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SUMMARY This paper proposes a new method to recover
the sign of local Gaussian curvature from multiple (more than
three) shading images. The information required to recover the
sign of Gaussian curvature is obtained by applying Principal
Components Analysis (PCA) to the normalized irradiance mea-
surements. The sign of the Gaussian curvature is recovered based
on the relative orientation of measurements obtained on a local
five point test pattern to those in the 2-D subspace called the
eigen plane. Using multiple shading images gives a more accurate
and robust result and minimizes the effect of shadows by allowing
a larger area of the visible surface to be analyzed compared to
methods using only three shading images. Furthermore, it allows
the method to be applied to specular surfaces. Since PCA re-
moves linear correlation among images, the method can produce
results of high quality even when the light source directions are
not widely dispersed.
key words: Gaussian curvature, shape representation and re-
covery, physics-based vision, principal components analysis

1. Introduction

Surface curvature is one descriptor of the local shape
of a 3-dimensional object. Surface curvature is a view-
point invariant shape descriptor. Thus, in computer
vision, it potentially is useful for many tasks including
shape recovery, shape modeling, segmentation, object
recognition, scene analysis and pose determination.

Woodham [1] extended photometric stereo to esti-
mate both the local surface gradient and the local sur-
face curvature. The method uses three images acquired
under different conditions of illumination. The method
is empirical in that reflectance is estimated using a cali-
bration object of known shape. No specific assumptions
about surface reflectance or light source directions need
to be made. On the other hand, the surface gradient
must be estimated first before local surface curvature
can be recovered.

The sign of the Gaussian curvature alone provides
reduced information about local surface curvature. Yet,
it can be useful for specific purposes such as segmen-
tation. Methods to recover the sign of the Gaussian
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curvature are described in [2]–[5].
Wolff and Fan [2] recover the sign of the local Gaus-

sian curvature from three images acquired under dif-
ferent conditions of illumination. Estimates of the lo-
cal surface gradient and precise knowledge of the light
source directions are not required. At the same time,
Lambertian reflectance is assumed and one of the light
source directions must be aligned with the viewing di-
rection.

Okatani and Deguchi [3] recover the sign of the lo-
cal Gaussian curvature from the sign of the determi-
nant of the 3× 3 matrix of image irradiances sampled
in each of three images at three distinct local image
points. Again, the three images are acquired under dif-
ferent illumination conditions. The method does not
need precise information about the light source direc-
tions. It is applicable when surface reflectance is diffuse.

Angelopoulou and Wolff [4] recover the sign of the
Gaussian curvature directly from three images acquired
using illumination from three different light source di-
rections. The method determines the sign of the Gaus-
sian curvature by examining the orientation of a closed
curve around each local target point. Again, it is ap-
plicable when surface reflectance is diffuse.

Previously, the current authors [5] developed a
method to classify six types of local surface curvature.
The method was based on an implementation of three
light source photometric stereo where reflectance was
estimated empirically using a calibration sphere. In
this implementation, the required mapping from local
five pixel neighborhoods to curvature type was embod-
ied in a radial basis function (RBF) neural network.

Using more than three images has two potential
advantages. First, the accuracy of estimation of the
sign of the local Gaussian curvature can be improved.
Second, shadows and areas of specularity can be over-
come. Thus, estimation can be more robust since cur-
vature information can be recovered for a larger re-
gion of the visible surface. Previous approaches, [2]–
[4], have been limited to three images. The empirical
approach [5] has been extended to classify local surface
curvature using more than three images [6]. But, the
methods of [5], [6] do need a calibration sphere because
explicit estimation of the gradient (i.e., surface normal)
still is required. On the other hand, [3] and [4] show
that the sign of Gaussian curvature can be recovered
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for diffuse surfaces without estimation of the gradient.
This paper proposes a new method to recover the

sign of the Gaussian curvature directly from multiple
(more than three) shading images without estimation of
the gradient [7]. We use Principal Components Anal-
ysis (PCA) to reduce the dimensionality of the origi-
nal input space and propose a robust algorithm to re-
cover the sign of the local Gaussian curvature from a
reduced two-dimensional subspace. The method de-
termines the sign of the local Gaussian curvature at a
point by comparing the relative orientation of measure-
ments obtained from the neighbors of that point to the
orientation of those measurements when projected onto
the two-dimensional subspace. The method can easily
make use of many more than three images since, fol-
lowing projection, the curvature estimation problem is
2-D. Finally, the method is extended to show that the
sign of the local Gaussian curvature still can be esti-
mated in the presence of specularity given that a pixel
with specularity is detected and given that other images
of that pixel without specularity remain to support the
estimation. Results are demonstrated by experiments
on synthetic and real image data.

2. Background

2.1 Sign of the Gaussian Curvature

Let the object surface be given by z = f(x, y).
The sign of the Gaussian curvature is the sign of
px(x, y)qy(x, y) − py(x, y)qx(x, y), where p and q are
the first partial derivatives of z with respect to x and
y and px, py, qx, qy are the corresponding second par-
tial derivatives. In the discrete case, we estimate the
sign of the Gaussian curvature using a local five point
template centered at each discrete point, (x, y).

Let Υ be the standard mapping from the unit sur-
face normal at a point on a smooth object to the asso-
ciated point on the Gaussian sphere. The orientation
of the four neighboring points on the Gaussian sphere
under the mapping Υ determines the sign of the Gaus-
sian curvature. If the Gaussian curvature at a point
on the object is positive, then its neighbors map to the
Gaussian sphere as shown in Fig. 1(a). Conversely, if
the Gaussian curvature is negative, then its neighbors
appear as shown in Fig. 1(b).

The sign of Gaussian curvature is determined by
the relative orientation of the associated points on the
Gaussian sphere. The challenge here is to determine
the relative orientation of points mapped byΥ without
knowing the surface gradient parameters p and q.

2.2 Three-Dimensional Space of Image Irradiances

In the three light source case, let the three irradiance
measurements obtained at each pixel be (E1, E2, E3).
E1, E2 and E3 can be considered to define the axes of

(a)

(b)

Fig. 1 Mapping onto the Gaussian sphere, (a) positive Gaus-
sian curvature and (b) negative Gaussian curvature.

a 3-D right-handed coordinate system. For a Lamber-
tian surface with constant albedo, Woodham [1] showed
that a scatter plot of all measurements, (E1, E2, E3),
defines a 6-degree-of-freedom ellipsoid. This ellipsoid
does not depend on the shape of the object in view nor
on the relative orientation between object and viewer.
Angelopoulou [4] showed that scatter plots for a vari-
ety of diffuse surfaces with constant albedo, including
surfaces with varying degrees of surface roughness, re-
main ellipsoid-like in shape and that the sign of local
Gaussian curvature can be determined since the relative
orientation of neighboring points in the 3-dimensional
space of image irradiances and on the Gaussian sphere
is preserved under the Υ mapping.

Angelopoulou [4] also noted that the scatter plot
from a surface with multiple distinct albedos consists
of multiple distinct ellipsoid-like shapes that differ only
in scale as shown in Fig. 2(a). Following [4], we use
normalization to remove the effect of varying albedo.
Let

E′ =
(

E1

‖E‖ ,
E2

‖E‖ ,
E3

‖E‖
)

(1)

Then, the scatter plot of E′ values produces a single,
normalized ellipsoid-like shape in (E′

1, E
′
2, E

′
3) space.

Figure 2(b) shows the scatter plot in the 3-dimensional
space of normalized image irradiances for a Lamber-
tian sphere with two different albedo values. The sign
of the local Gaussian curvature also can be determined
in the 3-dimensional space of normalized image irradi-
ances since normalization does not change the direction
of the vector E. This means normalization preserves
the relative orientation of neighboring points. Image
irradiance normalization, as defined here, extends in
the obvious way to the p image case (p > 3).
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(a) (b)

Fig. 2 Scatter plots synthesized for a Lambertian sphere with
2 albedos, (a) in space of image irradiances and (b) in space of
normalized image irradiances.

3. Recovering Sign of Gaussian Curvature
from a 2-D Subspace

3.1 2-D Subspace of the Space of Normalized Image
Irradiances

Assume now the p light source case, where (p > 3). Let
the p irradiance measurements obtained at each pixel
be denoted by E = (E1, E2, · · · , Ep) and the normal-
ized irradiance vector by E′. For given conditions of
illumination, viewing and object material, let Φ be the
mapping from a point on the Gaussian sphere to the
p-dimensional space of normalized irradiance measure-
ments. For suitably illuminated points, Φ is invertible
since the p-tuple of image irradiances is different for
each different surface normal.

We do not attempt to define the relative orienta-
tion of four neighboring image points in a p-dimensional
space of normalized image irradiances for arbitrary p,
(p > 3). Instead, the novel idea is to use Principal Com-
ponents Analysis (PCA) to reduce the dimensionality
of the space of measurements. Each point in the p-
dimensional space of normalized irradiances is mapped
to a 2-dimensional subspace by a transformation de-
noted by Ψ. Ψ selects the first two principal compo-
nents of the original p-dimensional space of measure-
ments. We call this 2-dimensional subspace the eigen
plane. Example eigen plane scatter plots for a Lam-
bertian sphere with varying number, p, of images are
shown in Fig. 3. It is shown that Ψ is a one-to-one
mapping that links the relative orientation of points
on the Gaussian sphere with that on the eigen plane.
Here, relative orientation means the sense, clockwise or
counter-clockwise, of the directed curve through a set
of locally neighboring points of the given point.

Ignoring second order effects like inter-reflection
and shadows, the shape of the scatter plot in the p-
dimensional space of normalized irradiances is indepen-
dent of object shape. The density of various regions of
the scatter plot will depend on the actual distribution
of surface normals and thus object shape will influence
the actual PCA transformation Ψ. For a diffusely re-
flecting surface with the full range of visible surface
normals, the scatter plots on the eigen plane will be

Fig. 3 Eigen plane scatter plots for a Lambertian sphere.

(a)

(b)

Fig. 4 Eigen plane for p = 3, (a) sphere-like object and (b)
cylinder-like object.

similar to those shown in Fig. 3. Differences will arise
if the distribution of actual surface normals differs sub-
stantially from that of a sphere. In some cases, the
actual distribution may be narrow. In other cases, scat-
ter plot density normalization may be needed prior to
calculating Ψ.

For the case that the scatter plot in p-dimensional
space is similar to that for a sphere, the eigen plane
will be almost tangential to the scatter plot of the nor-
malized image irradiances, as shown in Fig. 4(a) (the
case of p = 3). Conversely, for a cylinder-like object,
the scatter plot in the p-dimensional space will have
minimal spread and the eigen plane will be almost per-
pendicular to the the scatter plot of the normalized
image irradiances as shown in Fig. 4(b). In this case,
the orientation of local image points is not preserved on
the eigen plane. Minimal spread of the projected scat-
ter plot on the eigen plane indicates that the method
likely will fail. Minimal spread increases the variance
of first principal component compared to that of the
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second, something that is easy to detect.
Specularity also causes the method to fail because

the orientation of local points on the Gaussian sphere
generally is not preserved in an area of specularity. The
case of non-diffuse surfaces is described in 4.2.2.

3.2 Two Types of Mapping

First, consider the special case of a sphere. Define a
local five point image template consisting of a center
pixel and its top, bottom, left and right neighbors. La-
bel the pixels as follows: ©0 is the center point, ©1 is the
top neighbor, and ©2 , ©3 and ©4 are the left, bottom
and right neighbors respectively (in counter-clockwise
order). The corresponding points on the eigen plane
will appear either in clockwise or counter-clockwise or-
der. They will appear in the original labelling order if
the mapping Ψ ◦ Φ preserves the ordering of points on
the sphere. The ordering of points on the eigen plane
depends both on the light source arrangement and on
Ψ.

All coordinate systems are assumed to be the right-
handed coordinate systems. To begin the analysis, con-
sider the three light source case. Suppose the three light
source directions are arranged in counter-clockwise or-
der with respect to the viewing direction. Then the
mapping of local image points to (E1, E2, E3) space pre-
serves the original labelling order [4]. The preservation
or reversal of the ordering of points depends explicitly
on the ordering of the light sources with respect to the
viewing direction. With p light sources, ordering of
the corresponding points on the eigen plane also de-
pends on the light source arrangement. Without loss
of generality, assume that the light sources are given
in counter-clockwise order with respect to the viewing
direction (so that discussion about reversals owing to
light source ordering can be avoided in the following).

Notwithstanding the above, the projection map-
ping Ψ may or may not preserve the ordering of the
points ©1 to ©4 . Let (ψ1,ψ2) be the two eigen vec-
tors of the scatter plot covariance matrix that defines
Ψ. Four combinations exist for the assignment of di-
rections to ψ1 and ψ2. Both ψi and −ψi (i = 1, 2)
are possible candidates. Preservation or reversal of the
labelling order depends on the particular choice of the
directions of ψ1 and ψ2. However, if the eigen plane is
defined as a right-handed 2-D coordinate system, Ψ is
one of only two types of mapping.

When Ψ preserves the ordering of the four points
©1 to ©4 , we call it a “preservation mapping.” When
Ψ reverses the ordering, we call it a “reversal map-
ping.” For a given imaging situation, it is simple
to test whether Ψ defines a preservation or a re-
versal mapping. Let e1, e2, · · · , ep be (1, 0, · · · , 0)T ,
(0, 1, 0, · · · , 0)T , · · ·, (0, 0, · · · , 1)T respectively. Sup-
pose Ψ maps e1, e2, · · · , ep to e

′
1, e

′
2, · · · , e

′
p respec-

Table 1 Determining the sign of the Gaussian curvature from
the orientation of points on the eigen plane.

ordering on the Ψ
eigen plane preservation reversal

counter-clockwise G > 0 G < 0
line or a point G = 0 G = 0
clockwise G < 0 G > 0

tively. The distribution of e
′
1, e

′
2, · · · , e

′
p determines

whether Ψ is a preservation or a reversal mapping. Ψ
becomes a preservation mapping if e

′
1, e

′
2, · · · , e

′
p appear

in counter-clockwise order. Conversely, Ψ becomes
a reversal mapping if they appear in clockwise order.
(ASIDE: if the light sources are given in clockwise or-
der then the sense is simply reversed. That is, Ψ is
preservation if e

′
1, e

′
2, · · · , e

′
p appear in clockwise order

and reversal if they appear in counter-clockwise order.)
For a diffusely reflecting surface with the full range

of visible surface normals, the scatter plots on the eigen
plane will be similar to those for the sphere. Again,
there are two types of mapping. A preservation map-
ping can be distinguished from a reversal mapping by
the ordering of the projections of e

′
1, e

′
2, · · · , e

′
p onto the

eigen plane.
Once Ψ is determined to be a preservation or a

reversal mapping, then the sign of the local Gaussian
curvature can be recovered as described next.

3.3 Procedure

Table 1 summarizes how to recover the sign of the local
Gaussian curvature from the projection of the local im-
age template on the eigen plane. As before, let the five
local points on the image be labeled ©0 for the center
point, ©1 for the top neighbor, ©2 , ©3 and ©4 for the
other three neighbors oriented counter-clockwise. Sup-
poseΨ is a preservation mapping. If ©1 to ©4 map onto
the eigen plane in a counter-clockwise orientation then
G > 0. If ©1 to ©4 map in a clockwise orientation then
G < 0. Conversely, if Ψ is a reversal mapping then the
sign simply is the reverse of the above. Should ©1 to
©4 map to a line or to a point on the eigen plane then
G = 0, regardless of the sense of Ψ.

4. Experiments

4.1 Simulated Examples

We use a 2-D sinc function (Eq. (2)) as a test sur-
face. Lambertian reflectance is assumed and eight light
source directions are used. Each image is synthesized
under the condition that the zenith angle of the direc-
tion of illumination is 18 [deg]. One of the eight syn-
thesized images is shown in Fig. 5(a). Each image is
512×512 pixels and gray levels are quantized to 8-bits.
The albedo (i.e., the constant parameter C in the im-
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(a) (b) (c)

(d) (e)

Fig. 5 (a) Synthetic image (b) estimated result (c) theoretical
result (d) result by [3] and (e) result by [4].

Table 2 Accuracy with different numbers of light source.

Number of light source 4 6 8 12 16
Accuracy (%) 95.8 96.5 97.1 97.7 98.0

age irradiance equation E = C cos(i)†) takes on two
values, C = 255 and C = 150 (where the square regions
in Fig. 5(a) correspond to areas with C = 150).

f(x, y)=3 · sin(x)
x

· sin(y)
y

(−2π < x, y < 2π) (2)

The estimated result is shown in Fig. 5(b). Here,
the four neighboring points are the four pixels edge ad-
jacent to the center pixel. Figure 5(c) shows the cor-
rect result calculated theoretically for comparison pur-
poses. The accuracy of the estimated result is 97.1%.
As is evident, the varying albedo is handled correctly.
The 2.9% error occurs at the boundary between posi-
tive and negative Gaussian curvature (i.e., where G is
near zero). Image irradiances obtained around points
of zero Gaussian curvature map to nearby locations in
the eigen plane. This can cause the method to estimate
the sign of G incorrectly.

Table 2 gives the accuracy obtained for different
numbers of light sources. Accuracy improves as the
number of light sources, and therefore the number of
images, increases.

We also compared our method with the two other
methods given in [3] and [4]. Both other methods use
three light sources only. For the comparison, each im-
age is synthesized under the condition that the zenith
angle of the direction of illumination is 18 [deg]. Fig-
ure 5(d) shows the result of method [3] and Fig. 5(e)
shows that of [4]. Accuracy is 92.4% and 91.6% respec-
tively. Recall that the accuracy for our method using
all eight images (Fig. 5(b)) is 97.1%.

Next, two examples of nearly cylindrical objects
are used to explore the limitation of the method. As

(a) (b)

Fig. 6 Synthesized images and results, (a) the correct sign

of G is obtained(surface is z =
√
(2 + 0.21 sin(x))2 − y2) and

(b) the correct sign of G is not obtained(surface is z =√
(2 + 0.2 sin(x))2 − y2).

before, eight images are used and each image is synthe-
sized under the condition that the zenith angle of the
illuminating direction is 18 [deg]. Examples of the eight
synthesized images and experimental results are shown
in Fig. 6.

Of course, a true cylinder has G = 0 everywhere.
For Fig. 6(a), the variance of the second principal com-
ponent is 3.89% that of the first. For Fig. 6(b), it is only
3.67%. Success or failure depends on the actual condi-
tions of imaging including the number of images, the
light source arrangement, quantization and other noise
effects. We tested various numbers and arrangements of
light sources and various test objects synthetically. Em-
pirically, the method estimates the sign of G correctly
when the variance of the second principal component is
at least 5% that of the first principal component.

4.2 Real Examples

4.2.1 Diffuse Surfaces

A pottery doll is used for experiments on real data.
Fifteen light source directions are used. Images are
acquired for two different zenith angles of illumination,
eight with a zenith angle of 12 [deg] and seven with a
zenith angle of 17 [deg]. Three different test poses of the
doll are shown in Fig. 7(a). Measurement conditions for
each pose are the same. Each image is 512×512 pixels
with 8-bit gray levels. The four neighboring points are
the four edge adjacent pixels, as was the case in the
simulated examples.

The estimated results are shown in Fig. 7. Fig-
ure 7(b) shows the results using only 7 images and
Fig. 7(c) shows the results for all 15 images. In this
case, the correct result is not known since we have no
accurate model of object shape. Qualitatively, the esti-
mated sign of Gaussian curvature appears correct and
robust. Figure 7 also demonstrates that the result is
viewpoint invariant (i.e., independent of pose). The
method estimates results for almost the entire visible
surface.

Next, a pottery deer with varying albedo is tested.
†i is the incident angle.
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(a)

(b)

(c)

(Pose 1) (Pose 2) (Pose 3)

Fig. 7 (a) Real images (b) results (7 images) (c) results (15
images).

17 [deg] 14 [deg] 11 [deg] 8 [deg]

Fig. 8 Example real images.

To test robustness under different conditions of illumi-
nation, image sets with different zenith angles (8 [deg]
– 17 [deg]) are included. Each image set contains 15
images. Example images are shown in Fig. 8.

Results are shown in Fig. 9(a). With our method,
the estimated sign of Gaussian curvature appears qual-
itatively correct for all image sets, and varying albedo
is handled correctly. The results for image sets with
zenith angles of are 11, 14 and 17[deg] are of almost
identical quality.

Again, we compare our method to that of others.
Figure 9(b) shows results for the method of [3]. Fig-
ure 9(c) shows results for that of [4]. Both [3] and [4]
use three images only. In contrast to our results, the
results of these two other methods degrade when the
directions of the light sources are more closely aligned.
Close alignment of light source directions does result in
images that are highly correlated. But, PCA is effec-
tive in these circumstances leading to robust estimation
nevertheless. This point is one key advantage compared
to other methods.

However, all methods are improved by signal av-
eraging. That is, multiple images can be acquired for
each condition of illumination that then are summed
together to form a single image with improved signal-

17[deg]

14[deg]

11[deg]

8[deg]

(a) (b) (c)

Fig. 9 (a) Our results, (b) results by the method of [3] and (c)
results by the method of [4].

(a) (b) (c)

Fig. 10 (a) Our results, (b) results by the method of [3] and
(c) results by the method of [4].

to-noise ratio. Improvement based on this technique is
shown in Figs. 10(b) and (c) (zenith angle is 8 [deg] and
each image is made by summing five images acquired
in each of the three light source configurations). The
results by the method of [3] now are similar to those
of our original method. But, our results also can be
improved in the same way, as shown in Fig. 10(a). The
result of our method remains better than that of the
other two.

Computational cost also is a factor to consider.
The method of [3] is the simplest of the three methods
considered and therefore is the fastest. The method of
[4] is the most complex of the three and therefore is the
slowest.

4.2.2 Non-Diffuse Surfaces

A white colored glass is used as another test object.
The glass has significant specular reflectance. Experi-
mental conditions are identical to those for the example
shown in Fig. 7. Example images are shown in Fig. 11.

We assume constant albedo for the non-specular
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Fig. 11 Real images.

(a) (b)

Fig. 12 (a)Result without removal of specularity and (b) result
with removal of specularity.

component of reflection. Observed points which include
specularity (i.e., glossiness) have distinctly higher im-
age irradiance values than other points. A threshold Th
is used to judge whether a point includes glossiness. Th
is estimated from the image itself. Denote pixel coordi-
nates, (i, j), and the corresponding image irradiance, E,
by the triple (i, j, E). Let i, j and E define the axes of
a 3-D right-handed coordinate system. After all points
on the image are plotted in this 3-D space, Th is esti-
mated by checking for peaks in the scatter plot. In this
current example, Th is set to be about 180. After Th
is chosen, glossy areas can be detected in each image
as those areas where image irradiance is greater than
Th. At each pixel, (i, j), only the subset of images with
image irradiance less than Th are used to estimate the
sign of the local Gaussian curvature.

Results are shown in Fig. 12(a) and Fig. 12(b).
Comparison of Fig. 12(a) and Fig. 12(b) shows that an-
other benefit of multiple (p > 3) images is that glossy
areas can be detected (and ignored) with sufficient im-
ages still remaining to estimate the sign of the local
Gaussian curvature.

The idea to sub-select points in three images with
no specularity given a greater number of images can be
applied to the other methods too. The challenge, as it
is here, is knowing how to select three suitable images
from multiple images without specific knowledge of the
light source directions or the surface gradients. The se-
lection needs to be dynamic since it varies from point to
point. Work to remove the effect of specular reflection
in a four image configuration has been reported pre-
viously [8], [9]. Dealing with an even larger number of
images has the advantage of increasing the opportunity
to find a suitable subset to use for each object point.

For further evaluation, the observed image irra-
diances for the glass object are fit to the Phong re-
flectance model (Eq. (3)) and estimates made of the
parameters s and n.

E=C{s·(2 cos(i) cos(e)−cos(g))n+(1−s) cos(i)} (3)
where i, e and g are the incident, emittance and phase
angles respectively. Parameter n represents the width
(i.e., sharpness) of the specular peak. Parameter s rep-
resents the relative strength of the specular component
compared to that of the diffuse component. Parame-
ter C is an albedo-like term. The estimated results are
s = 0.18 and n = 43.

Again, the 2-D sinc function (Eq. (2)) is used to
evaluate accuracy by simulation. Images are synthe-
sized assuming Phong reflectance with s = 0.18 and
n = 43. Measurement conditions are the same as those
for the examples in Fig. 11. The accuracy for this exam-
ple is 96.7%. Further, from an investigation of various
combinations of the parameters s and n, it appears that
the method can maintain accuracy above 90% whenever
s <= 0.3. (The method is not sensitive to changes in
the value of n.) The method still requires multiple im-
ages of points dominated by diffuse reflectance. This
becomes less the case as s increases so that overall ac-
curacy decreases. Although Phong reflectance was used
in the evaluation, it should be noted that the method
does not assume any specific model for the underlying
diffuse surface reflectance.

5. Conclusion

This paper described a new method to recover the
sign of local Gaussian curvature directly from multiple
shading images. Generic diffuse reflectance is assumed.
Principal components analysis is used to reduce a high
dimensional problem to one of only two dimensions.

The sign of Gaussian curvature is obtained by com-
paring the relative orientation of five local test points in
the image to that of the same points mapped onto the
2-D eigen plane. This is accomplished without any spe-
cific model of diffuse surface reflectance or specific infor-
mation about the direction of the light sources. Previ-
ous approaches used three light sources. Here, a larger
number of light sources (and therefore a larger number
of images) are used. Increased accuracy and robustness
have been demonstrated, even when the light source
directions are not widely dispersed. Spatially varying
albedo also is handled correctly. It also is demonstrated
that the method is applicable to glossy surfaces by sub-
selection of images at each point where gloss is detected.
Limits of the method are shown by simulation.

In future work, the goal is to enhance the appli-
cability of the method and to explore if the magnitude
as well as the sign of the Gaussian curvature can be
determined in similar fashion.
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