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SUMMARY Studies on artificial neural network have been
conducted for a long time, and its contribution has been shown
in many fields. However, the application of neural networks in
the real world domain is still a challenge, since nature does not
always provide the required satisfactory conditions. One example
is the class size imbalanced condition in which one class is heavily
under-represented compared to another class. This condition is
often found in the real world domain and presents several diffi-
culties for algorithms that assume the balanced condition of the
classes. In this paper, we propose a method for solving problems
posed by imbalanced training sets by applying the modified large-
scale neural network “CombNET-II.” CombNET-II consists of
two types of neural networks. The first type is a one-layer vec-
tor quantization neural network to turn the problem into a more
balanced condition. The second type consists of several mod-
ules of three-layered multilayer perceptron trained by backprop-
agation for finer classification. CombNET-II combines the two
types of neural networks to solve the problem effectively within
a reasonable time. The performance is then evaluated by turn-
ing the model into a practical application for a fog forecasting
problem. Fog forecasting is an imbalanced training sets prob-
lem, since the probability of fog appearance in the observation
location is very low. Fog events should be predicted every 30
minutes based on the observation of meteorological conditions.
Our experiments showed that CombNET-II could achieve a high
prediction rate compared to the k-nearest neighbor classifier and
the three-layered multilayer perceptron trained with BP. Part of
this research was presented in the 1999 Fog Forecasting Con-
test sponsored by Neurocomputing Technical Group of IEICE,
Japan, and CombNET-II achieved the highest accuracy among
the participants.
key words: neural network, CombNET-II, self-growing algo-
rithm, imbalanced training sets problem, fog forecasting

1. Introduction

Studies on artificial neural networks have been con-
ducted for a long time and various kinds of architectures
have been proposed. However, working on the applica-
tion of neural networks is still a challenge, since many of
the conditions in the real world domain do not always
satisfy the requirements of the model. One example
is that the real-life condition does not always provide
balanced information for every case (class). This con-
dition will create several difficulties for algorithms that
assume the balanced condition of the classes. Some
examples of real world applications with this kind of
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feature are the detection of fraudulent telephone calls,
spotting unreliable telecommunications customers, rare
medical diagnosis such as the thyroid disease in the UCI
repository [1], and travel demand forecasting [2], among
others.

Some efforts have been exerted to deal with this
problem and several algorithms were proposed [1]–
[4]. Japkowicz categorized these attempts into three
types [3]:

1. Methods in which the class represented by a small
data set becomes over-sampled in order to match
the size of the other class

2. Methods in which the class represented by a large
data set can be downsized in order to match the
size of the other class

3. Methods that ignore one of the two classes, al-
together, by using a recognition-based inductive
scheme instead of a discrimination-based one

Different from these methods, in this paper we
present a new solution by combining competitive learn-
ing network and multilayer perceptron. The pro-
posed algorithm is the large-scale neural network
“CombNET-II” that has been modified to deal with
imbalanced training sets problem. The competitive
learning network is the one-layer vector quantization
neural network trained by self-growing algorithm, and
the multilayer perceptron modules are trained by back-
propagation algorithm. The first part is called “stem
network” and the second part, “branch network.” The
original version of CombNET-II is dedicated to solve
problems that involve the classification of a large scale
of categories such as Japanese Kanji character recog-
nition [5]. In this study, to deal with imbalanced data
sets, we have modified CombNET-II by training the
stem network to partition only the dominant class.
Each partition is unified with the entire data of the sub-
ordinate class to create the training sets for branch net-
work modules. This strategy transfers the problem into
a more balanced domain to be solved by the branch net-
work modules. Since the branch network modules are
independent of each other, they can be trained simulta-
neously in several machines, and the required training
time can be greatly reduced.

The performance of the proposed solution in the
fog forecasting problem is then evaluated. The fog fore-
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Fig. 1 Structure of CombNET-II.

casting problem is defined by the prediction of the exis-
tence of fog at 30-minutes intervals, in a location where
the supercooling-fog event occurs at a rate of approxi-
mately 0.3% per year.

This paper is organized as follows: Section 2 pro-
vides a brief review of the large-scale neural network
“CombNET-II.” In Sect. 3, we explain the proposed
algorithm to deal with the imbalanced condition. In
Sect. 4, we discuss the application of the proposed al-
gorithm to the fog forecasting problem. In this section
we also make a comparison with three-layered MLP and
k-nearest neighbor classifier. In Sect. 5, we give the con-
clusion of the discussion in this paper.

2. Self-Growing Algorithm & CombNET-II

CombNET is a large-scale neural network that con-
sists of two parts: the one-layer stem network and
branch networks consisting of several three-layered mul-
tilayer perceptron modules, as shown in Fig. 1. This
model is dedicated to solve complex large-scale classifi-
cation problems effectively with high performance level,
such as Kanji character recognition [5], and handwrit-
ten character recognition problems [6]. The principle
of this model is to simplify the classification problem
by automatically dividing the vector space into several
sub-spaces according to the statistical distribution of
the data. This task is performed by the stem network
trained by a vector quantization algorithm. Each sub-
space obtained by this algorithm is then presented to
a corresponding branch network module. Branch net-
work is trained to generate a classification border for
each sub-space. This approach will generate a good
classification border for each sub-space, and reduce the
number of local minima in training the netwok.

In CombNET-I, stem network is trained by Koho-
nen’s self-organizing feature map algorithm. However,
this algorithm cannot control the size of sub-spaces
generated during the training process. This condition
produces different levels of training in branch network,
making it difficult to obtain an optimal performance.

Fig. 2 Self-growing algorithm.

In CombNET-II, Hotta et al. [5] proposed self-growing
algorithm as a training algorithm for stem network in-
stead of SOM. This algorithm functions to make similar
sizes of the sub-spaces during the stem network train-
ing. The number of sub-spaces is controlled by two
parameters: inner potential threshold of a stem neuron
(hth) and similarity threshold (rth).

Figure 2 shows the outline of the self-growing al-
gorithm. This algorithm is stated as follows:

1. Initialization
One training vector is randomly chosen as the ref-
erence vector for the first stem neuron.

2. Data Presentation
Each datum is then presented to all of the stem
neurons, and the neuron with the highest simi-
larity is determined. This datum is recorded as
a member of a cluster corresponding to the stem
neuron.

3. Neuron Creation
If the similarity level of the input datum and the
stem neuron exceeds the similarity threshold (rth),
create a new stem neuron with reference vector as
same as the input datum vector.

4. Neuron Division
The inner potential of a stem neuron is defined
by the number of members belonging to the clus-
ter corresponding to the stem neuron. If the inner
potential of a stem neuron exceeds the inner po-
tential threshold (hth), divide the cluster into two
new clusters. The two clusters are separated by
a hyperplane that divides the old cluster into two
parts with similar inner potential.

After all of the patterns are presented, the first
process of this algorithm is completed. The process is
then repeated until there is no significant change of the
stem neuron’s reference vectors.

Branch networks are three-layered neural networks
trained by backpropagation to perform a finer classifica-
tion for each sub-space. The number of branch network
modules is as many as the number of generated stem
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neurons.
In the recognition phase, a test pattern is pre-

sented to all stem neurons, and the distances between
test vector x and stem neuron mr are calculated. r =
1, 2, · · · , R, where R denotes the number of generated
stem neurons. Few closest stem neurons are selected,
and the test vector is presented to the branch networks
corresponding to the selected neurons. Final score Z is
obtained by:

Z = SM1−α × SBα, (1)

0.0 <= α <= 1.0.

SM stands for score of matching, which is defined
by the similarity between test vector and stem neuron.

SM = sim(x,mr) =
x ·mr

|x||mr| (2)

SB stands for score of branch, which is obtained by
taking the maximum output value of neurons in an out-
put layer for each branch network. The final result is
the classification result of branch network correspond-
ing to the stem neuron m that gives the highest score
of Z.

3. Strategy to Deal with Imbalanced Training
Sets Problem

To deal with imbalanced training sets problem, we ap-
ply self-growing algorithm to perform vector quantiza-
tion of the dominant class (class that has a larger num-
ber of samples). The purpose of this algorithm is to
partition the vector space of the dominant class based
on the statistical distribution condition. Figure 3 shows
the outline of the proposed algorithm.

Let the training set T = T (0) ∪ T (1), where each
class Ck contains samples as follows:

T (k) = {x(k)
j : j = 1, · · · , n(k)} for k = 0, 1, (3)

where C0 is the dominant class, and C1 is the sub-
ordinate class. n(k) represents the number of vectors
belonging to class Ck. In the case of imbalanced train-
ing sets: n(0) � n(1).

The proposed algorithm is as follows:

1. Stem Network is trained to divide input vector
space of T (0) into R sub-spaces: {T (0,r) : r =
1, · · · , R}, where

T (0) = T (0,1) ∪ T (0,2) ∪ · · · ∪ T (0,R) (4)

and {x(0,r)
i : i = 1, · · · , n(0,r)} are the patterns

belonging to T (0,r). As a result of the training,
each sub-space is represented by a stem neuron mr

as a mean vector of the patterns belonging to the
sub-space of interest.

mr =
1

n(0,r)

n(0,r)∑
i=1

x
(0,r)
i (5)

Fig. 3 Proposed algorithm for imbalanced training sets prob-
lem.

2. Each generated subspace is then unified with a sub-
ordinate class.

T ′(r)=T (0,r) ∪ T (1) where r = 1, 2, · · · , R (6)

3. T ′(r) is used to train the branch networks. The
number of branch networks is equal to the number
of generated stem neurons.

Different from the conventional methods described
in Sect. 1, the proposed algorithm offers a new strat-
egy for solving the imbalanced training sets problem
by combining competitive learning network (stem net-
work) and multilayer perceptron modules (branch net-
works). Stem network works to simplify the classifi-
cation task by performing vector quantization to the
feature space of the training set, while branch network
creates the finer classification border for each sub-space.
By applying the algorithm, the classification problem
is presented to more balanced domains to be solved
by branch networks. Thus, during the training phase
of branch networks, the synapses will be updated in
a more balanced proportion for both classes to obtain
a fine classification border in the feature space. An-
other advantage of this algorithm is that the branch
networks can be trained independently. This approach
will reduce the time required to train all modules as
long as several machines may be used [7].

4. Application to Fog Forecasting

In this study, the performance of the proposed algo-
rithm was evaluated by applying it to the fog forecast-
ing problem where the probability of a fog event is very
low. Moreover, since the trend of the weather may
change every year, the generalization of the classifier
was evaluated not only by unseen data, but also by
unpredicted future trends.
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Table 1 Meteorological information provided in the database.

No. Observed feature

1 Year
2 Month
3 Date
4 Time
5 Atmospheric Pressure [hPa]
6 Temperature [◦C]
7 Dew Point Temperature [◦C]
8 Wind Direction [◦]
9 Wind Speed [m/s]
10 Maximum Instantaneous Wind Speed [m/s]
11 Change of Wind (1) [◦]
12 Change of Wind (2) [◦]
13 Range of Visibility [m]
14 Weather
15 Cloudiness (1st layer)
16 Cloud Shape (1st layer)
17 Cloud Height (1st layer)
18 Cloudiness (2nd layer)
19 Cloud Shape (2nd layer)
20 Cloud Height (2nd layer)
21 Cloudiness (3rd layer)
22 Cloud Shape (3rd layer)
23 Cloud Height (3rd layer)
24 Cloudiness (4th layer)
25 Cloud Shape (4th layer)
26 Cloud Height (4th layer)

4.1 Fog Forecasting as Imbalanced Training Sets
Problem

The database which was used in this experiment was
provided by the Forecast Department of the Japan Me-
teorological Agency [8]. This database consists of 12
years worth of meteorological information from 1984
through 1995, with observations being conducted every
30 minutes. The observations were conducted at the
Shin Chitose Meteorological Observatory Station, and
the data has been used to support aircraft transporta-
tion. The observatory was located at: long. 141.70◦E,
42.77◦N lat., 25 m above sea level. Note that the ob-
served supercooling-fog events in this location occur at
a rate of approximately 0.3% per year, which is the
highest among airports in Japan. “Supercooling-fog”
is defined as a condition where fog appears while the
temperature is below 0◦C and the range of visibility
is less than 1000 m. The original data were expressed
as telegraphic messages, and were converted into nu-
meric expressions by the Numerical Forecasting Section
of the Japan Meteorological Agency. The observation
included 26 features as shown in Table 1.

Below is one example of the data:
1984 1 1 0.5 1018 −2.0 −3.0 −1 −1 −1 −1 −1 30 26 0
2 7 0 4 25 −1 −1 −1 −1 −1 −1

The data consist of 26 features corresponding to
information given in Table 1. These features indicate
that the observation was made on January 1, 1984 at
0:30 am. At this point, the atmospheric pressure is 1018
hPa, and temperature is −2.0◦C. There are many −1

Table 2 Ratio of number of patterns of each class.

Year Number of Number of Ratio
Fog Events No-Fog Events

1984 467 16961 1:36
1985 426 17033 1:40
1986 314 17130 1:55
1987 275 17172 1:62
1988 282 17260 1:61
1990 220 17199 1:78
1991 220 17272 1:79
1992 389 17163 1:44
1993 211 17301 1:82
1994 298 17211 1:58

values in the data and these are regarded as dummy val-
ues. The database defined this value, because there was
not any observation for the feature. For temperature,
the dummy was expressed as 999 to avoid ambiguity
with −1◦C.

The database was then classified into two classes:
“fog event” and “no-fog event” depending on the values
of the “range of visibility” and the “weather.” In the
database, fog event is defined as the condition when the
“range of visibility” is less than 1000 m and “weather”
shows the appearance of fog. In this database, the
“weather” feature that shows the appearance of fog is
expressed as an integer between 40 and 49. The classi-
fication results for all years are shown in Table 2.

Table 2 shows that the ratio of the two classes is
extremely imbalanced, which leads to a difficult condi-
tion when backpropagation-trained neural networks are
used. To deal with this imbalanced condition, we pro-
posed a solution by the use of the modified CombNET-
II.

4.2 Creating Training Sets

Selection of the database should be based on the order
of the year. Therefore, the training set should be chosen
from the previous years while the test set, from the later
ones. In this experiment, the training set comprised
data from years 1988, 1990, 1991, 1992, and 1993 and
the performance was evaluated by predicting fog events
of the next year i.e., 1994 data. This data selection
implied that the generalization of the classifier could
be evaluated not only by unseen data, but also by the
unpredicted weather trends of 1994.

In this experiment, we dropped “year,” “month,”
“date,” “time,” “range of visibility,” “weather”(as re-
quired in the fog forecasting contest, prediction should
be carried out based on meteorological information
where “range of visibility” and “weather” features are
excluded).

The database was then divided into two classes:
fog event class and no-fog event class based on the value
of range of visibility and weather for each pattern. Af-
ter the division, we obtained a training set with the
numbers of fog event patterns and no-fog event pat-
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Table 3 Cloud shape.

Value Definition Value Definition

−1 No observation 6 Altocumulus
1 Cumulus 7 Altostratus
2 Stratus 8 Nimbostratus
3 Stratocumulus 9 Cirrus
4 Cumulonimbus 10 Cirrostratus
5 Towering Cumulus 11 Cirrocumulus

terns being 1322 and 86195, respectively.

4.3 Data Normalization

Since the database contained many dummies that were
expressed as −1, normalization to the interval value of
[−1, +1] was an appropriate choice while the dummies
were converted into 0.

The data should be normalized appropriately
based on the physical meaning of each feature. We
denote the meteorological information by ξi, where
1 <= i <= 26, and the normalized data by φj , where
1 <= j <= J . J is the dimension of the input vector
presented to the classifier. Since “year” (ξ1), “month”
(ξ2), “date” (ξ3) and “time” (ξ4) were dropped, φ1 be-
came the normalized value of atmospheric pressure (ξ5).
Range of visibility (ξ13) and weather (ξ14) features were
not used to create the input vector.

Part of the meteorological information was pro-
vided as an angle (ξ8, ξ11, ξ12) with the interval value of
[0,360]. These data were normalized as two-dimensional
vectors that showed the location of the points in a cir-
cle. Wind direction (ξ8) was normalized by the follow-
ing equation:

φ4 = sin
(
π

ξ8
180

)
, (7)

φ5 = cos
(
π

ξ8
180

)
. (8)

The same operation was applied for ξ11 (change of
wind (1)), and ξ12 (change of wind (2)).

A specific normalization was also applied for cloud
shape in the 1st (ξ16), 2nd (ξ19), 3rd (ξ22) and 4th (ξ25)
layers. These features were provided as integer values
from 1 to 11, and each of them showed a different shape
of cloud. Table 3 shows the meaning of each value.

Since the values do not show any order, they can-
not be expressed as a one-dimensional vector. In this
experiment, 1-of-c coding [9] was used to express the
cloud shape as an 11-dimensional vector. We denote
the normalized vector for cloud shape in the 1st layer
(ξ16) by φ12+i, where i = 1, · · · , 11. The value of φ12+i

is given as follows:

φ12+i =




−1 if i |= ξ16 and ξ16 |= −1
+1 if i = ξ16
0 if ξ16 = −1.

(9)

The same normalization was also applied for cloud

Table 4 Definition of each element of the feature vector.

i Definition of φi

1 Atmospheric Pressure
2 Temperature
3 Dew Point Temperature
4,5 Wind Direction
6 Wind Speed
7 Maximum Instantaneous Wind Speed
8,9 Change of Wind (1)
10,11 Change of Wind (2)
12 Cloudiness (1st layer)

13,14,· · · ,23 Cloud Shape (1st layer)
24 Cloud Height (1st layer)
25 Cloudiness (2nd layer)

26,27,· · · ,36 Cloud Shape (2nd layer)
37 Cloud Height (2nd layer)
38 Cloudiness (3rd layer)

39,40,· · · ,49 Cloud Shape (3rd layer)
50 Cloud Height (3rd layer)
51 Cloudiness (4th layer)

52,53,· · · ,62 Cloud Shape (4th layer)
63 Cloud Height (4th layer)

shape in the 2nd (ξ19), 3rd (ξ22) and 4th (ξ25) layers.
For the other features, linear normalizations were ap-
plied to transfer the value to the range [−1, +1].

As a result, each pattern was expressed as a 63-
dimensional normalized vector where the element had
a value at interval [−1, +1]. Table 4 shows the detailed
definitions of vector elements. This feature vector was
used to train the neural network.

4.4 Training the Neural Network

In this study, the performance was evaluated based on
the total number of correctly predicted events for both
classes based on the criteria defined in the 1999 fog
forecasting contest [8]. Therefore, the parameters were
chosen to minimize the total number of mispredicted
events.

Data of “no-fog event” were presented to stem net-
work. Stem network applied self-growing algorithm [5],
which performed vector quantization to the vector
space of the dominant class. The number of sub-spaces
was controlled by adjusting two parameters of this al-
gorithm, i.e., inner potential threshold hth and similar-
ity rth. In this experiment, hth was set at 6610 while
rth was 0.4; then, the dominant class was partitioned
into 22 spaces. The number of patterns belonging to
each cluster is shown in Fig. 4, where the horizontal
axis represents stem neuron number corresponding to
the cluster of interest. For some stem neurons, the
number of patterns exceeds the inner potential thresh-
old hth. This is because in our experiments, we did not
divide the stem neurons in the second process of the
self-growing algorithm to avoid the creation of neurons
with relatively small number of patterns.

Each partition was then unified with the “fog event
class,” and the class with a smaller number of members
was duplicated to match the size of the other class.
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Fig. 4 Number of patterns belonging to each cluster.

The data were then presented to branch network. The
numbers of neurons for input layer, hidden layer and
output layer of branch networks were 63, 100 and 2,
respectively.

The training phase was performed in a UNIX en-
vironment, using an Athlon 1.2GHz CPU, Solaris 8 OS
machine. Training the stem network needed only about
20 seconds, while to train all the branch modules at a
maximum of 1000 iterations, we needed 15 hours and
28 minutes. The average time necessary for one branch
module was 42 minutes, while the maximum time for
one branch module was 1 hour and 52 minutes. One
advantage of CombNET-II is that the decomposition
of the task to several branches permits us to use sev-
eral machines simultaneously, thereby improving time
efficiency. This feature permitted us to reduce the nec-
essary time up to around 1 hour and 52 minutes if 22
machines were used to train the modules independently.
This advantage leads us to conclude that the model is
appropriate for classification problems involving large
amounts of data which are often found in practical ap-
plications. After the training phase was finished, the
average of MSE for each neuron of branch network’s
output layer (CombNET-II) was 3.7× 10−3.

4.5 Results & Discussion

We also attempted to solve the same problem using
a complete storage type k-nearest neighbor classifier,
where all data of the training set were used as proto-
types. The k-nearest neighbor classifier is a good choice
for performance comparison and is expected to produce
a high prediction rate. The result is also compared with
backpropagation-trained three-layered MLP which as-
sumes the same structure as branch network.

Figure 5 shows the correct prediction rate achieved
by CombNET-II at several values of α for 1988 data.
The result shows that the correct prediction rate of “fog
event” class increases as the value of α increases, while
that of “no-fog event” shows the opposite trend. The
parameter α was chosen by taking the value that gave
the best performance of the classifier. Thus, α = 0 was

Fig. 5 Correct prediction rate for each class by CombNET-II.

Table 5 Correct prediction rate of combNET-II. (test data:
1994)

CPRt Total No Fog Fog

Max (total) 99.1% (160) 99.4% (96) 78.5% (64)
Min (total) 98.6% (237) 98.9% (193) 85.2% (44)
Ave. (total) 98.9% (184) 99.3% (121) 78.9% (63)

chosen since it gave the smallest number of incorrect
predictions. This value implied that the forecasting
result was the classification result of branch network
corresponding to the stem neuron with the largest sim-
ilarity to the test vector.

The performance of CombNET-II depends on the
classification result of stem network while the self-
growing algorithm depends on the order of data pre-
sentation. Thus, we conducted several experiments by
changing the order of data presentation. Training data
were divided into four parts; thus, we had 24 combina-
tions of data order for 24 experiments.

The correct prediction rate (CPR) is denoted by
CPRt and the statistical results are shown in Table 5.
Figures inside parentheses show the number of misclas-
sified patterns.

Table 5 shows that CombNET-II achieved a high
prediction rate. The best result is achieved by correctly
classifying 99.1% of the test data, while the average
correct prediction rate is 98.9%. The time needed to
classify the test data (data of year 1994) was 11 seconds.
Since the number of test patterns is 17509, the average
classification time for one pattern is 0.6ms.

First, the proposed algorithm is compared to three-
layered MLP that was trained using an over-sampling
scheme. The training set for MLP was created by over-
sampling the data of a subordinate class (“fog event”)
in order to match the size of the dominant class (“no-
fog event”). MLP had the same structure as those of
the branch networks and was trained using backprop-
agation algorithm. The numbers of neurons for input
layer, hidden layer and output layer were 63, 100, and 2,
respectively. The two neurons of the output layer cor-
responded to the dominant class and the subordinate
class, and used the pair {0.1,0.9} as the target values.



NUGROHO et al.: A SOLUTION FOR IMBALANCED TRAINING SETS PROBLEM
1171

Target value 0.9 was assigned to the output neuron cor-
responding to the class of input pattern, while 0.1 was
the target value for the other one. The network was
trained for a maximum of 1000 epochs or until the MSE
error was below 10−4.

After the training phase was completed, the aver-
age of MSE for each neuron of the output layer of MLP
was 9 × 10−3. Comparing the error level with that of
CombNET-II reveals that the vector quantization ap-
proach of CombNET-II improved the performance of
the network to achieve a lower error level than MLP.

The classification result of the MLP is presented in
Table 6. Figures inside parentheses show the number of
misclassified patterns. Comparison of MLP results with
those of the proposed algorithm (Table 5) shows that
CombNET-II outperforms the over-sampling scheme
MLP. Although MLP shows better classification results
for the “fog event” class, the total correct prediction
rate is significantly lower than that of CombNET-II.
This is because of the over-sampling approach that was
used to create a training set for the classifier, leading
the network to overlearn the subordinate class. Since
the data of the subordinate class were over-sampled,
during the training phase, the synapses of the network
were updated more frequently to minimize the error
of the output neuron corresponding to the subordinate
class, rather than that corresponding to the dominant
class. This situation made it difficult for the network to
obtain a high total correct prediction rate, since many
of the patterns belong to the dominant class could not
be correctly classified.

Another disadvantage of the over-sampling scheme
MLP is the time required to train the network, which
may increase if the model is used to deal with large
data sets. In our experiment, the time required to train
the over-sampling scheme MLP was 25 hours and 50
minutes, which was 14 times longer than the maximum
time required by the branch modules of CombNET-II.
If the branch modules of CombNET-II were trained in
22 machines, which is as many as the number of stem
neurons, the proposed algorithm would be trained 14
times faster than MLP.

From these results, we concluded that the perfor-
mance of CombNET-II is superior to that of MLP, and
that CombNET-II is a good approach for practical ap-
plications since it can be trained in a much shorter time
than MLP.

The second experiment compares the performance
of CombNET-II to that of the k-nearest neighbor classi-
fier. The k-nearest neighbor classifier is a nonparamet-
ric classifier based on the concept that samples that are
close in feature space likely belong to the same class.

Table 6 Correct prediction rate of MLP. (test data: 1994)

Total Dominant Class Subordinate Class

97.7% (408) 97.8% (381) 90.9% (27)

Although the algorithm of the k-nearest neighbor clas-
sifier is simple, it offers sub-optimal results compared
to the Bayes decision [10]–[13]. In this experiment, we
used the complete storage type k-nearest neighbor clas-
sifier. This approach means that all data of the training
set are used as prototypes, and hence a high prediction
rate is expected.

In order to deal with an imbalanced data set, the
algorithm is modified as follows:
Let us denote the number of subordinate prototypes
among the k prototypes by ν1, the number of domi-
nant prototypes among the k by ν0, the dominant class
by C0, the subordinate class by C1, and the classifica-
tion result for test pattern x by Cx.
Based on the Euclidean distance, we take k prototypes
that are the closest to the test pattern. The class deci-
sion is given by:

Cx =




C0 if ν0 > ν1 × c
C1 if ν0 < ν1 × c
rejected if ν0 = ν1 × c,

(10)

where c is a certain coefficient (c >= 1).
In this experiment, we used several values of k

(k = 1, 2, · · · , 10). By optimizing parameter k, this
algorithm is expected to give a good approximation of
the optimal prediction rate.

Figure 6 shows the correlation between the number
of misclassified patterns and coefficient c for 9-nearest
neighbor classifier (k = 9). This result shows that a
large value of c improved the prediction rate of the
subordinate class. However, choosing a large value of
c conversely lowered the prediction rate of the domi-
nant class, and subsequently the total performance de-
creased. This is because the classifier produced higher
scores for the subordinate class patterns if they were
among the selected prototypes for the test pattern of
the dominant class. Thus, c = 1.0 was chosen for k = 9,
since the classifier produced the smallest total number
of incorrect predictions. The same operations were con-
ducted for k = 1, 2, · · · , 10 and the results are presented

Fig. 6 Number of error predictions for each value of coefficient
c of 9-nearest neighbor classifier. (test data: 1994)
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Fig. 7 Number of error predictions for each value k of k-nearest
neighborclassifier. (test data: 1994)

Table 7 Correct prediction rate and error number for each
value k of k-nearest neighbor classifier. (test data: 1994)

k c Total Dominant Subordinate
Class (No Fog) Class (Fog)

1 1.0 98.8% (208) 99.3% (114) 68.4% (94)
2 1.1 98.5% (262) 98.9% (191) 76.2% (71)
3 1.0 99.0% (182) 99.5% (78) 65.1% (104)
4 1.1 99.0% (180) 99.4% (102) 73.8% (78)
5 1.0 99.0% (176) 99.6% (74) 65.8% (102)
6 1.1 99.0% (174) 99.5% (82) 69.1% (92)
7 1.0 99.1% (163) 99.6% (59) 65.1% (104)
8 1.1 99.0% (168) 99.6% (74) 68.4% (94)
9 1.0 99.1% (161) 99.6% (60) 66.1% (101)
10 1.1 99.0% (168) 99.6% (72) 67.8% (96)

in Fig. 7 and Table 7.
The best result was achieved for k = 9 and c = 1.0

by correctly classifying 99.1% of test data. Table 7
and Table 5 clearly show that k-nearest neighbor clas-
sifier and CombNET-II achieved similar level of clas-
sification. Since k-nearest neighbor classifier is a good
approximation of the optimal classification, the results
lead us to conclude that CombNET-II achieved simi-
lar performance to that of the sub-optimal classifier.
Although they have similar performance, CombNET-
II has many significant advantages for practical appli-
cation over the k-nearest neighbor classifier. This is
clearly shown by the comparison of the time required
for the classification process. In the experiment, to clas-
sify all the test patterns, the classification process of the
k-nearest neighbor classifier required 35 minutes and
48 seconds. Thus, the average time to classify one pat-
tern is 122.7ms, which is 204 times slower than that
of CombNET-II. This is because of such disadvantages
of k-nearest neighbor classifier as the necessity of stor-
ing all of the prototypes and the computational cost
incurred in searching them to find the nearest neigh-
bor patterns. In particular, when a large-scale data set
is used for the experiment, the implementation of k-
nearest neighbor classifier becomes expensive, because
of the necessity to store all of the prototypes. Table 8
shows the comparison of memory size for the classifi-

Table 8 Size comparison of CombNET-II and k-nearest neigh-
bor classifier.

CombNET-II k-nearest neighbor classifier

146630 5513571
(No. of synapses) (No. of prototypes×dim.)

(1) (38.0)

cation systems of CombNET-II and k-nearest neighbor
classifier. Figures inside parentheses show the ratio.
This comparison shows that to achieve a similar level
of classification, CombNET-II requires much smaller
memory than k-nearest neighbor classifier. These fea-
tures bring many advantages when the proposed model
is used for practical applications.

We analyzed the correct prediction rate of “fog
event class” of CombNET-II and k-nearest neighbor
classifier, and found that CombNET-II achieved a
higher rate than k-nearest neighbor classifier. In the
case of year 1994 data, the correct prediction rate of
“fog event” class for CombNET-II was 78.5% (64 events
were not correctly predicted), while that for 9-nearest
neighbor classifier was 66.1% (101 events were not cor-
rectly predicted). From these misclassified patterns, 63
patterns could not be classified by both CombNET-II
and k-nearest neighbor classifier, 38 patterns were cor-
rectly classified by CombNET-II but not by k-nearest
neighbor classifier, and only one pattern was correctly
classified by nearest neighbor but not classified by
CombNET-II. This result shows that the prediction
performed nonlinearly in CombNET-II was successful
for patterns of the subordinate class which were very
close in feature space to the dominant class. The k-
nearest neighbor classifier could not avoid misclassifi-
cation of such patterns, since the distance calculations
were linearly performed. This result also shows that
fog event forecasting is a very difficult problem, since
k-nearest neighbor classifier failed to do fine predic-
tion even if the entire data of training set were used
as templates. Since predicting the fog event (subordi-
nate class) is very important, the results lead us to con-
clude that CombNET-II offers a better solution than
k-nearest neighbor classifier.

In practical applications, predicting the appear-
ance of fog in the future is important. Therefore, the
performance of the proposed algorithm was also evalu-
ated by presenting meteorological observation at a cer-
tain time t, and the model should predict the fog ap-
pearance at t + ∆t. As described in Sect. 4.1, the in-
terval between one meteorological observation and the
next observation is 30 minutes. Thus, the performance
of the model was evaluated by training the network to
forecast the fog event at t + ∆t with ∆t = 30, 60 and
90. In the classification stage, a test vector created from
observation of meteorological condition was presented
to the classifier; thus, the model should predict the fog
appearance in the next 30 minutes, 60 minutes and 90
minutes.
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Table 9 Correct prediction rate of all methods.

Method CPRt+30 CPRt+60 CPRt+90

k-NN (best) 98.8% 98.4% 98.3%
(215) (272) (294)

MLP 94.7% 93.5% 90.4%
(918) (1138) (1679)

CombNET-II (Max) 98.8% 98.6% 98.4%
(213) (245) (284)

CombNET-II (Min) 97.8% 97.6% 97.4%
(378) (422) (461)

CombNET-II (Ave) 98.4% 98.2% 97.9%
(271) (320) (368)

Let us denote the correct prediction rate by CPRt,
and the next types of predictions are denoted by
CPRt+30, CPRt+60, CPRt+90, respectively. Data of
year 1988, 1990, 1991, 1992 and 1993 were used as train-
ing set while those of 1994 were used for performance
evaluation. The parameters of CombNET-II, MLP and
k-nearest neighbor classifier were the same as those
of previous experiments. The order of data presenta-
tion for CombNET-II experiments was also changed 24
times for each experiment to obtain the statistics of the
results.

The results obtained from CombNET-II are com-
pared to those of k-nearest neighbor classifier and MLP,
and are presented in Table 9 (CPRt of the classifiers
are not presented here, since they have been presented
in previous tables). Figures inside parentheses are the
number of incorrect predictions. Note that the pre-
diction rate is expressed as the ratio of the number of
correct predictions for all classes to the entire data.

The results show that CombNET-II achieves bet-
ter performance than MLP for all types of predictions.
When they are compared to k-nearest neighbor classi-
fier, they show similar levels of prediction rate. Com-
paring the accuracy of the four types of prediction, we
find that the accuracy decreased when the time interval
(∆t) with the predicted condition became longer. The
difference between CPRt and CPRt+90 obtained by
CombNET-II is 0.7% (124 errors), while that by MLP
is 7.3% (1271 errors). This result shows that the pro-
posed algorithm gives more stable accuracy than the
oversampling approach used in MLP.

In this study, we do not discuss the feature extrac-
tion method in the preprocessing for selecting features
that have high correlation with the classification task.
This is because the objective of this study is to present
a general strategy for dealing with imbalanced data
sets, which is also applicable for the other classification
problems. Consequently, the training vectors in this
experiment might contain features that were actually
not necessary for the prediction, and conversely could
make the generalization poor. An appropriate feature
extraction method will improve the performance of the
system; this is an interesting topic for future work.

4.6 Fog Forecasting Contest

Part of this research was presented in the 1999 Fog
Forecasting Contest sponsored by the Neurocomput-
ing Technical Group of IEICE, Japan. In this event,
the participants were requested to forecast fog events
for years 1989 and 1995 using data of the other 10
years. The data for all years except 1989 and 1995
were completely given including all 26 features in Ta-
ble 1. For data of years 1989 and 1995, only 24 fea-
tures were given by removing “Range of Visibility” and
“Weather.” Therefore, only 10 years of database could
be used as training sets and performance evaluation
sets. As a result, CombNET-II achieved the highest
score among the participants. For details of this con-
test, please see [14].

5. Conclusion

In this paper, we propose a solution for the imbal-
anced training sets classification problem by applying
the modified large-scale neural network CombNET-II.
This approach offers a new strategy for imbalanced
data sets by performing vector quantization for dom-
inant class which is implemented by stem network of
CombNET-II. In this phase, the training data are de-
composed into several groups to simplify the classifica-
tion task. This decomposition allows us to train each
module independently in the second phase, and thus
the time needed to train the model can be reduced.
This feature makes this model suitable for real world
applications which often involve large data sets.

This model was implemented in the fog forecast-
ing problem, where it had to predict the appearance
of fog based on meteorological conditions. The predic-
tion should be conducted every 30 minutes in a location
where the probability of fog event is very low. A five-
year database was used to train the model. The time re-
quired for training CombNET-II could become 14 times
shorter than the time required for three-layered MLP.
Performance evaluation of CombNET-II revealed that
it is superior to MLP and achieves a similar level of
accuracy to k-nearest neighbor classifier. Analysis of
the results shows that CombNET-II produced a higher
prediction rate of fog event than k-nearest neighbor
classifier. CombNET-II also has such advantages over
k-nearest neighbor classifier as the classification time
and the required memory size. These results lead us to
conclude that CombNET-II offers a better solution for
practical applications than k-nearest neighbor classifier
and MLP.

Part of this research was presented in the 1999 Fog
Forecasting Contest sponsored by the Neurocomputing
Technical Group of IEICE Japan as a part of the 1999
IEICE General Conference. In this contest, CombNET-
II achieved the best result among the participants.
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