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A recommended modification to the dynamic two-parameter mixed subgrid
scale model for large eddy simulation of wall bounded turbulent flow
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It is well known that the correlation between the Smagorinsky model and the subgrid scale stress is
low, while the model based on the scale similarity assumption has considerably higher correlation.
However, the scale similarity model by itself was found to be insufficiently dissipative. Therefore,
the model is usually used together with the Smagorinsky model. Model coefficients are commonly
computed using the two-parameter dynamic procedure. Nevertheless, the dynamic two-parameter
mixed model still does not work well for wall bounded flows, since the model predicts a high value
of the wall shear stress. In this study, we propose a modification to the two-parameter dynamic
procedure for wall bounded flows, which removes that defect: the Smagorinsky parameter,CS , is
computed exactly the same way as in the dynamic Smagorinsky model, then the other parameter,
CL , is computed dynamically asCS is known. This ensures that the mixed model provides proper
wall shear stress and mean velocity profile. Computational tests are done for turbulent channel flow
where the Reynolds numbers based on the channel half-width and wall friction velocity are 395 and
1400. To remove the ambiguity regarding the accuracy of the finite difference scheme, we use high
~up to 12th! order accurate fully conservative finite difference schemes in a staggered grid system.
© 2001 American Institute of Physics.@DOI: 10.1063/1.1404396#
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I. INTRODUCTION

The objective of this study is to present a modification
the dynamic two-parameter mixed model for large ed
simulation of wall bounded turbulent flow. It is well know
that the correlation between the Smagorinsky model and
subgrid scale stress is low, while the model based on
scale similarity assumption by Bardinaet al.1 has consider-
ably higher correlation~for example see Horiuti!.2 However,
the scale similarity model by itself was found to be insuf
ciently dissipative. Therefore, the model is usually used
gether with the Smagorinsky model. Model coefficients
commonly computed using the dynamic procedure~Zang
et al.,3 Vreman et al.,4 Salvetti and Banerjee,5 Horiuti6!.
Nevertheless, the dynamic two-parameter mixed model
does not provide proper wall shear stress and mean velo
profile for wall bounded flows~Sarghini et al.7!. In this
study, we propose a modification to the two-parameter
namic procedure, which removes this defect.

It is important to note that the defect of the scale sim
larity model is sometimes concealed when the large e
simulation is performed with the standard second order fi
difference scheme. The reliability of the results of large ed
simulation is strongly affected by both the reliability of th
subgrid scale model and the accuracy of the numer

a!Author to whom correspondence should be addressed: electronic
morinisi@cfd.mech.nitech.ac.jp
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method~Ghosal8!, particularly in the approximation of the
convection term. This means that even if we use the ex
subgrid scale stress, the computed flow field will be conta
nated by the numerical error. This connection between
subgrid scale modeling and numerical error has been mo
overlooked. To remove the ambiguity regarding the accur
of the finite difference scheme, we use mixed order fu
conservative finite difference schemes in a staggered
system proposed by Morinishiet al.,9 where higher~up to
12th! order accurate discretization is used in homogene
directions and second order accurate discretization with c
siderably higher resolution than that for the higher ord
scheme is used in wall normal direction. Computational te
are done in the turbulent channel flow and the Reyno
numbers based on the channel half-width and wall frict
velocity are 395 and 1400.

The present paper is organized as follows. In Sec. II
basic equations of the large eddy simulation and exist
dynamic subgrid scale models are introduced, and a rec
mended modification to the dynamic two-parameter mix
model is presented. In Sec. III the numerical method for
channel flow simulation is outlined. In Sec. IV computation
results of the revised dynamic two-parameter mixed mo
are compared with those of the standard Smagorinsky,
dynamic Smagorinsky, and the standard dynamic tw
parameter mixed model. The proposed modification to
dynamic two-parameter mixed model is justified there
well.
il:
0 © 2001 American Institute of Physics
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II. BASIC EQUATIONS FOR THE LARGE EDDY
SIMULATION AND SUBGRID SCALE MODELS

The basic equations for the large eddy simulation of
compressible flows are the filtered Navier–Stokes and co
nuity equations given by

]ūi

]t
1

]ūi ū j

]xj
1

]t i j

]xj
52

] p̄

]xi
1n

]2ūi

]xj ]xj
, ~1!

]ūi

]xi
50. ~2!

Here ui is the velocity component inxi direction (i
51,2,3,),p is the pressure divided by the density,n is the
kinematic viscosity, andt is time. The summation rule is
assumed for repeated indices. The overbar•̄ denotes the fil-
tering operator.ūi and p̄ compose the resolved, grid sca
~GS! flow field. t i j 5uiuj2ūi ū j is the subgrid scale~SGS!
stress which should be modeled.

A. Dynamic Smagorinsky model

In the dynamic subgrid scale model, the identity of G
manoet al.10 between the grid and test fields is used to d
termine the parameter in the subgrid scale model

Li j 5Ti j 2 t̂ i j , ~3!

where the subtest stressTi j is defined asTi j 5uiuĵ2uC iuC j ,
and the resolved stressLi j is defined as

Li j 5ūi ū ĵ2uC iuC j . ~4!

In the standard dynamic subgrid scale model the Smago
sky eddy viscosity model11 is assumed for both the subgr
and subtest stresses:

t i j* 522~CSD̄ !2uS̄uS̄i j , S̄i j 5
1

2 S ]ūi

]xj
1

]ū j

]xi
D ,

uS̄u5~2S̄i j S̄i j !
1/2, ~5!

Ti j* 522~CSDC !2uSC uSC i j , SC i j 5
1

2 S ]uC i

]xj
1

]uC j

]xi
D ,

uSC u5~2SC i j SC i j !
1/2. ~6!

The superscript ‘‘* ’’ denotes the trace free operator (t i j*
[t i j 2

1
3d i j tkk). The model parameterCS is computed by

minimizing the square of the errorQ5Ei j Ei j ~Lilly 12!,
where the errorEi j is given by

Ei j 5Li j* 12~CSD̄ !2Mi j , ~7!

Mi j 5a2uSC uSC i j 2uS̄u Ŝ̄i j , ~8!

anda25(DC /D̄)2 is the square value of the test to grid filt
widths ratio. In this study we takea2552/3;2.92. It corre-
sponds to13 DC 15A5D̄1 ,DC 25D̄2 , andDC 35A5D̄3 . Assuming
CS is a function ofx2 and taking the average in thex12x3

plane~denoted bŷ •&! we obtain the following equation fo
(CSD̄)2:
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~CSD̄ !252
1

2

^Li j M i j &

^Mi j M i j &
. ~9!

In this paper the dynamic Smagorinsky model given by E
~5! and ~9! is called DSM. In addition to this, the standa
Smagorinsky model with the wall damping function14 is used
for comparison:

~CSD̄ !5CS0F12expS 2
y1

25D G~D̄1D̄2D̄3!1/3, ~10!

where D̄ i5hi ~i 51,2,3,hi are grid spacings!, and y1

5uty/n is the wall coordinate~y is the distance from the
wall!. Note that an alternative wall damping function can
used.15 The model given by Eqs.~5! and ~10! with CS0

50.10 is called SM.

B. Dynamic two-parameter mixed model

The dynamic two-parameter mixed model of Salve
and Banerjee5 is based on the scale similarity model of Ba
dina et al.1 and the Smagorinsky eddy viscosity model.11

t i j* 5CL~ ūi ū j2u% iu% j !* 22~CSD̄ !2uS̄uS̄i j . ~11!

The two parameters,CS andCL , are computed by minimiz-
ing the square of the errorQDTM5Ei j

DTMEi j
DTM , where the

error Ei j
DTM is given by

Ei j
DTM5Li j* 2CLHi j* 12~CSD̄ !2Mi j , ~12!

Hi j 5~uC iuC ĵ2uCC iuCC j !2~ ūi ū ĵ2u% iu% ĵ !. ~13!

Following the standard procedure for the plane channel fl
the system for the two parameters is expressed as

FA11 A12

A21 A22
G F CL

2CS
2G5F ^Li j Hi j* &

2D̄2^Li j M i j &
G , ~14!

where matrixA that appears in the left-hand side of Eq.~14!
is given by

FA11 A12

A21 A22
G5F ^Hi j* Hi j* & 2D̄2^Hi j* Mi j &

2D̄2^Hi j* Mi j & D̄4^Mi j M i j &
G . ~15!

Solving the system Eq.~14!, we obtain the following rela-
tions for CL and (CSD̄)2:

CL5
^Li j Hi j* &^Mi j M i j &2^Li j M i j &^Hi j* Mi j &

^Mi j M i j &^Hi j* Hi j* &2^Hi j* Mi j &
2 , ~16!

~CSD̄ !252
1

2

^Li j M i j &^Hi j* Hi j* &2^Li j Hi j* &^Hi j* Mi j &

^Mi j M i j &^Hi j* Hi j* &2^Hi j* Mi j &
2 .

~17!

In this study, the dynamic mixed model given by Eq.~11!

with coefficientsCL and (CSD̄)2 determined by Eqs.~16!
and ~17! is called DTM.

C. Recommended modification to the dynamic two-
parameter mixed model

The system for the least square problem, Eq.~14!, is
sensitive to the error on the right-hand side vector when
e or copyright; see http://pof.aip.org/about/rights_and_permissions
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condition number~the square root of the maximum to th
minimum eigenvalues ratio! of matrix A, Eq. ~15!, is large.
As will be shown later, the condition number is very large f
the wall bounded flows and DTM does not provide approp
ate wall shear stress. Therefore, DTM does not predict
mean velocity profile correctly. To remove this problem, w
propose a modification to the dynamic two-parameter mi
subgrid scale model. A nearly ill-posed least square prob
can be stabilized by introducing an approximation to ma
A. As it will be shown later, uA21u!uA22u for the wall
bounded flow and, consequently, matrixA can be approxi-
mated by the triangular matrix, which, in turn, leads to t
following system of equations:

FA11 A12

0 A22
G F CL

2CS
2G5F ^Li j Hi j* &

2D̄2^Li j M i j &
G . ~18!

The second line of Eq.~18! gives the Smagorinsky paramet
CS exactly the same way as in DSM@Eq. ~9!#, and the re-
sulting mixed model has enough SGS dissipation for
turbulence energy. The other parameter can be stably c
puted asCS is known:

CL5
^@Li j 12~CSD̄ !2Mi j #Hi j* &

^Hi j* Hi j* &
. ~19!

Notice that system Eq.~18! still holds the condition of
]^QDTM&/]CL50. The revised dynamic mixed model give
by Eq. ~11! with Eqs.~9! and ~19! is called DTMR.

III. NUMERICAL METHOD AND COMPUTATIONAL
CASES

In this study the numerical tests for several subgrid sc
models, described in the previous section, are performed
ing fully developed plane channel flow at Reynolds num
of 395 and 1400. The flow field is assumed to be periodic
the streamwise (x1) and spanwise (x3) directions. The Rey-
nolds number (Ret5utH/n) is based on the channel hal
width H and the wall friction velocityut . The treatment of
the convection term@the second term on the left-hand side
Eq. ~1!# is important for unsteady turbulent numerical sim
lations at high Reynolds number. Fully conservative hig
~2nd, 4th, 8th, and 12th! order accurate finite differenc
schemes proposed by Morinishiet al.9 are used for the con
vection term in the periodic directions. The second or
accurate scheme with a volume weighted interpolat
~Kajishima16! in the wall normal direction (x2) ~combined
properly with higher order discretization in homogeneous
rections! is used to remove the ambiguity regarding both
conservation properties of the nonuniform meshes and
wall boundary treatment.

The filtering operations in the dynamic subgrid sca
models are done in the periodic directions. The test filter
with the filter widthD̂ i52hi and the additional grid filtering
with the filter widthD̄ i5hi in xi , i 51,3, direction are done
respectively, as follows:

f̂ ~xi !5 1
6 @ f ~xi2hi !14 f ~xi !1 f ~xi1hi !#, ~20!

f̄ ~xi !5 1
24 @ f ~xi2hi !122 f ~xi !1 f ~xi1hi !#. ~21!
loaded 29 Aug 2010 to 133.68.192.91. Redistribution subject to AIP licens
r
-
e

d
m
x

S
m-

le
s-
r
n

r

r
n

i-
e
e

g

A semi-implicit time marching method is used. The d
fusion term in the wall normal direction is treated implicit
with the Crank–Nicolson method, and a third order Rung
Kutta ~RK3! method of Spalartet al.17 is used for all other
terms. The splitting method by Dukowicz and Dvinsky18 is
used to enforce the solenoidal condition. The resulting d
crete Poisson equation for the pressure is solved using a
crete Fourier transform in the periodic directions and a
diagonal direct matrix solver in the wall normal directio
The time increments for the simulation at Ret5395 and 1400
are Dt52.531023 and 5.031024, respectively; these sat
isfy the stability condition for RK3.

Table I summarizes the grid resolution for all the com
putational cases in this study. The computational box for
the cases is 2pH32H32pH/3. Cases 1–4 correspond t
the flow at Ret5395 and different grid resolutions in th
periodic directions. Case 5 corresponds to the flow at hig
Reynolds number Ret51400. The grid spacings in the per
odic directions are uniform. The wall normal grid is stretch
using a hyperbolic-tangent function

x2~ j !

H
5

tanh@g~2 j /N221!#

tanh@g#
, j 50,...,N2 ,

wherex2( j ) is the wall normal grid point forū2 in the stag-
gered grid system andx2(0) andx2(N2) correspond to the
lower and upper walls, respectively. The stretching para
eter,g, is taken to be 2.75 and 2.95, respectively, for the fl
at Ret5395 and 1400.

IV. LES RESULTS AND DISCUSSION

A. Dependence of the LES result on the order of
accuracy of the finite difference scheme and on grid
resolution

Figures 1 and 2, respectively, show the effect of the
der of the accuracy of finite difference scheme on the profi

TABLE I. Computational cases.
e or copyright; see http://pof.aip.org/about/rights_and_permissions
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of mean streamwise velocityU1 (U15^ū1& t) and stream-
wise grid scale velocity fluctuationu18 (u185A^ū1

2& t2^ū1& t
2)

of the channel flow at Ret5395 ~Case 2! using SM, DSM,
DTMR, and No SGS. The ensemble averaging over thex1

2x3 plane and time is denoted by^•& t . In the figures, vari-
ables with superscript ‘‘1’’ are normalized by the wall fric-
tion velocity ut and the viscous length scaledn (dn

FIG. 1. The effect of the order of accuracy of the finite difference scheme
the mean streamwise velocity profile for the channel flow at Ret5395 ~Case
2! using SM, DSM, DTM, DTMR, and No SGS.

FIG. 2. The effect of the order of accuracy of the finite difference scheme
the streamwise grid scale velocity fluctuation profile for the channel flow
Ret5395 ~Case 2! using SM, DSM, DTM, DTMR, and No SGS.
loaded 29 Aug 2010 to 133.68.192.91. Redistribution subject to AIP licens
5n/ut). The simulations without a subgrid scale model a
labeled as No SGS. In these figures the DNS data by Mo
et al.19 are also plotted. The computational results with t
2nd, 4th, 8th, and 12th order accurate finite differen
schemes in periodic directions are denoted, respectively
2nd, 4th, 8th, and 12th FDM. The results of a spect
~Fourier–Chebyshev! simulation corresponding to Case
without a subgrid scale model are also plotted in Figs. 1~e!
and 2~e!. Note that in the spectral simulation the wall norm
grid distribution is different from that of Case 2 because
Gauss–Lobatto points are used. The discretization~or grid
filtering! effect of the spectral method makes the mean
locity profile and the peak value of the velocity fluctuatio
lower than the DNS data, and the results of the higher or
finite difference scheme are closer to the spectral one
shown in Figs. 1~e! and 2~e!. In addition, the error of the
second order scheme is considerably larger than those o
higher order schemes and shifts up the mean velocity pro
and the peak value of the velocity fluctuation. This indica
that the discretization~grid filtering! effect of the finite dif-
ference scheme by itself makes the mean velocity pro
lower than the DNS data, while the truncation error of t
finite difference scheme acts as an effective subgrid s
stress and shifts up the mean velocity profile and the p
value of the velocity fluctuation. With an increase in th
order of accuracy, the results using SM, DSM, DTM, a
DTMR converge as shown in Figs. 1~a!–1~d! and 2~a!–2~d!.
It indicates that the effects of the truncation error are ad
to the results of the large eddy simulations. The mean ve
ity profile of DTM converges to a lower one than the DN
data with an increase in the order of accuracy, and the re
of DTM with the second order scheme looks best in F
1~c!. However, the computational results with the second

n

n
t

FIG. 3. The effect of grid resolution on the mean streamwise velocity pro
for the channel flow at Ret5395 using SM, DSM, DTM, DTMR, and No
SGS with the fourth order accurate finite difference scheme.
e or copyright; see http://pof.aip.org/about/rights_and_permissions
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der scheme are contaminated by large numerical error,
therefore, in order to estimate the subgrid scale models w
the scheme, we would require considerably higher resolu
than for higher order schemes.

Figures 3 and 4, respectively, show the effect of g
resolution on the profiles of the mean streamwise velo
and streamwise grid scale velocity fluctuation of the chan
flow at Ret5395 using SM, DSM, DTMR, and No SGS wit
the fourth order finite difference scheme. The grid reso
tions corresponding to Cases 1–4 are shown in Table I. W
an increase in the grid resolution, the results of finite diff
ence calculations converge. The numerical error of Case
considerably larger than those of the finer resolution ca

FIG. 4. The effect of grid resolution on the streamwise grid scale velo
fluctuation profile for the channel flow at Ret5395 using SM, DSM, DTM,
DTMR, and No SGS with the fourth order accurate finite difference sche

FIG. 5. The skin friction coefficient for the channel flow simulation at Rt

5395 using SM, DSM, DTM, DTMR, and No SGS with the fourth ord
accurate finite difference scheme.
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~Cases 2–4!. The mean velocity profiles of SM, DSM, an
DTMR converge to the DNS data with an increase in g
resolution, while the mean velocity profile of DTM con
verges to a lower one than the DNS result. This indicates
models SM, DSM, and DTMR have good asymptotic pro
erties regarding grid resolution, while DTM does not.

Figure 5 shows the skin friction coefficient,Cf

52tw /(rUm
2 ), for the cases which appeared in Fig. 3, whe

tw is the wall shear stress,r is the density, andUm

51/(2H)*2H
1HU1 dx2 is the bulk mean velocity. TheCf value

of the DNS data by Moseret al.19 is also plotted. The high
intercept~constantB! of the log-law @U1

15(1/k)ln y1 1B#
for DSM is due to the low value of the skin friction coeffi
cient, while the low intercept of the log-law for DTM and N
SGS is due to the high value of the skin friction coefficie

B. Model comparison for Case 2 with the fourth order
scheme

The effect of the subgrid scale model would be bet
estimated in numerical simulation with little or no numeric
error. As demonstrated in the previous section, the large
merical error of the second order scheme makes it inap
priate for the model estimation. LES is considered to b
useful prediction tool for unsteady turbulent flow when d
rect numerical simulations are prohibitively expensive. T
means that LES basically aims at simulations with relativ
coarse grid resolution. Thus in this subsection, the per
mances of the subgrid scale models are checked using fo
order accurate finite difference scheme on a relatively coa
grid corresponding to Case 2.

Figure 6 shows the profiles of mean streamwise veloc
using SM, DSM, DTM, DTMR, and No SGS. The differenc
between the mean velocity profiles for No SGS and the D
results should be properly compensated by a subgrid s
model. The mean streamwise velocity profiles of the simu
tions using SM, DSM, and DTMR are shifted up when co
pared to the result of the simulation without a subgrid sc
model. The profiles using SM and DTMR coincide well wi
the DNS data, while the mean velocity with DSM is to
large. On the other hand, the two-parameter dynamic mi
model ~DTM! does not compensate the difference prope
since the skin friction coefficient of DTM is almost the sam

y

e.

FIG. 6. The mean streamwise velocity profiles for the channel flow sim
lation at Ret5395 ~Case 2! using SM, DSM, DTM, DTMR, and No SGS
with the fourth order accurate finite difference scheme.
e or copyright; see http://pof.aip.org/about/rights_and_permissions
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as that of No SGS, as shown in Fig. 5. Figure 7 shows
profiles of grid scale velocity fluctuations ~ua8
5A^ūa

2& t2^ūa& t
2, a51,2,3! and the grid scale Reynold

shear stress@u18u285^ū1ū2& t2^ū1& t^ū2& t# using SM, DSM,
DTM, DTMR, and No SGS. The peak value of the strea
wise velocity fluctuation of the simulation without a subgr
scale model is higher than that of the DNS data. The de
of the finite difference simulation is not cured completely
the addition of the Smagorinsky models~SM and DSM!. The
streamwise velocity fluctuation of the DNS is not comput
from the filtered field, and the rms fluctuations for the lar
eddy simulation should be smaller than or equal to the D
data. The peak values of the streamwise velocity fluctua
obtained with the DTM and DTMR models are better th
those obtained with the SM and DSM models.

Remember that the scale similarity model by itself w
found to have insufficient SGS dissipation for GS turbulen
energy, and therefore the model is used together with
Smagorinsky eddy viscosity model as the mixed mode
remove the defect. Figure 8 shows the SGS dissipation
files using SM, DSM, DTM, and DTMR. TheCS and CL

parts of the SGS dissipation are also plotted in the figu
The SGS dissipation that appears in the transport equatio
GS turbulence energy@kGS5

1
2(^ūi ūi& t2^ūi& t^ūi& t)# is given

FIG. 7. The profiles of grid scale velocity fluctuations for the channel fl
at Ret5395 ~Case 2! using SM, DSM, DTM, DTMR, and No SGS with the
fourth order accurate finite difference scheme.

FIG. 8. The profiles of the SGS dissipation of the GS turbulence energy
the channel flow simulation at Ret5395 ~Case 2! using SM, DSM, DTM,
and DTMR with the fourth order accurate finite difference scheme.
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by «SGS52^t i j S̄i j & t1^t i j & t^S̄i j & t . The different behavior of
the SGS models is also reflected in different ene
interchange mechanisms as was pointed out by Sarg
et al.7 The bulk mean SGS dissipation,«SGSm

1

51/(2H)*2H
1H«SGS

1 dx2 , for SM, DSM, DTM, and DTMR
are 3.8731023, 4.5331023, 2.5831023, and 3.8731023,
respectively. The larger value of the bulk mean SGS diss
tion corresponds to the smaller value of the skin fricti
coefficient. The DSM model is too dissipative and giv
smaller skin friction and larger mean velocity as shown
Fig. 6. The DTM model is less dissipative, and yields t
larger skin friction and smaller mean velocity. In particula
theCL part of the dissipation is negative in the region arou
y1;10. TheCS part of the dissipation is not enough and t
defect of the scale similarity model is not cured if the mod
parameters are estimated through the dynamic procedur
DTM. The reason the defect is not cured by DTM is e
plained as follows: Horiuti6 estimated the correlation coeffi
cients between the exact subgrid scale stress computed
a DNS data and those obtained using different subgrid s
models and found that for the channel flow the correlat
coefficient of DTM is 0.87–0.90, while the correlation coe
ficient of DSM is 0.03–0.35. This implies that the correlatio
of the scale similarity model to the exact subgrid scale str
is much higher than that of the Smagorinsky model. T
unbalance makesCS smaller if the two parameters are solve
simultaneously. However, the low correlation of the Smag

or

FIG. 9. The profiles of the model parameterCS for the channel flow simu-
lation at Ret5395 ~Case 2! using SM, DSM, DTM, and DTMR with the
fourth order accurate finite difference scheme.

FIG. 10. The profiles of the model parameterCL for the channel flow
simulation at Ret5395 ~Case 2! using DTM and DTMR with the fourth
order accurate finite difference scheme.
e or copyright; see http://pof.aip.org/about/rights_and_permissions
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rinsky model also keepsCL large even if the part of the scal
similarity model is estimated later as in DTMR. The pr
posed modification makes use of this property.

Figures 9 and 10 show the profiles of the parametersCS

and CL , respectively. The parameterCS is plotted as

sign@(CSD̄)2#A(CSD̄)2/(h1h2h3)2/3. The profile, denoted a
SM, shows the traditionalCS value with the wall damping
function defined in Eq.~10!. The CS profile of DTMR is
almost the same as that of DSM. TheCS value of DTM is
much lower than that of DSM, DTMR, and the tradition
value, and this results in smaller GS energy dissipation
DTM. TheCL profile of DTMR is almost the same as that
DTM, and the merit of the scale similarity model is kept
DTMR.

Figure 11 shows the profiles of the subgrid scale and
effective Reynolds shear stresses. The subgrid scale s
stress (t12

1 ) is denoted as SGS, and theCS parts of the sub-
grid scale stress@the second term on the right hand side
Eq. ~11!# of DTM and DTMR are also plotted as symbols
the figure. The effective Reynolds shear stress, i.e., the
of the grid and subgrid scale shear stresses (u18u28

11t12
1 ), is

labeled as GS1SGS. Note that the order of the mean velo
ity profiles shown in Fig. 6 corresponds to the magnitude
the effective Reynolds shear stress close to the wall and
not follow the magnitude of the subgrid scale shear stres
rather corresponds to theCS part of the subgrid scale stres

FIG. 11. The profiles of the effective Reynolds shear stress for the cha
flow simulation at Ret5395 ~Case 2! using SM, DSM, DTM, and DTMR
with the fourth order accurate finite difference scheme.

FIG. 12. The profiles of the condition number of matrixA, Eq. ~15!, for the
channel flow simulation at Ret5395 using DTM with the fourth order ac
curate finite difference scheme.
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This implies that the skin friction coefficient~and therefore
the wall shear stress! is sensitive to the model parameterCS ,
while it is passive to the model parameterCL . This point
will be elaborated later.

Figures 12 and 13, respectively, show the condit
number and elements ratios~uA12/A11u and uA21/A22u! for
matrix A, Eq. ~15!. The condition number and the ratios a
estimated by using an instantaneous flow field of DTM w
the plane averaging. The condition number is very large n
the wall, and the magnitude ofA22 is considerably larger
thanA21. These results support the basis of the revised p
cedure for wall bounded turbulent shear flows. In additio
the elementA12 in Eq. ~18! cannot be neglected with respe
to A11. Thus matrixA cannot be further approximated by th
diagonal matrix. In the core region, sinceCS

2}0.01, CL}1,
anduA21/A22u}0.01,A21 cannot be neglected with respect
A22. This may restrict the application of the revised model
wall bounded turbulent flows.

C. Secondary effect of the Smagorinsky and scale
similarity models

The addition of the subgrid scale stress model sho
reduce the mean velocity of the constant mean pressure
dient flow if the model does not act upon the grid sca
fluctuating field. However, the discrete~or filtering! effect of

el
FIG. 13. The profiles of the element ratiosuA12 /A11u and uA21 /A22u of
matrix A, Eq. ~15!, for the channel flow simulation at Ret5395 using DTM
with the fourth order accurate finite difference scheme.

FIG. 14. The effect of the parameterCS0 of the Smagorinsky model@Eqs.
~10! and~5!# on the mean streamwise velocity profile for the channel flow
Ret5395 ~Case 2! with the fourth order accurate finite difference schem
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the finite difference method by itself reduces the mean
locity @for example, Fig. 1~e!#, and the secondary effect o
the model to increase the mean velocity is required for
taining the proper mean velocity profile of the flow.

To illustrate the secondary effect of the Smagorins
model, the simulations using Eq.~10! with different CS0 are
performed. Figures 14, 15, and 16 show profiles of the m
streamwise velocity, the grid scale velocity fluctuations, a
the effective Reynolds shear stress, respectively, for Ca
with the fourth order finite difference scheme using Eqs.~10!
and ~5! with CS050.0 ~No SGS!, 0.05, 0.10, and 0.15. Th
mean velocity increases and the spanwise and wall nor
velocity fluctuations decrease with an increase inCS0 . The
peak value of the streamwise velocity fluctuation is larg
than the DNS data even for the case withCS050.15. With an
increase inCS0 the effective Reynolds shear stress decrea
while the subgrid scale shear stress increases. A decrea
the effective Reynolds shear stress yields an increase in
mean velocity. Figure 17 shows the corresponding SGS
sipation profile. The SGS dissipation increases with an
crease inCS0 . The bulk mean SGS dissipations,«SGSm

1 , for

cases withCS050.05, 0.10, and 0.15 are 1.2831023, 3.84

FIG. 15. The effect of the parameterCS0 of the Smagorinsky model@Eqs.
~10! and ~5!# on the grid scale velocity fluctuations for the channel flow
Ret5395 ~Case 2! with the fourth order accurate finite difference schem

FIG. 16. The effect of the parameterCS0 of the Smagorinsky model@Eqs.
~10! and ~5!# on the effective Reynolds shear stress for the channel flow
Ret5395 ~Case 2! with the fourth order accurate finite difference schem
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31023, and 6.3531023, respectively. An increase in th
mean velocity in Fig. 14 corresponds to an increase in
bulk mean SGS dissipation.

In order to illustrate the secondary effect of the sc
similarity model, we consider the model in Eq.~11! with
CS50, i.e., the subgrid scale stress is approximated as

t i j* 5CL~ ūi ū j2u% iu% j !* . ~22!

Figures 18, 19, and 20, respectively, show the profiles of
mean streamwise velocity, grid scale velocity fluctuatio
and the effective Reynolds shear stress for Case 2 with
fourth order finite difference scheme using Eq.~22! with
CL50.0 ~No SGS!, 1.0, 2.0, and 4.0. The mean veloci
decreases slightly and all velocity fluctuations decrease w
an increase inCL . The subgrid scale stress increases and
effective Reynolds shear stress increases slightly with an
crease inCL . An increase in the effective Reynolds she
stress yields a decrease in the mean velocity. Figure
shows the corresponding SGS dissipation profile. The pro
has positive and negative extrema aty155 and y1510,
respectively, and the absolute values increase with increa
CL . The bulk mean SGS dissipations,«SGSm

1 , for the cases

of CL51.0, 2.0, and 4.0 are 4.5131024, 6.6031024, and
8.3231024, respectively. These values are much sma
than that ofCS050.10.

t

FIG. 17. The effect of the parameterCS0 of the Smagorinsky model@Eqs.
~10! and ~5!# on the SGS dissipation of the GS turbulence energy for
channel flow at Ret5395 ~Case 2! with the fourth order accurate finite
difference scheme.

FIG. 18. The effect of the parameterCL of the scale similarity model@Eq.
~22!# on the mean streamwise velocity profile for the channel flow at Rt

5395 ~Case 2! with the fourth order accurate finite difference scheme.
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Figure 22 shows the effect of the parameters ofCS0 and
CL on the skin friction coefficient for the channel flow
Ret5395 ~Case 2! with the fourth order accurate finite dif
ference scheme. TheCf value of the DNS data by Mose
et al.19 is also plotted. TheCf value of the No SGS simula
tion (CS05CL50) is higher than the reference data, a
yields the low intercept of the log-law~Figs. 14 and 18!. The
Cf value decreases with an increase inCS0 , and reaches the
reference value atCS0;0.12, which is likely the optimal
value of SM for Case 2 with the fourth order accurate fin
difference scheme. On the other hand, theCf value increases
slightly with an increase inCL , and it does not reach th
reference value forCL.0. Therefore the scale similarit
model by itself cannot give the proper skin friction and me
velocity profile of the flow.

Summarizing the secondary effects of the subgrid sc
models on the flow, the addition of the scale similarity mod
decreases slightly the mean velocity while that of the Sm
gorinsky model increases the mean velocity, and the s
similarity model is superior to the Smagorinsky model
garding the prediction of velocity fluctuations. In additio
the discrete effect of the finite difference method by its

FIG. 19. The effect of the parameterCL of the scale similarity model@Eq.
~22!# on the grid scale velocity fluctuations for the channel flow at Rt

5395 ~Case 2! with the fourth order accurate finite difference scheme.

FIG. 20. The effect of the parameterCL of the scale similarity model@Eq.
~22!# on the effective Reynolds shear stress for the channel flow att

5395 ~Case 2! with the fourth order accurate finite difference scheme.
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reduces the mean velocity, while the truncation error of
finite difference scheme increases the mean velocity.
proposed model, DTMR, is a variant of DTM with the Sm
gorinsky part weighted, and is effective for the large ed
simulation of wall bounded turbulent flow when the effect
the truncation error is negligible.

D. The flow at a higher Reynolds number „RetÄ1400,
Case 5…

Figures 23 and 24 show the profiles of mean streamw
velocity and grid scale velocity fluctuations, respectively, u
ing SM, DSM, DTM, DTMR, and No SGS at Ret51400
~Case 5!. The grid resolution of the simulation is shown
Table I and the fourth order finite difference scheme is us
In these figures the experimental data by Wei a
Willmarth20 are also plotted. The mean streamwise veloc
profiles of the simulations with SM, DSM, and DTMR ar
shifted up when compared with the case of no subgrid sc
model. The profiles using DSM and DTMR are closer to t
experimental data. On the other hand, the difference betw
the profiles of DTM and No SGS is small, and the defect
DTM is apparent. The peak value of the computed strea
wise velocity fluctuation without a subgrid scale model
higher than that of the experimental data. The defect of

e

FIG. 21. The effect of the parameterCL of the scale similarity model@Eq.
~22!# on the SGS dissipation of the GS turbulence energy for the cha
flow at Ret5395 ~Case 2! with the fourth order accurate finite differenc
scheme.

FIG. 22. The effect of the parameterCS0 andCL on the skin friction coef-
ficient for the channel flow at Ret5395 ~Case 2! with the fourth order
accurate finite difference scheme.
e or copyright; see http://pof.aip.org/about/rights_and_permissions



he

e
th
tio
f

v
t t
an
ig

te
im
in
ty
a

del.
ilar-
ean
a-
the
kin
ary
city
file
ed
m-
he
the
he
m-
dy-

the
bu-
pa-
he

t
ds
he
d
ns
e

ort
p-
,

al
In-

ri
l to

ce
sible,

mu

ow

for

3409Phys. Fluids, Vol. 13, No. 11, November 2001 A recommended modification to the dynamic

Down
finite difference simulation is not cured completely by t
addition of the Smagorinsky models~SM and DSM!. The
peak values of the streamwise velocity fluctuation obtain
with the DTM and DTMR models are better than those of
Smagorinsky models. Figure 25 shows the SGS dissipa
profile using SM, DSM, DTM, and DTMR. The profiles o
Case 5 are similar to those of Case 2~Fig. 8!. The bulk mean
SGS dissipation,«SGSm

1 , for SM, DSM, DTM, and DTMR

are 2.0531023, 2.2931023, 1.4831023, and 2.1631023,
respectively. It indicates that the DTM model does not ha
enough dissipation. From these results it is apparent tha
revised model keeps the merit of both the eddy viscosity
the scale similarity subgrid scale models even for the h
Reynolds number flow.

V. CONCLUSIONS

The dynamic two-parameter mixed model was expec
to have the merits of both the Smagorinsky and scale s
larity models, since it was constructed as a linear comb
tion of two of them. The strength of the scale similari
model is that the correlation of the model to the subgrid sc

FIG. 23. The mean streamwise velocity profiles for the channel flow si
lation at Ret51400 ~Case 5! using SM, DSM, DTM, DTMR, and No SGS
with the fourth order accurate finite difference scheme.

FIG. 24. The profiles of grid scale velocity fluctuations for the channel fl
at Ret51400~Case 5! using SM, DSM, DTM, DTMR, and No SGS with the
fourth order accurate finite difference scheme.
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stress is much higher than that of the Smagorinsky mo
On the other hand, the secondary effect of the scale sim
ity model increases the skin friction and reduces the m
velocity of the turbulent channel flow, while that of the Sm
gorinsky model reduces the skin friction and increases
mean velocity. The filtering effect by itself increases the s
friction and reduces the mean velocity, and the second
effect of a subgrid scale model to increase the mean velo
is required in order to obtain the proper mean velocity pro
for the turbulent shear flow. Therefore, for the wall bound
flows the secondary effect of the Smagorinsky model i
proves the prediction of the mean velocity profile, while t
secondary effect of the scale similarity model results in
deterioration of the mean velocity profile. The defect of t
scale similarity model is emphasized when the two para
eters are computed simultaneously through the standard
namic procedure. We have proposed a modification to
two-parameter dynamic procedure for wall bounded tur
lent flows, which removes that defect: the Smagorinsky
rameter,CS , is computed exactly the same way as in t
dynamic Smagorinsky model, then the other parameter,CL ,
is computed dynamically asCS is known. This ensures tha
the mixed model gives proper skin friction and then yiel
reliable mean velocity profiles while keeping the merit of t
scale similarity model. The reliability of the revised mixe
model was confirmed by performing large eddy simulatio
of turbulent channel flow at the two Reynolds numbers Rt

5395 and 1400.
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