Egs.
i (10) and (5)] on the SGS dissipation of the GS turbulence energy for the

0 260 . 400 channel flow at Rge=395 (Case 2 with the fourth order accurate finite
y difference scheme.

FIG. 15. The effect of the paramet€x, of the Smagorinsky mod¢Eqs.
(10) and (5)] on the grid scale velocity fluctuations for the channel flow at

Re, =395 (Case 2 with the fourth order accurate finite difference scheme. x 10*3, and 6.3% ]_0*3, respectively. An increase in the
mean velocity in Fig. 14 corresponds to an increase in the
bulk mean SGS dissipation.

the finite difference method by itself reduces the mean ve- In order to illustrate the secondary effect of the scale
locity [for example, Fig. (e)], and the secondary effect of Similarity model, we consider the model in E€L1) with

the model to increase the mean velocity is required for obCs=0. i.e., the subgrid scale stress is approximated as
taining the proper mean velocity profile of the flow. * e TOT A *

To illustrate the secondary effect of the Smagorinsky i = Gt~ didy)* 22
model, the simulations using E¢L0) with differentCg, are  Figures 18, 19, and 20, respectively, show the profiles of the
performed. Figures 14, 15, and 16 show profiles of the meafean streamwise velocity, grid scale velocity fluctuations,
streamwise velocity, the grid scale velocity fluctuations, ancBnd the effective Reynolds shear stress for Case 2 with the
the effective Reynolds shear stress, respectively, for Case feurth order finite difference scheme using Eg2) with
with the fourth order finite difference scheme using E4§) C.=0.0 (No SGS, 1.0, 2.0, and 4.0. The mean velocity
and (5) with Cg,=0.0 (No SGS, 0.05, 0.10, and 0.15. The decreases slightly and all velocity fluctuations decrease with
mean velocity increases and the spanwise and wall normd&n increase il . The subgrid scale stress increases and the
velocity fluctuations decrease with an increaseCigy. The  effective Reynolds shear stress increases slightly with an in-
peak value of the streamwise velocity fluctuation is largercrease inC,_ . An increase in the effective Reynolds shear
than the DNS data even for the case wWit,=0.15. With an  stress yields a decrease in the mean velocity. Figure 21
increase irCg, the effective Reynolds shear stress decreaseshows the corresponding SGS dissipation profile. The profile
while the subgrid scale shear stress increases. A decreaselias positive and negative extremayat=5 andy* =10,
the effective Reynolds shear stress yields an increase in thi@spectively, and the absolute values increase with increasing
mean velocity. Figure 17 shows the corresponding SGS disc, . The bulk mean SGS diSSipatiOI"&S;ern, for the cases
sipation profile. The SGS dissipation increases with an inof C,=1.0, 2.0, and 4.0 are 4.%110 4, 6.60<x10 4, and
crease inCgy. The bulk mean SGS dissipatior}ngsn, for  8.32x10 4, respectively. These values are much smaller

cases withCg,=0.05, 0.10, and 0.15 are 1.240 3, 3.84 than that ofCg,=0.10.

1 20} Case 2, 4th FDM
& No SGS
e [ [
5 IS
— oD e i
&
% — T C|_=4.0
%] I
) 10
%]
he)
c
©
n Moser et al. (1999)
o) .
C'\ L 1
10° 10’ 5 102

FIG. 16. The effect of the paramet€x, of the Smagorinsky mod¢Egs. FIG. 18. The effect of the paramet€y; of the scale similarity moddlEg.
(10) and(5)] on the effective Reynolds shear stress for the channel flow at22)] on the mean streamwise velocity profile for the channel flow at Re
Re,=395 (Case 2 with the fourth order accurate finite difference scheme. =395 (Case 2 with the fourth order accurate finite difference scheme.

Downloaded 29 Aug 2010 to 133.68.192.91. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



3408 Phys. Fluids, Vol. 13, No. 11, November 2001 Y. Morinishi and O. V. Vasilyev

0.03
3 Case 2, 4th FDM Case 2, 4th FDM
0 NesGgs ( 0 C=1.0
. b ootfp T/ C.=2.0
= I C =4.0
M A
. I PN
+‘§, @ K e R TR e
% N4
< N7
"/
— 5 "
0.01 0 50 + 100
y
+
i FIG. 21. The effect of the paramet€; of the scale similarity moddIEq.
s : (22)] on the SGS dissipation of the GS turbulence energy for the channel
“10 200 N 400 flow at Re=395 (Case 2 with the fourth order accurate finite difference
scheme.

FIG. 19. The effect of the paramet€y; of the scale similarity moddlEq.
(22)] on the grid scale velocity fluctuations for the channel flow at Re reduces the mean velocity, while the truncation error of the

=395 (Case 2 with the fourth order accurate finite difference scheme. finite difference scheme increases the mean velocity. The
proposed model, DTMR, is a variant of DTM with the Sma-
gorinsky part weighted, and is effective for the large eddy
simulation of wall bounded turbulent flow when the effect of
the truncation error is negligible.

Figure 22 shows the effect of the parameter€gf and
C_ on the skin friction coefficient for the channel flow at
Re,=395 (Case 2 with the fourth order accurate finite dif-
ference scheme. Th€; value of the DNS data by Moser . _
et al'%is also plotted. Th&; value of the No SGS simula- (D:ésng)ﬂow ata higher Reynolds number  (Re.=1400,
tion (Cg=C_=0) is higher than the reference data, and
yields the low intercept of the log-la¢Figs. 14 and 18 The Figures 23 and 24 show the profiles of mean streamwise
Cf value decreases with an increas@gb' and reaches the VelOCity and grld scale VelOCity fluctuations, reSpeCtively, us-
reference value a€g,~0.12, which is likely the optimal ing SM, DSM, DTM, DTMR, and No SGS at Re1400
value of SM for Case 2 with the fourth order accurate finite(Case 3. The grid resolution of the simulation is shown in
difference scheme. On the other hand, @hevalue increases Table | and the fourth order finite difference scheme is used.
slightly with an increase irC,, and it does not reach the In these figures the experimental data by Wei and
reference value foiC,>0. Therefore the scale similarity Willmarth®® are also plotted. The mean streamwise velocity
model by itself cannot give the proper skin friction and meanprofiles of the simulations with SM, DSM, and DTMR are
velocity profile of the flow. shifted up when compared with the case of no subgrid scale

Summarizing the secondary effects of the subgrid scal&odel. The profiles using DSM and DTMR are closer to the
models on the flow, the addition of the scale similarity modelexperimental data. On the other hand, the difference between
decreases slightly the mean velocity while that of the Smathe profiles of DTM and No SGS is small, and the defect of
gorinsky model increases the mean velocity, and the scal@TM is apparent. The peak value of the computed stream-
similarity model is superior to the Smagorinsky model re_Wise velocity fluctuation without a Subgrid scale model is
garding the prediction of velocity fluctuations. In addition, higher than that of the experimental data. The defect of the

the discrete effect of the finite difference method by itself

CL
0.009" 2 :

1 4th FDM, Case 2 f

0.008f __...cceet e
- T~ e C,

GS+SGS Case 2, 4th FDM

0.007

GS and SGS shear stress
o
Cl

T T e ) 0.006f DNS, Moser et al. (1999) l

. 0.005 ' . -
0 50 " 700 0 0.05 0.1 ¢~ 015

FIG. 20. The effect of the paramet€; of the scale similarity moddlEq. FIG. 22. The effect of the paramet€g, andC, on the skin friction coef-
(22)] on the effective Reynolds shear stress for the channel flow at Reficient for the channel flow at Re-395 (Case 2 with the fourth order
=395 (Case 2 with the fourth order accurate finite difference scheme. accurate finite difference scheme.
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FIG. 25. The profiles of the SGS dissipation of the GS turbulence energy for
FIG. 23. The mean streamwise velocity profiles for the channel flow simu-he channel flow at Re-1400(Case $ using SM, DSM, DTM, DTMR, and
lation at Re=1400(Case 3 using SM, DSM, DTM, DTMR, and No SGS No SGS with the fourth order accurate finite difference scheme.
with the fourth order accurate finite difference scheme.

stress is much higher than that of the Smagorinsky model.
finite difference simulation is not cured completely by the On the other hand, the secondary effect of the scale similar-
addition of the Smagorinsky mode(SM and DSM. The ity model increases the skin friction and reduces the mean
peak values of the streamwise velocity fluctuation obtainecy€locity of the turbulent channel flow, while that of the Sma-
with the DTM and DTMR models are better than those of thedorinsky model reduces the skin friction and increases the
Smagorinsky models. Figure 25 shows the SGS dissipatiofe€an velocity. The filtering effect by itself increases the skin
profile using SM, DSM, DTM, and DTMR. The profiles of friction and reduces the mean velocity, and the secondary
Case 5 are similar to those of CaséFy. 8). The bulk mean  effect of a subgrid scale model to increase the mean velocity

SGS dissipationg {gs , for SM, DSM, DTM, and DTMR is required in order to obtain the proper mean velocity profile
are 2.05¢10-3. 2 29?210‘3 1.48<10°3 and 2.16¢10°3 for the turbulent shear flow. Therefore, for the wall bounded

respectively. It indicates that the DTM model does not havefIOWs tk][ﬁ seco(?dta_lry e?fﬁt of the S:na_g:orlnslﬁ/ mor?IeI t'rr]n
enough dissipation. From these results it is apparent that tHyOves the prediction of the mean velocity profiie, while the

revised model keeps the merit of both the eddy viscosity an econdary effect of the scale similarity model results in the

the scale similarity subgrid scale models even for the higtget?r'or_at'_(l)n_ff thedmle_an veI%cny_ pr(;)fllea. Thteh det\f;vect of the
Reynolds number flow, scale similarity model is emphasized when the two param-

eters are computed simultaneously through the standard dy-
namic procedure. We have proposed a modification to the
V. CONCLUSIONS two-parameter dynamic procedure for wall bounded turbu-

The dynamic two-parameter mixed model was expecteée”t flows, which removes that defect: the Smagorins'ky pa-
to have the merits of both the Smagorinsky and scale simil@meter.Cs, is computed exactly the same way as in the
larity models, since it was constructed as a linear combinadynamic Smagorinsky model, then the other paramelgr,
tion of two of them. The strength of the scale similarity 'S computed dynamically &g is known. This ensures that

model is that the correlation of the model to the subgrid scald'€ mixed model gives proper skin friction and then yields
reliable mean velocity profiles while keeping the merit of the

scale similarity model. The reliability of the revised mixed

model was confirmed by performing large eddy simulations
of turbulent channel flow at the two Reynolds numbers Re
=395 and 1400.

Case 5, 4th FDM
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