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The most commonly used dynamic subgrid scale model is based on the Smagorinsky eddy viscosity
model with the model coefficient computed dynamically through teémesor levelidentity by
Germanoet al. However, the tensor level identity does not explicitly account for the effect of the
discretization of the governing equations, and thus the computational results strongly depend on grid
resolution, especially in a simulation with poor resolution. In this paper, we propose a new dynamic
procedure with theector levelidentity, which takes the effect of grid resolution into consideration.
The new procedure is tested for the dynamic Smagorinsky eddy viscosity model with the vector
level identity. All computational tests were done on turbulent channel flow. The numerical results
confirm that the mean velocity profile computed using the new subgrid scale model does not depend
on the grid resolution. €2002 American Institute of Physic§DOI: 10.1063/1.1504450

I. INTRODUCTION tational results are compared with those of the standard dy-
namic Smagorinsky model. The effects of grid resolution and
The objective of this study is to develop a dynamic sub-the Reynolds number on the computational results are dis-
grid scale model for large eddy simulation of turbulent flows,cussed. Section IV contains conclusions of this study.
for which computational results are independent of grid reso-
lution. The most commonly used dynamic subgrid scale

model is based on the Smagorinsky eddy viscosity rTJrodeI”' TENSOR AND VECTOR LEVEL IDENTITIES FOR

with the model coefficient computed dynamically through = DYNAMIC SUBGRID SCALE MODELING
the tensor levelidentity by Germancet al? However, the

tensor level identity does not explicitly account for the effectA- Filtered Navier—Stokes and continuity equations

of the discretization of the equations governing the evolution  The governing equations for incompressible flows are

of the large-scale turbulent velocity field, and thus the comthe Navier—Stokes and continuity equations, given by
putational results strongly depend on grid resolution, espe-

2
cially in simulations with poor resolution. In this paper we %+ il __ 9P 97U (1)
will present a new dynamic procedure with thector level gt dx IXj  IXj0X;
identity, which takes the discretization effect into consider- P
. .. . . L Ui
ation. The original idea was first introduced by Morinishi and o 0. (2
i

Vasilyev® and in this paper we present a more detailed analy-

sis. This new dynamic procedure is tested for the SmagorinHere u; is the velocity component in the; direction (

sky eddy viscosity model with the vector level identity. Com- =1,2,3), p is the pressure divided by the densityjs the

putational tests are done on turbulent channel flow withkinematic viscosity, and is time.

Reynolds numbers based on the channel half-width and wall In large eddy simulation with dynamic subgrid scale

friction velocity of 180, 395, and 590. modeling, two different filters, i.e., the grid filt&d(x) and
The present paper is organized as follows. In Sec. Il th@ne test filterG(x), are introduced:

dynamic procedure for subgrid scale modeling with the vec-

tor level identity is proposed. The standard dynamic proce- E(X,t):f E(x—x’)¢(x',t)d3x’, @)

dure with the tensor level identitfGermano identityis also

introduced for a comparison. In Sec. lll the large eddy simu-

lations of plane channel flow are performed and the compu- fj)(x,t):f G(x—x")p(x',t)d3x’. 4

dAuthor to whom correspondence should be addressed. Telephon'a:‘pplyi.ng the griq filter (3) 'tO Eqs'(l) an.d (2.)’ we get th.e
+81 52 735 5346; fax: +81 52 735 5342; electronic mail ?o_llowmg governing equations for the grid filtered flow field
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b auu; ap 92U, The superscript *” denotes 'zhe trace-free operatorrﬁ(

2t o = Kﬂjax-ax-’ (5) =7;j— 30, 7w - Following Lilly,* the model parametes is
! : 177 computed by minimizing the square of the err@'

M, © EijEij -

ax,

Ej=L5+2(CsA)°Mij, M;=a%S§;—[9]S;. (17)

The commutability between the differentiation and filtering L

operations is usually assumed and the filtered convectiohlerea®=(A/A)? is the square value of the test to grid filter

term is treated as widths ratio. In this study we take®=5%°~2.92. It corre-
sponds tBA,=5A;, A,=A,, andA;= 5A,. Assuming

7) Cgis a function ofx, and taking the average in thg — x5

O')Uin anUj (97'”'

axp o ax; o axy plane(denoted by(-)), we obtain the following equation for
T (CA)%:
Tij = Ujuj— u;u;, (8)
where 7;; is the subgrid scale stress which should be mod- (CSK)Zz B 1(LijMjj) (19)
eled. 2(M;jM;)°

In large eddy simulation with the dynamic subgrid scale
model, the governing equations for the test filtered flow field
(d; ,p) are obtained by applying the test filteh to Egs.(5)

In this paper the dynamic Smagorinsky model given by Egs.
(15) and(18) is called DSM.

and (6): C. Dynamic subgrid scale modeling with vector level
a4, auu; ap 924, identity
ot X T Tt 9%’ ©) In practical LES applications the finite difference
R method is usually used and the first term on the right-hand
%:O. (10 side of Eq.(7) is approximated by
| _— . . Uil duiy; n
The commutability is assumed once again and the filtered 5% ~W+O(h )
convection term is given by ! '
— L whereéu;u; / 5x; denotes thath-order accurate finite differ-
Juiuj M'i‘ o”'l'_.J (11) ence approximation téu;u; /9x; andO(h") is the truncation
X - X ax; error. This means that the filtered convection term, &g.
o suffers from the discretization effect, even if we know the
Tij=uu;—Gid;, (120  exact subgrid stress. That is why the development of high-

order numerical methods has been considered as one of the
important areas of LES researth.

In this study, we propose an alternative approach to im-
prove the reliability of the computational results of LES. The

filtered convection term in the grid field is modeled as
In the standard dynamic subgrid scale modeling, the ten-

sor level identity of Germanet al? between the subgrid and auuy ou;u; ﬂ
subtest scale stresses is used to determine the parameter in X T8X ax;
the subgrid scale model,

whereT;; is called the subtest scale stress.

B. Dynamic subgrid scale modeling with tensor level
identity (standard dynamic modeling )

(19
j
. where the numerical error is treated as a part of the subgrid
Lij=Tij— 7, (13 scale stresgexactly, subgrid scale vecfgrand the rest is
where the resolved stregy; is defined as modeled with;;. The filtered convective term in the test

. field is assumed as follows:
Lij:Uin—Uin. (14)

In the standard dynamic SGS model the Smagorinsky eddy 94iYj _ dUiy; n (ﬂ—_u 20
viscosity model is assumed for both the subgrid and subtest ~ 9X; OX; IX;

scale stresses: The model parameter in the dynamic subgrid scale model is

. —=e = 1 du; au; determined through the following vector level identity:
= —2CANSIS;, Sj=5| ot o -

] [ c (9T|J (97'”' (21)
_ =11
|S|=(2S;S))"2 (15 IXj 9%

e . 104, &ﬁj where the resolved convection terfh, is defined as

Tii=-2(CsA)?[SS;, Sij=§(%+§>, —

i i c_cl CKzﬁuiuj_ ou;U; 22
|§1=(25;$))™2 (16) T T e ok
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If the parameter in the dynamic subgrid scale model is estipe shown in Sec. 1l A. the value OQSK)Z determined by

mated through the vector level identity given by ER1),  gq (25) can become negative very close to the wall. Nega-
then the discretization effect on the convection term explic-

itly influences the model parameter. Substituting Ed$) EIDVr?e \\/liuetso gtazglzsveizh tf]?snislzig itsotg?Q@Zﬁelgfﬁﬁgﬂi&a_
and(16) into Eq.(21), we obtain the following erroE; and y P 9

its square value: tive cIipping, which will result in a discon_tinyodSS p_rofile. _
' An alternative procedure to deal with this issue will be dis-
_ I(CgA)2 cussed in Sec. IIlA. For the clarity of discussion, the dy-
Q'=EE;, E=C'+2M;(Csd)*+ 2Mij— — namic Smagorinsky model given by E(L5) with (C<A)?
(23  determined by Eq(25) will be referred to as VDSMwc,
where the last two letters stand for “without clipping.”

where Note that the dynamic procedure assumes the model
1 IM; similarity for both grid and test filterésee Meneveau and
CF=C— §5ijCLk, Mi:W- Katz®). However, the test filter size is bigger. Thus, in order
J

to achieve complete model similarity at test and grid levels,
Note that in contrast to the tensor level identity, the errorthe truncation error should be proportionally greater. This
term QY depends not only on the values &4A)2 but also  can only be achieved for the second-order method, and will
on its derivatives. As a consequence, the minimization pronever be true for higher-order schemes. However, for higher-
cedure is no longer local and we need to use the variationarder schemes and filters with a nonvanishing second mo-
principal to determineq:SK)Z. In this study, CSK)Z is es- Mment the truncation error is considerably lower than commu-

timated by minimizing the following weighted integral: tation error. Thus, complete proportionality of the truncation
error is not crucial. We also note that the subgrid scale model
v with the vector level identity does not assume the commut-
W(X X1,X2,X3)dX1dX,0X5. 24 - . . o .
J J J (X2) Q7(X1, %2 X3) Xy Axps @49 ability between the differentiation and filtering operation:

&uiuj _ 0Uin

ax; X

Following the general variational principle it can be shown
that if the function ¢(y) provides the minimum for the
weighted integral,

f w(y)
) ) ) _ ) ) In this study the numerical tests for subgrid scale models
then it should also satisfy the following differential equation: ith both the tensor and vector level identities are performed
deb d deb using fully developed plane channel flow at a Reynolds num-
w(y)(A+B-¢+C—)B— —[w(y) A+B~¢+C—)C ber of 180, 395, and 590. The flow field is assumed to be
dy dy dy Lo . . S
periodic in the streamwisex() and spanwisexs) directions.
=0. The Reynolds number (Reu,H/v) is based on the channel
. . . ) half-width H and the wall friction velocityu.. The filtering
Assuming thaCs is a function ofx, and taking the average operations in the dynamic subgrid scale models are per-

in the periodic directions, theQsA)? value, which mini-  formed only in the periodic directions. The test filtering with
mizes the weighted integrgR4), is obtained through the

lll. LES RESULTS AND DISCUSSION

A+B +cdd’ 2ol
b dy Y,

o e ) . 4 the filter width Ai=2hi in x;, i=1,3, directions is done as
variational principal, which leads to the following differen- follows:
tial equation: |
2 f(xi) =&l f(x;—hy) +4f(x) +f(x;+h)]. (26)
MM ) (CeR) 2+ (M M,y L)
W(Xz)[ (MiM;)(CsA)*+(MioM;) dx, Table | summarizes the grid resolution for all computational

cases in this study. The computational box for all cases is
—.2 2mHX2HX27H/3. Cases B—F correspond to the flow at
+{MiMi2)(CsA) Re,=395 and different grid resolutions in the periodic direc-
tions. Case A corresponds to the flow at lower Reynolds
number Re=180. Case G corresponds to the flow at higher
Reynolds number Re590. The grid spacings in the peri-
odic directions are uniform. The wall normal grid is stretched
using a hyperbolic-tangent function. The mixed order fully
1 1 d[W(X2)(C*M;,)] conservative finite difference scheme in a staggered grid sys-
R(X5)=— EW(X2)<Ci* M)+ > . tem is used, where the fourth-order accurate discretization
T ; .
proposed by Morinishét al.” is used in homogeneous direc-
Equation(25) is discretized using the second-order finite dif- tions and the second-order one is used in the wall normal
ference method and is solved using the direct tridiagonadlirection. The computational method is the same as that in
solver. In this study the weight is selected agX,) Morinishi and VasilyeV. In this study we shall compare the
=1/h,(X,), whereh,(x,) is the grid spacing ix,. As will dynamic vector model with the dynamic tensor one with re-

dx,

W(Xy)

d(CsA)?
5|

+<Mi2Mi2>d—X2 (25

where

dx,
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TABLE |. Computational cases.

Case Re L, L, Ls N, N, N hy hy hy
Case A 180 #H 2H 27H/3 32 64 32 35.3 0.6-12.9 11.8
Case B 395 ZH 2H 27H/3 16 64 16 155.1 0.6-34.1 51.7
Case C 395 2ZH 2H 27H/3 24 64 24 103.4 0.6-34.1 345
Case D 395 ZH 2H 27H/3 32 64 32 77.6 0.6-34.1 25.9
Case E 395 2ZH 2H 27H/3 48 64 48 51.7 0.6-34.1 17.2
Case F 395 ZH 2H 27H/3 64 64 64 38.8 0.6-34.1 12.9
Case G 590 ZH 2H 27H/3 32 64 32 115.8 0.6-55.4 38.6

spect to the grid resolution only, since the dependence of theot cured completely by the addition of the dynamic Smago-
LES result on the order of accuracy and on grid resolutiorrinsky model® We believe that the addition of a scale simi-
with some existing subgrid scale models has been discusséatity modet'~®°should improve the profile. However, we
by Morinishi and VasilyeV. The computational cases, casesleave it for future investigation.

C-F, correspond to cases 1-4 of Ref. 9. Figure 3 shows the profiles of the parame@grnear the
wall. The parameter Cg is plotted as

A. Model comparison for case D and negative sign (CA)?] \/|(CSK)2|/(h1h2h3)2’3. The Cs value of

clipping VDSMwec is negative very close to the wall, even if we in-

Figure 1 shows the profiles of mean streamwise velocityiroduce the plane averaging as in ER5). Basically we do
U; (U;=(uy)y) of the channel flow at Re=395 (case D  not wantCg to be negative by reason of the numerical sta-
using VDSMwc, DSM, and No SGS. The ensemble averagbility problem. However, the simple negative clipping causes
ing over thex; — x5 plane and time is denoted Ky), . Inthis & discontinuousCsg profile. To overcome this difficulty we
paper, variables with superscript-” are normalized by the modify the minimization procedure. In particular, we will
wall friction velocity u, and the viscous length scal®, ~ minimize the following integral:
(8,=vlu,). The simulations without a subgrid scale model
are labeled as No SGS. In the figure the corresponding DN —
data by Mosetet al’? are also plotted. Note that for visual jj’f (W) Q¥(x1, %2, %) ~ F(x2) (CsA) P dxs Ao,
clarity only one-third of the DNS data points are plotted. The (27
difference between the mean velocity profiles for No SGS
and the DNS results should be properly compensated by where F(x,) is a non-negative function to be determined
subgrid scale model, as discussed in Morinishi and Vasflyev.later. The motivation for this procedure is based on the
The profile using VDSMwc coincides well with the DNS simple observation that for positivé(x,) and negative val-
data, while the mean velocity with DSM is too large. ues of (CsA)? the addition of the extra term to E@27)
Figure 2 shows the profiles of the grid scale velocityincreases the value of the integral. Applying the variational
fluctuations (1/,= \(U2),—(U,)?,a=1,2,3) and the grid principal to Eq.(27) we obtain the following differential
scale Reynolds shear stress ;= (U;U,)—{U;)(Uy);) Us-  equation for the function minimizing the integral:
ing VDSMwc, DSM, and No SGS. The peak value of the
streamwise velocity fluctuation of the simulation without a
subgrid scale model is higher than that of the DNS data. The
defect is not cured in the results of VDSMwc and DSM. This
defect is caused by the finite difference simulation and it is . Case D (Re,=395)

Case D (Re,=395)

20 ———— VDSMwc
-------------- DSM

. —-— No SGS

.~ o VDSM

10f

o DNS, Moser et al. (1999) oo
o DNS, el
Moser et al. (1999)
Y 5 - 2 - I : '
107 10 10’ o+ 10 0 200 ¥ 400

y y

FIG. 1. The mean streamwise velocity profiles for the channel flow simu-FIG. 2. The profiles of grid scale velocity fluctuations for the channel flow
lation at Re=395 (case D using VDSMwc, DSM, No SGS, and VDSM.  at Re=395(case D using VDSMwc, DSM, No SGS, and VDSM.
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042F e
0.08f
&
0.04r yd Case D (Re,=395)
/ VDSMwc
I DSM
0 / - VDSM
N \// ————— Cs by Eq.(30)
~0.0% 50 yt 100 150

FIG. 3. The profiles of the model paramet@g for the channel flow simu-
lation at Re=395 (case D using VDSMwc, DSM, and VDSM. Th&€g
value computed by Eq30) is also plotted.

d(CgA)?

(MM} (CsA)?+(MiaM;) =7 —

W(Xy)

" g | WO H(MiMi)(CsA)?
d(CgA)?
+<Mi2Mi2>T =R(X) +F(Xp). (28)
2

The term(M;M;) (CsA)? is the most dominant term in Eq.

(25), thus the negative values o€EA)? could occur when
R(x5) is negative. To eliminate this problem we §¢ix,) to
be exactly zero whereR(x,) is positive and F(x,)
=—R(X,) in the regions wherer(x,) is negative. This

simple procedure is effectively equivalent to the clipping of

the source term to Ed25) as
— d(CeA)?
w(x2><<MiMi><csA>2+<Mi2Mi>(d—iz))

W(Xp)| +(M;iM;2)(CsA)?

_d_X2

d(CeA)?

+<Mi2Mi2>d—X2>}:MAX[R(XZ)io]l (29)

o
T
R Re =150
o~k A =589, A/=19.6
A )
w4 Exact SM
L o | 568
N A v F.5GS
- - e FjSGS
_8 L
0 50 + 100
y

FIG. 4. The profiles of the exact SGS force and one modeled by SM. Th
data are extracted from a spectral DNS data of plane channel flow,at R

=150.

Y. Morinishi and O. V. Vasilyev

FIG. 5. The effect of grid resolution on the mean streamwise velocity profile
for the channel flow at Re=395 using DSM, VDSM, and No SGS.

where the function MAXa,b] extracts the larger one. The
small diamond( <) symbols in Figs. 1-3 are the results of
VDSM with the clipping[using Eq.(29)]. The negativeCg
value very close to the wall disappears and a smddth
profile is obtained by the source term clipping, as shown in
Fig. 3. The effect of the clipping on the mean velocity and
the fluctuation velocity profiles is negligible, as shown in
Figs. 1 and 2. Hereafter, the dynamic Smagorinsky model
given by Eq.(15) with (CgA)? determined by Eq(29) is
called VDSM.

In order to understand the importance of the last term in
Eq. (23), we consider a simplified dynamic procedure for the
vector level identity proposed by Sagaaitall’ The simpli-
fication is achieved by removing the last term in E28) and
applying the least square minimization:

—, 1(CFM;)

(CsA) 2(M M) (30)

This simplified procedure was used in freely decaying turbu-
lence and the results were better than that for the standard
dynamic procedurt® The Cg value computed by E¢(30)
using the flow field of VDSMwc is also plotted in Fig. 3. The
negative region ofCg given by Eq.(30) near the wall is
wider, and the difference of th€g value between Eq$25)

and (30) is not negligible. This indicates the importance of
the last term in Eq(23) for wall bounded flows.

To clarify the reason why the negati@; region appears
very close to the wall for the eddy viscosity model with the
vector level identity, a spectral DNS of the plane channel
flow (Re,: 150, box: 4rHX2H X 47H/3, grid: 128<129
x128) was performed and the exact SGS forée’s
=(d1}519x,), was compared with the one modeled by the
standard Smagorinsky model with the van Driest wall damp-
ing function withCs=0.1(SM). Figure 4 shows the result of
an a priori test for the SGS force. The grid scale velocity

é‘ield is extracted from the DNS data using the plane filtering

dGaussian,A; =58.9, AJ =19.6). A large difference be-
tween the exact and the modeled forces appears in the wall
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CaseF CaseE  CaseD Case C Case B 01 5
DSM, Re, =395
0.008} PN
il AR T

0.007} Y I
oo _* ___________________ < /// —— CaseB
0.006 Wl e Case C

DNS, 0-05‘1;(," ———Case D

Moser et al. (1999) —-—-CaseE

. 3 4
0.005 VDSM ‘ !/: —--— CaseF
———————————— DSM ;
o.004+  ——= No SGS 0 " . .
) , ) ) , ) , 0 200 y* 400
0 40 80 ot 120 160
1

FIG. 8. The effect of grid resolution o@g for the channel flow at Re

FIG. 6. The skin friction coefficient for the channel flow simulation at Re =395 using DSM.

=395 using DSM, VDSM, and No SGS.

is the wall shear stressp is the density, andU,,
=1/(2H) [ 11U dx, is the bulk mean velocity. The; value
of the DNS data by Moseet al!? is also plotted. The high
intercept(constantB) of the log law[U; = (1/«)Iny*+B]
for DSM is due to the low value of the skin friction coeffi-
cient, while the low intercept of the log law of No SGS for
cases C—F is due to the high value of the skin friction coef-
ficient. The VDSM model produces a reliable skin friction

Figure 5 shows the effect of the grid resolution on thecoefficient for a wide range of grid resolution. For case B,
profile of the mean streamwise velocity of the channel flowihe C; value of No SGS is lower than the DNS data. The
at Re=395 using VDSM, DSM, and No SGS. The grid reso- addition of the Smagorinsky-type eddy viscosity model de-
lutions Corresponding to cases B—F are shown in Table Iereases th@f Value_g As a consequence, in order to get a
With an increase in the g“d resolution, the results of ﬁnitere“ab'e mean Velocity profile, a g”d resolution should be
difference calculations converge. The numerical error of casgnhosen so that the same resolution numerical simulation with
B is considerably larger than those of the finer resolutiornhg SGS model would result in @ that is higher than the
casegcases C—F The mean velocity profiles of VDSM and  pNs value. This is true, even for VDSM. Notice that this is
DSM converge to the DNS data with an increase in gridthe |imitation of Smagorinsky-type models and is not of the
resolution. However, DSM requires excessive grid resolutioRector level identity. The vector procedure with a different
to reach the converged profile. On the other hand, the resul§§pe of subgrid scale model would remove the limitation.
of VDSM coincide well with the DNS data, except foracase  Figure 7 shows the effect of grid resolution on the profile
with very poor grid resolutioricase B. of streamwise grid scale velocity fluctuation of the channel

Figure 6 shows the skin friction coefficientC; flow at Re=395 using VDSM, DSM, and No SGS. The
=27,/(pU), for the cases that appeared in Fig. 5, whefe peak value of the velocity fluctuation of VDSM, DSM, and
No SGS for case B is much higher than the DNS data, and it
improves by increasing the grid resolution. No apparent dif-
ference between the tensor and vector models is confirmed
on the velocity fluctuation.

Figures 8 and 9 show the profiles of the paraméler

normal component close to the wall. This difference is
caused by the isotropic representationrgf while in reality
(75, #0. Thus, the negativ€g value of VDSMwc close to
the wall is the result of this defect.

B. Dependence of the LES result on grid resolution

0.02r—
A

v DSM, Re, =395
W Case B
o.01H Wy

" L

0 200 . 400

y 0

FIG. 7. The effect of grid resolution on the streamwise grid scale velocity
fluctuation profile for the channel flow at Re395 using DSM, VDSM, and  FIG. 9. The effect of grid resolution on the SGS dissipation of the GS
No SGS. turbulence energy for the channel flow at,R895 using DSM.

Downloaded 29 Aug 2010 to 133.68.192.91. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



3622 Phys. Fluids, Vol. 14, No. 10, October 2002 Y. Morinishi and O. V. Vasilyev

0.15

VDSM, Re, =395 T

0'05_/, --------- Case C
———CaseD
—-—-CaseE
0 ) — "~ CaseF
0 200 + 400

y

o DNS,

FIG. 10. The effect of grid resolution o8¢ for the channel flow at Re v tal. (1999)
oser et al.

=395 using VDSM.

and the SGS dissipation profiles using DSM. The SGS dis-
Slpatlon that appears in the transport equatlon of grld Sca|E|G 12. The effect of Reynolds number on the mean streamwise velocity
(GS) turbulence energy k&S: %(<m>t_<i|>t<i|>t)) is profile for the channel flow using VDSM, DSM, and No SGS.

given by esgs= —(7;S; )i+ (7i; )i(Sj)t - The peak value of

Csincreases and its location moves away from the wall withs,,ns to the difference of the grid resolution in wall units.

decreasing the grid reso'““?” las ;hown in Fig. 8. Th?s PrOThat is, the grid resolution of case A is relatively high while
duces an excessive SGS dissipation for the cases with pogi,: of case G is relatively low.

grid resolution, as shown in Fig. 9, and results in the higher

mean velocity(Fig. 5). ) Reynolds number on the profiles of mean streamwise veloc-
Figures 10 and 11 show the profiles of the parameier ity U, and streamwise grid scale velocity fluctuatioh of

and the SGS dissipation profiles using VDSM. T@gand  he channel flow using VDSM, DSM, and No SGS. In these
the dissipation values of VDSM decrease with decreasing thﬁgures the DNS data of the corresponding Reynolds num-
grid resolution. This behavior is expected and match well thebers by Moseret all° are also plotted. The mean velocity

mean velocity prediction, since the finite difference SimUIa'profile with No SGS is lower for cases A and D, and slightly
tion with lower grid resolution requires lower subgrid Scalelower for case G than the corresponding DNS data. The pro-
contribution, as ShOWn' in F|g(5) This indicates that the file with DSM is hlgher than the Corresponding DNS data
proposed procedure gives the. proper model parameter th3§<cep'[ for case A for which relatively high grid resolution is
corresponds to the grid resolution. used. The VDSM model compensates the difference between
the No SGS and DNS data properly for all the Reynolds
number cases. The peak value of the streamwise velocity
fluctuation increases with an increase of the Reynolds num-
To confirm the dependence of the LES results on Reyber, and no apparent difference between the models is con-
nolds number, further LES simulations are performed at
three Reynolds numbers Rel80, 395, and 590 that corre-
spond to cases A, D, and G, respectively. The three cases 4
have the same box size and grid number, as shown in Table
I. Therefore the difference of the Reynolds number corre-

Figures 12 and 13, respectively, show the effect of the

C. Dependence of the LES result on Reynolds
number

o DNS, Moser et al. {1999)

0.02

+ Ay VDSM, Re,=395
Case B

SGS
St
=
i

0.01H

400

FIG. 13. The effect of Reynolds number on the streamwise grid scale ve-
FIG. 11. The effect of grid resolution on the SGS dissipation of the GSlocity fluctuation profile for the channel flow using VDSM, DSM, and No
turbulence energy for the channel flow at,R895 using VDSM. SGS.
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