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We derive a semiclassical trace formula for the level density of a three-dimensional
spheroidal cavity. To overcome the divergences and discontinuities occurring at bifurca-
tion points and in the spherical limit, the trace integrals over the action-angle variables are
performed using an improved stationary phase method. The resulting semiclassical level den-
sity oscillations and shell energies are in good agreement with quantum-mechanical results.
We find that the births of three-dimensional orbits through the bifurcations of planar orbits
in the equatorial plane lead to considerable enhancement of the shell effect for superdeformed
shapes.

§1. Introduction

The periodic orbit theory (POT)1)–10) is a nice tool for studying the correspon-
dence between classical and quantum mechanics and, in particular, the interplay of
deterministic chaos and quantum-mechanical behavior. Also, for systems with inte-
grable or mixed classical non-linear dynamics, the POT leads to a deeper understand-
ing of the origin of shell structure in finite fermion systems, such as nuclei,8), 11)–13)

metallic clusters,14)–16) and mesoscopic semiconductors.17)–21) Bifurcations of peri-
odic orbits may play significant roles, e.g., in connection with superdeformations of
atomic nuclei,8), 9), 12), 22)–24) and were recently shown to affect the quantum oscilla-
tions observed in the magneto-conductance of mesoscopic devices.19), 20) This phe-
nomenon is observed for some control parameters (like the shape, magnetic field, etc.)
of the potential well, for which the orbits bifurcate and new types of periodic orbits
emerge from the original ones. Examples can be found, e.g., in elliptic billiard and
spheroidal cavity systems.8), 9), 12), 23)–28) In elliptic billiard systems, short diametric
orbits with repetitions bifurcate at certain values of the deformation parameter, and
new orbits with hyperbolic caustics (butterfly-shaped orbit, etc.) emerge from them.
In spheroidal cavity systems, periodic orbits in the equatorial plane bifurcate, and
new three-dimensional orbits emerge.
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The semiclassical trace formulae connect the quantum mechanical density of
states with a sum over the periodic orbits of the classical system.1)–4) In these for-
mulae, divergences arise at critical points where bifurcations of periodic orbits occur
or where symmetry breaking (or restoring) transitions take place. At these points,
the standard stationary phase method (SSPM),∗) used in the semiclassical evaluation
of the trace integrals, breaks down. Various ways of avoiding these divergences have
been studied,3), 5), 29) some of them employing uniform approximations.29)–37) Here
we employ an improved stationary-phase method (ISPM) for the evaluation of the
trace integrals in the phase-space representation, which we have derived for elliptic
billiards28) and very recently for spheroidal cavities.24)

The singularities of the SSPM near the bifurcation points are due to the peculiar-
ities of its asymptotic expansions. In the ISPM,24), 28) the catastrophe integrals38), 39)

are evaluated more exactly within the finite integration limits in the phase-space
trace formula,3), 5), 9), 24), 28), 40) and it is possible to overcome the singularity problem
due to bifurcations, which occur when the stationary points lie near the ends of
the integration region in the action-angle variables. We can also take into account
the stationary points outside the classically accessible region (“ghost orbits”).5) This
method is particularly useful for integrable systems in which integration limits are
easily obtained. This theory is developed in Ref. 28) for the case of the bifurcations
through which periodic orbit families with maximal degeneracy emerge from orbits
with smaller degeneracy. The essential difference between the method presented in
this paper and that with the uniform approximation of Refs. 32) and 35) is that we
improve the calculation of the angle part of the phase-space trace integral for the
orbits with smaller degeneracies. Taking an elliptic billiard system as an example,
we have applied the ISPM to the integration over the angle variable for short dia-
metric orbits and derived an improved trace formula that is continuous through all
bifurcation points, including the circular limit and the separatrix. We then showed
that significant enhancements of the shell effect in level densities and shell structure
energies occur at deformations near the bifurcation points. Away from the bifurca-
tion points, our result reduces to the extended Gutzwiller trace formula,4), 8)–10) and
for the leading-order families of periodic orbits, it is identical to that of Berry and
Tabor.5)

The major purpose of this paper is to extend our semiclassical ISPM to the case
of a three-dimensional (3D) spheroidal cavity,24) which may be taken as a simple
(highly idealized) model for a heavy deformed nucleus8), 11) or a deformed metallic
cluster,14), 15) and to specify the role of periodic orbit bifurcations in the shell struc-
ture responsible for superdeformations. Although the spheroidal cavity system is
integrable, it exhibits all the difficulties mentioned above (i.e., symmetry breaking
and bifurcations), and therefore it provides an exemplary case study of a non-trivial
3D system. We apply the ISPM to the bifurcating orbits and succeed in repro-
ducing the superdeformed shell structure in terms of the POT, while observing a
considerable enhancement of the shell effect near the bifurcation points.

∗) In this paper, SSPM is understood as the standard stationary phase method and its extension

to continuous symmetries.3)–5), 7)
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§2. Classical mechanics for the spheroidal cavity

The semiclassical trace formulas for the oscillating part of the level density for
a spheroidal cavity are determined from the characteristic properties of the classical
periodic families.8), 9), 22)–27) This section presents definitions and solutions for the
classical mechanical description of the spheroidal cavity, following Refs. 8), 9), 23)
and 27). They will be used for the semiclassical derivations of the trace formulas
improved at the bifurcation points. We shall pay special attention to the 3D periodic
orbits that emerge through bifurcations and play important roles as the semiclassical
origin of superdeformed shell structure.8), 23), 27)

2.1. General periodic-orbit formalism

We characterize the spheroid by the ratio of its semi-axes η = b/a, keeping
its volume fixed, and consider the prolate case with η > 1, where the major axis
coincides with the symmetry axis. We first transform the Cartesian coordinates
(x, y, z) into the usual cylindrical coordinates (ρ, z, ϕ), where ρ =

√
x2 + y2, which

are expressed in terms of the spheroidal coordinates (u, v, ϕ) as

ρ = ζ cosu sinh v, z = ζ sinu cosh v, ζ =
√
b2 − a2, (2.1)

with
−π

2
≤ u ≤ π

2
, 0 ≤ v < ∞, 0 ≤ ϕ ≤ 2π. (2.2)

The values of ±ζ define the positions of the foci of the spheroid lying on the z-axis.
Taking into account the volume conservation condition a2b = R3, we have b = Rη2/3

and a = Rη−1/3. As is well known, the Hamilton-Jacobi equations separate in the
coordinates (u, v, ϕ) for a spheroidal cavity.

In the Hamilton-Jacobi formalism, the classical dynamics are determined by the
partial actions. In the spheroidal coordinates, these are given by

Iu =
pζ

π

∫ uc

−uc

du

√
σ1 − sin2 u− σ2

cos2 u
, (2.3a)

Iv =
pζ

π

∫ vb

vc

dv

√
cosh2 v − σ1 − σ2

sinh2 v
, (2.3b)

Iϕ = |lz| = pζ
√
σ2, (2.3c)

where lz is the projection of the angular momentum onto the symmetry axis, and
p =

√
2mε, where m is the particle mass. In Eq. (2.3) we have introduced the new

“action” variables σ1 and σ2 related to the turning points −uc, uc and vc, vb along
the trajectory in the (u, v) coordinates; u = uc and v = vc are the (hyperbolic and
elliptic) caustic surfaces,

cosh vc =

{
1
2
(1 + σ1) +

[
1
4
(1− σ1)2 + σ2

]1/2}1/2

, (2.4a)

sinuc =

{
1
2
(1 + σ1)−

[
1
4
(1− σ1)2 + σ2

]1/2}1/2

, (2.4b)
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and v = vb is the spheroid boundary, given by cosh vb = η/
√
η2 − 1. The condition

that the kinetic energy must be positive determines the limits for the variables σ1
and σ2:

σ−
1 = σ2 ≤ σ1 ≤ η2

η2 − 1
− σ2

(
η2 − 1

)
= σ+1 ,

σ−
2 = 0 ≤ σ2 ≤ 1

η2 − 1
= σ+2 . (2.5)

These inequalities together with the 2π intervals for the corresponding angle variables
determine the tori of the classically accessible motion with the boundaries σ±

1 (σ2)
and σ±

2 .
According to Eq. (2.3), the particle energy ε is a function of only the action

variables Iu, Iv and Iϕ, ε = H (Iu, Iv, Iϕ), due to the integrability of the system
under consideration. These relations define the partial frequencies ωu, ωv and ωϕ
through ωj = ∂H/∂Ij. The periodicity conditions for the classical trajectories are
significantly simplified in terms of the partial frequencies ωj . Introducing the new
variables κ and θ,

κ =
sinuc
cosh vc

, θ = arcsin
(

cosh vc
cosh vb

)
, (2.6)

along with the energy ε in place of the partial actions Iu, Iv and Iϕ (or σ1 and σ2),
they read

ωu
ωv

≡ 1
2

[
1− F(θ, κ)

F(κ)

]
=

nu
nv

, (2.7a)

ωϕ
ωu

≡ 2
π

[(
1−

(κ
κ̄

)2)(
1 − κ̄2

)]1/2{
Π
((κ

κ̄

)2
, κ

)
− F(κ)

+
[
Π
(
κ̄2, κ

)− Π
(
θ, κ̄2, κ

)] / [
1− F(θ, κ)

F(κ)

]}
=

nϕ
nu

. (2.7b)

Here, nu, nv and nϕ are co-prime integers: nu = 1, 2, · · · ; nv ≥ 2nu; nv ≥ 2nϕ, nϕ =
1, 2, · · · , and κ̄ =

√
η2 − 1/(η sin θ). F and Π are elliptic integrals of the 1st and

3rd kinds (see Appendix A for their definitions). The periodicity condition (2.7)
relates κ(σ1, σ2) and θ(σ1, σ2) for a given periodic orbit β to the integers nu, nv
and nϕ, which, together with the number of repetitions M , define this orbit; i.e.,
β = M(nv, nϕ, nu).

2.2. Three-dimensional periodic orbits

The 3D periodic orbits (3DPO) M(nv, nϕ, nu) form two-parameter (K = 2)
families for a given energy ε, because the number K of free continuous parameters
specifying an orbit with fixed energy and a given action is two.8), 9) The condition
for 3DPO is the existence of real roots (κ, θ) of Eq. (2.7). They appear at the
deformation η = ηbif given by

ηbif =
sin(πnϕ/nv)
sin(πnu/nv)

, (nu = 1, 2, · · · , nv ≥ 2nϕ + 1, nϕ = 2, 3, · · · ) (2.8)
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Fig. 1. The triangle of the classically accessible region determined by Eq. (2.5) is indicated by white

lines in the (σ1, σ2) plane at the bifurcation deformations (a) η = 1.618 . . . and (b) η =
√
3. The

red and blue dots with the circles indicate the 3DPO stationary points inside (actually existing

3DPO) and outside (“ghost” 3DPO) of this triangle region, respectively. Several examples of the

stationary points are indicated: on the σ2 = 0 side, the short 2DPO (elliptic triangle, square,

and hyperbolic “butterfly”); on the σ2 = σ1 side, the short EQPO (triangle, square, star and

diameter (black crossed circle)). The long diameter (separatrix) is located at (σ1 = 1, σ2 = 0).

The color and contour curves indicate (in units of pζ/π) the curvature K11 defined by Eq. (3.14).

where κ = 0 and θ = π(1 − 2nu/nv)/2, and exist for larger deformations η >
ηbif . These roots determine the caustics (the spheroid v = vc and the hyperboloids
u = ±uc) of the periodic orbit M(nv, nϕ, nu) through Eq. (2.6). These caustics are
confocal to the boundary of the spheroid v = vb.

Figure 1 displays the stationary points corresponding to the 3DPO for two bi-
furcation points ηbif given by (2.8). The physical tori region (2.5) in the variables
σi is a triangle. At ηbif = 1.618 . . . (Fig. 1(a)), the stationary point for the 3DPO
(5, 2, 1) coincides with that for the star-shaped (5, 2) orbit in the equatorial plane
(discussed below) lying on the boundary with σ2 = σ1, and moves toward the inside

Fig. 2. Short 3D periodic orbits (5,2,1) and

(6,2,1) bifurcated from the equatorial plane

orbits (5,2) and 2(3,1), respectively. Their

projections on the equatorial plane are also

represented by thick-dashed lines.

of the physical tori region for larger de-
formations. At ηbif =

√
3 (Fig. 1(b)),

the stationary point for the 3DPO
(6, 2, 1) lies on the boundary side and
coincides with that for triangular orbits
in the equatorial plane. At these bi-
furcation deformations, the lengths of
the 3DPO (5, 2, 1) and (6, 2, 1) coincide
with those of the star (5, 2) and the
doubly repeated triangle 2(3, 1), respec-
tively. Figure 2 illustrates some short
3DPO and their projections onto the
equatorial plane.
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2.3. Orbits in the meridian plane

Equations (2.7a) and (2.7b) have partial solutions for κ(σ1, σ2) and θ(σ1, σ2)
that correspond to the separate families of orbits, i.e. two-dimensional periodic or-
bits (2DPO), in the meridian planes (containing the symmetry axis z) and in the
equatorial plane. First, we consider the special solutions of Eq. (2.7) corresponding
to the two-parameter (K = 2) 2DPO families in the meridian plane.8), 9) For these
orbits, σ2 = 0 and σ1 is in either of the regions

0 < σ1 < 1, 1 < σ1 <
η2

η2 − 1
, (2.9)

for the hyperbolic 2DPO (with hyperbolic caustics u = ±uc) and the elliptic 2DPO
(with elliptic caustics v = vc), respectively. The periodicity condition (2.7b) becomes
the identity ωϕ/ωu ≡ 1 (nϕ = 1, nu = 1), and θ is fixed by

θ = θh = arcsin

(√
η2 − 1
η

)
, θ = θe = arcsin

(√
η2 − 1
κη

)
, (2.10)

for the hyperbolic and elliptic 2DPO, respectively. For κ, we have only the condition
Eq. (2.7a). This κ determines σ1, and thus Iu and Iv (Iϕ = 0 since σ2 = 0), through

κ = κh =
√
σ1, κ = κe =

1√
σ1
, (2.11)

for the hyperbolic and elliptic orbits, respectively.
Some examples of the hyperbolic and elliptic orbits lying along the triangular

boundary side σ2 = 0 are presented in Fig. 1 (see also their geometrical illustrations
in Fig. 3). The hyperbolic and elliptic tori parts are separated by the separatrix
point (σ1 = 1, σ2 = 0) related to the long diameter (see below). Another endpoint
of the hyperbolic tori coincides with the stationary point (σ1 = σ2 = 0) for the
diametric orbit in the equatorial plane. We can think of these hyperbolic and elliptic
orbits as being periodic in the plane ϕ = [const.], and we call them “meridian-plane
periodic orbits”.

For the elliptic case, a solution κ of Eq. (2.7) with θ = θe(κ) exists for any
nu = 1, 2, · · · and nv ≥ 2nu+1, (nϕ = nu) for any deformation η > 1. Examples are

Fig. 3. Some short meridian-plane orbits in the prolate spheroidal cavity. From left to right: the

isolated long diameter (2, 1, 1), the elliptic triangular (3, 1, 1), the elliptic rhomboidal (4, 1, 1),

the hyperbolic “butterfly” (4, 2, 1).
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the triangles (nv = 3, nϕ = 1, nu = 1), the rhomboids (4, 1, 1) and the star-shaped
orbits (5, 2, 2) as one-parameter families in the meridian plane. The root κ found
from Eq. (2.7) gives the elliptic caustics with uc = π/2 in Eq. (2.6) and the semi-axes
ac = ζ

√
1− κ2/κ and bc = ζ/κ.

For the hyperbolic case, the solutions κ can be found for nu = 1, 2, 3, · · · and
even nv (nv ≥ 2(nu + 1)). In Fig. 1 the “butterfly” orbit (4, 2, 1) is shown as an
example. The families of these orbits appear for η > ηbif with

ηbif =
[
sin

(
πnu
nv

)]−1
. (2.12)

This is the deformation at which the diametric orbits M(2, 1) with M ≥ 2 in the
equatorial plane bifurcate, and from these orbit emerge the hyperbolic orbits. Their
hyperbolic caustics are expressed in terms of the root κ of Eqs. (2.7) and (2.6) with
vc = 0. The parameters ac and bc of these caustics are given by ac = ζ

√
1− κ2 and

bc = ζκ.

2.4. Orbits in the equatorial plane

In the equatorial plane with z = 0, the separate families of regular polygons and
diameters are the same as for a circular billiard system3) of radius a. The restriction
z = 0 decreases the values of K to 1. The single parameter in this case corresponds
to the angle of rotation of the polygons and the diameters about the symmetry axis
z. Figure 4 illustrates the most important (shortest) equatorial-plane periodic orbits
(EQPO): the diameters M(nv = 2, nϕ = 1), triangles M(3, 1), squares M(4, 1) and
star-shaped orbits M(5, 2). They satisfy, from inequalities (2.5),

σ1 = σ2, 0 ≤ σ2 ≤ 1
η2 − 1

. (2.13)

Therefore their stationary points lie along the σ2 = σ1 side in the triangle, as indi-
cated in Fig. 1.

The caustic parameters uc and vc for these families are defined by uc = 0 and
vc = arcsinh[a cos(πnϕ/nv)/ζ]. The solutions of Eq. (2.7) for these orbits are κ = 0

and θ = arcsin
√

1− sin2(πnϕ/nv)/η2.

Fig. 4. Some short equatorial-plane orbits. From left to right: the short diameter (2, 1), the trian-

gular (3, 1), the rhomboidal (4, 1), and the star-shaped (5, 2).
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2.5. Diametric orbits along the symmetry axis

In the spheroidal cavity, there is also a diametric orbit along the z-axis (see
Fig. 3). It is isolated (K = 0), because we have two additional restrictions, x = 0
and y = 0, decreasing K by one with respect to the previous case. The solution of
Eq. (2.7) for this orbit is κ = 1 and θ = arcsin(

√
η2 − 1/η). Its stationary point

coincides with the separatrix values (σ1 = 1, σ2 = 0), corresponding formally to
the caustic parameters (uc = π/2, vc = 0). (See the circle point with the vertical
diameter in Fig. 1. In Fig. 1(b), this stationary point is very close to that for the
elliptic orbits (3,1,1) in the meridian plane, which lies slightly on the right, along
the σ2 = 0 side.)

2.6. Bifurcations

At the deformations ηbif given by Eq. (2.8), the EQPO M(nv, nϕ) bifurcate,
and the 3DPO or the hyperbolic 2DPO M(nv, nϕ, nu) emerge. We encounter the
breaking-of-symmetry problem at these bifurcation points, because the degeneracy
(symmetry) parameter K changes there, for instance, from K = 1 for the EQPO to
K = 2 for the 3DPO. Before the bifurcations (η < ηbif), the stationary points σi of
the 3DPO and the hyperbolic 2DPO are situated outside of the triangular tori region
(2.5), and give rise to complex (κ, θ) and complex caustics. Such formal orbits are
called “complex” or “ghost” orbits.5) They cross the σ1 = σ2 boundary through the
stationary points of the EQPO at bifurcations (η = ηbif) and then move into the
triangular tori region for larger η. In Fig. 1 are also indicated the stationary points
for the 3DPO lying outside the physical tori region [(6,2,1) in Fig. 1(a), (7,2,1) and
(8,2,1) in Fig. 1(b)]. The equatorial diameters M(2, 1) correspond to the limiting
case, σ1 = σ2 = 0. They bifurcate into themselves (K = 1) and the hyperbolic 2DPO
(2M,M, 1) in the meridian plane (K = 2) at the deformations given by Eq. (2.12).

The spherical limit (η = 1) is a special bifurcation point. In this limit, the
planar regular polygons and diameters have degeneracies K = 3 and 2, respectively,
and they bifurcate into the meridian 2DPO (K = 2), EQPO (K = 1) and the isolated
long diameter (K = 0) for deformations η > 1.

The separatrix (σ1 = 1, σ2 = 0), related to the long diameter, is a special point
in the phase space. Near this point, the complicated 3DPO and elliptic and hyper-
bolic 2DPO having large values of (nu, nv) and nu/nv close to 1/2 appear. Similar
bifurcations of the 3DPO, EQPO and elliptic 2DPO appear near other boundary
values of σi in the triangular tori on its “creeping” side σ1 = σ+1 (σ2), where some
kinds of 3D “creeping” orbits with large values of nv but finite and generally dif-
ferent nu and nϕ appear. This is in analogy to the “creeping” singularities inves-
tigated for elliptic orbits in elliptic billiard systems28) near the maximum value of
σ1, σ

(cr)
1 = cosh2 vb = η2/(η2 − 1), according to Eq. (A.6) at the right vertex in the

“meridian-plane orbit” side σ2 = 0. The 3DPO with a large number of the corners
nv and finite nu = nϕ approach the “creeping” elliptic orbits in the meridian plane.
Another vertex corresponds to the creeping EQPO that have large values of nv and
nϕ but for nv/nϕ → 1/2.

The bifurcation point related to the appearance of “creeping” orbits cannot
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be reached for any finite deformation. However, even for finite deformations like
superdeformed shapes, the solutions for σ1 and σ2 [related to the roots κ and θ of
the periodic-orbit conditions (2.7)] can be close to the “creeping” values of σ1 and σ2
[related to their boundary values given in (2.5)]. In such cases, we have to take into
account such bifurcations in the trace formulas for the level density. The bifurcations
of the 3D and 2D diameter-like orbits with nv/nu close to 1/2 near the separatrix are
rather long, however, so that they are not important for the shell effects discussed
below.

§3. Trace formulas for the prolate spheroid

3.1. Phase-space trace formula in action-angle variables

The level density g(ε) is obtained from the Green function G(r, r′; ε) by taking
the imaginary part of its trace:

g(ε) =
∑
n

δ (ε− εn) = − 1
π

Im
∫

dr′′
∫

dr′G(r′, r′′; ε) δ(r′′ − r′), (3.1)

where εn is the single-particle energy. Following Ref. 28), we now apply the Gutzwiller
trajectory expansion for the Green function G(r, r′, ε).1), 2), 10) After simple trans-
formations,28) we obtain the phase-space trace formula in the action-angle variables
(I,Θ),

gscl(ε) =
1

(2π�)3
Re

∑
α

∫
dΘ′′

∫
dI ′δ

(
ε−H

(
I ′,Θ′))

× exp
[
i

�

(
Sα

(
I ′, I ′′, tα

)
+
(
I ′′ − I ′) · Θ′′)− i

π

2
να

]
, (3.2)

where the sum is taken over all classical trajectories α, I = {Iu, Iv, Iϕ} represents
the actions for the spheroidal cavity, Θ = {Θu, Θv, Θϕ} the conjugate angles, and
να the phases related to the Maslov indices.39), 41)–43) The phase-space trace formula
(3.2) is especially useful for integrable systems, because the Hamiltonian H does not
depend on the angle variables Θ in this case, i.e., H = H(I). The action

Sα
(
I ′, I ′′, tα

)
= −

∫ I′′

I′
dI · Θ(I) (3.3)

is related to the standard definition,

Sα
(
Θ′,Θ′′, ε

)
=
∫ �′′

�′
dΘ · I(Θ), (3.4)

by the Legendre transformation

Sα(Θ′,Θ′′, ε) + I ′′ · (Θ′ − Θ′′) = Sα(I ′, I ′′, tα) + Θ′′ · (I ′′ − I ′), (3.5)

tα being the time for a particle to revolve the trajectory α. The phase να is specified
below.
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3.2. Stationary phase method and classical degeneracy

It should be emphasized that even for integrable systems, the trace integral (3.2)
is more general than the Poisson-sum trace formula, which is the starting point of
Refs. 5),32) and 35) for the semiclassical derivations of the level density. These two
trace formulas become identical when the phase of the exponent does not depend
on the angle variables Θ. In this case, the integral over angles in (3.2) gives simply
(2π)n, where n is the dimension of the system (n = 3 for a spheroidal cavity), and
the stationary condition for all angle variables are identities in the 2π interval. This
is true for the most degenerate classical orbits, like the elliptic and hyperbolic 2DPO
in the meridian plane and the 3DPO with K = n− 1 = 2. However, for orbits with
smaller degeneracies, like the EQPO (K = 1) and the isolated long diameter (K = 0),
the exponent phase depends strongly on angles and possesses a definite stationary
point. Therefore, we have to integrate over such angles using the ISPM in the same
way as for the bifurcations of the isolated diameters in elliptic billiard systems.28)

3.3. Stationary phase conditions

Due to the appearance of the δ-function representing energy conservation, we
can perform the integral over I ′v in Eq. (3.2) exactly, and the result is

gscl(ε) =
1

(2π�)3
Re

∑
α

∫
dΘ′′

u

∫
dΘ′′

v

∫
dΘ′′

ϕ

∫
dI ′u

∫
dI ′ϕ

1
|ω′
v|

× exp
[
i

�

(
Sα

(
I ′, I ′′, tα

)
+
(
I ′′ − I ′) · Θ′′)− i

π

2
να

]
. (3.6)

The integration limits for Iu and Iϕ are determined by their relations to the variables
(σ1, σ2) and by the boundaries given by Eq. (2.5). One of the trajectories, α0, in
the sum (3.6) is a special one that corresponds to the smooth level density gTF of
the Thomas-Fermi model.10) For all other trajectories, we first write the stationary
phase conditions for the action variables I ′u and I ′ϕ as(

∂Sα(I ′, I ′′, tα)
∂I ′u

)∗
−Θ′′

u ≡ Θ′
u −Θ′′

u = 2πMu, (3.7a)(
∂Sα(I ′, I ′′, tα)

∂I ′ϕ

)∗
−Θ′′

ϕ ≡ Θ′
ϕ −Θ′′

ϕ = 2πMϕ, (3.7b)

where M = (Mu,Mv,Mϕ) = M(nu, nv, nϕ), and M is an integer which indicates the
number of revolutions along the primitive periodic orbit β. The superscript asterisk
indicates that we evaluate the quantities at the stationary point with I ′u = I∗u and
I ′ϕ = I∗ϕ. We next use the Legendre transformation (3.5). Then, the stationary phase
conditions with respect to angles (Θu, Θv, Θϕ) are given by(

∂Sα(Θ′,Θ′′, ε)
∂Θ′′ +

∂Sα(Θ′,Θ′′, ε)
∂Θ′

)∗
≡ I ′′ − I ′ = 0. (3.8)

In the following derivations, we have to judge whether the stationary phase
conditions (totally or partially) given by Eqs. (3.7) and (3.8) hold identically or only
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at specific stationary points. For this purpose we have to calculate separately the
contributions from the most degenerate 3DPO, the 2DPO families in the meridian
plane (K = 2) and those from orbits with smaller degeneracies, like EQPO (K = 1)
and the isolated long diameter (K = 0). The latter two kinds of orbits are different
from the former two kinds with respect to the above-mentioned two possibilities
concerning the integration over angles Θ.

3.4. Three-dimensional orbits and meridian-plane orbits

The most degenerate 3DPO and the meridian-plane (elliptic and hyperbolic)
2DPO with equal values of the action occupy some finite 3D areas between the
corresponding caustic surfaces specified above. In this case, the stationary phase
conditions (3.8) for the integration over all angle variables Θu, Θv and Θϕ hold
identically. The integrand does not depend on the angle variables, and the result of
the integration is (2π)3. Because Eq. (3.8) is identically satisfied [the action does not
depend on the angles like the Hamiltonian H(I)] we have conservation of the action
variables, I ′u = I ′′u = Iu and I ′ϕ = I ′′ϕ = Iϕ, along the classical trajectory α. The
integrals over all Θ in Eq. (3.2) yield (2π)3, and we are left with the Poisson-sum
trace formula,5), 10)

gscl(ε) =
1
�3

Re
∑
M

∫
dI δ (ε−H(I)) exp

[
2πi
�

M · I − i
π

2
νM

]

=
1
�3

Re
∑
M

∫
dIu

∫
dIϕ

1
|ωv| exp

[
2πi
�

M · I − i
π

2
νM

]
. (3.9)

It is convenient to transform the integration variables (Iu, Iϕ) into (σ1, σ2) defined
by Eq. (2.3):

gscl(ε) =
1
�3

Re
∑
M

pζ

∫ σ+
2

σ−2

dσ2
2
√
σ2

∫ σ+
1

σ−1
dσ1

∂Iu
∂σ1

1
|ωv| exp

[
2πi
�

M · I − i
π

2
νM

]
.

(3.10)

The integration limits are greatly simplified when written in terms of σ±
i (i = 1, 2)

and form the triangular region shown in Fig. 1. We then integrate over σi, expanding
the exponent phase about the stationary point σi = σ∗

i ,

2π (M · I) ≡ Sα
(
I, I ′′, tα

)
+
(
I ′′ − I

) · Θ′′

= Sβ(ε) +
1
2

∑
i,j

Jβij(σi − σ∗
i )(σj − σ∗

j ) + · · · , (3.11)

where Sβ(ε) is the action along the periodic orbit β,

Sβ(ε) = 2πM
[
nuI

∗
u + nvIv

(
ε, I∗u, I

∗
ϕ

)
+ nϕI

∗
ϕ

]
, (3.12)

and Iv(ε, Iu, Iϕ) is the solution of the energy conservation equation ε = H(Iu, Iv, Iϕ)
with respect to Iv. Here, the single prime index is omitted for simplicity. The
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quantity Jβij is the Jacobian stability factor with respect to σi along the energy
surface,

Jβij =
(

∂2Sα
∂σi∂σj

)
σi=σ∗i

= 2πMnvK
β
ij , (3.13)

and Kβ
ij is the (2 × 2) curvature matrix of the energy surface evaluated at the sta-

tionary point σi = σ∗
i (at the periodic orbit β):

Kβ
ij =

∂2Iv
∂σi∂σj

+
ωu
ωv

∂2Iu
∂σi∂σj

+
ωϕ
ωv

∂2Iϕ
∂σi∂σj

. (3.14)

(See Appendix A for the explicit expressions of these curvatures.) As we see below,
the off-diagonal curvature K12 is non-zero for variables σi.

Then we use the ISPM, where we keep exact finite limits for the integration over
σi, and we finally obtain

δg
(2)

{ 3D
2D}(ε) =

1
ε0

Re
∑
β

A
(2)
β exp

(
ikLβ − i

π

2
νβ

)
, (3.15)

where ε0 = �
2/2mR2 (R3 = a2b due to the volume conservation condition). The

sum runs over all two-parameter families of the 3DPO or the meridian-plane (elliptic
and hyperbolic) 2DPO, and A

(2)
β is the amplitude for a 3DPO or a 2DPO,∗)

A
(2)

{ 3D
2D} =

1
4π

Lβζ

(MnvR)2
√
σ∗
2 |detKβ |

[
∂Iu
∂σ1

]
σi=σ∗i

erf
(Z−

1 ,Z+
1

)
erf

(Z−
2 ,Z+

2

)
.

(3.16)

Here, Lβ represents “length” of the periodic orbit β,

Lβ =
2πMnvp

mωv

= 2Mnvb sin θ
[
E(θ, κ)− F(θ, κ)

F (κ)
E (κ) + cot θ

√
1− κ2 sin2 θ

]
, (3.17)

where θ and κ are defined by the roots of the periodic-orbit equations (2.7) (Sβ = pLβ
for cavities). This “length” taken at the stationary points σ∗

i [the real positive roots
of Eq. (2.7) through Eqs. (2.4) and (2.6)] inside the finite integration range (2.5)
represents the true length of the corresponding periodic orbit β. For other stationary
points, the “length” is identical to the function (3.17) continued analytically outside
the tori determined by (2.5). In Eq. (3.16) we also introduced the generalized error
function erf (Z−,Z+) of the two complex arguments Z− and Z+,

erf
(
z−, z+

)
=

2√
π

∫ z+

z−
dz e−z

2
= erf(z+)− erf(z−), (3.18)

∗) The expression (3.16) is valid also for the 2DPO (σ∗
2 = 0), because the product σ2K22 is finite

for any σ2 (see Appendix A).
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with erf(z) being the simple error function.46) The arguments of these error functions
are given by

Zβ±1 =
√

−iπMnvK
β
11/�

(
σ±
1 (σ∗

2)− σ∗
1

)
, (3.19a)

Zβ±2 =
√

−iπMnv(detKβ/Kβ
11)/�

(
σ±
2 − σ∗

2

)
, (3.19b)

in terms of the finite limits σ±
i given by (2.5), and taken at the stationary point

σ2 = σ∗
2. We note that, for the 3DPO M(3t, t, 1) with t = 2, 3, · · · , the curvature

Kβ
11 is zero at any deformation. For such orbits, we should use

Zβ±1 =
√

−iπMnv(detKβ/Kβ
22)/�

(
σ±
1 (σ∗

2)− σ∗
1

)
, (3.20a)

Zβ±2 =
√

−iπMnvK
β
22/�

[
σ±
2 − σ∗

2 +
Kβ
12

Kβ
22

(
σ±
1 (σ∗

2)− σ∗
1

)]
, (3.20b)

in place of (3.19). The latter limits (3.20) are derived by changing the integration
variable σ2 to σ2 − (K12/K22)(σ1 − σ∗

1).
Let us consider the stationary points σ∗

i positioned far from the bifurcation
points. This means that they are located far from the integration limits. Accordingly,
the generalized error functions can be transformed into the complex Fresnel functions
with real limits and then extend the upper limit to ∞ and the lower one to −∞. In
this way, we asymptotically obtain the Berry-Tabor result for the standard POT,5)

which is identical to the extended Gutzwiller result9) for the most degenerate (3D
and meridian-plane) orbit families,

A
(2)

{ 3D
2D}(ε) =

1
π

Lβζ

(MnvR)2
√
σ∗
2| detKβ|

[
∂Iu
∂σ1

]
σi=σ∗i

. (3.21)

The constant part of the phase νβ in Eq. (3.15), which is independent of η and
ε, can be found by making use of the above asymptotic expression and applying the
Maslov-Fedoryuk theory.39), 41)–43) This theory relates the Maslov index µβ with the
number of turning and caustic points for the orbit family β. For the 3DPO, the total
asymptotic phase νβ is given by

ν3D = µ3D − 1
2
ε3D + 2(Mnu − 1), µ3D = M(3nv + 2nu). (3.22)

Here, µβ denotes the Maslov index, the numbers of caustic and turning points tra-
versed by the orbit, and εβ represents the difference of the numbers of positive and
negative eigenvalues of curvature Kβ.∗) For the hyperbolic and elliptic meridian
2DPO, we obtain

ν2DH = µ2DH − 1
2
ε2DH + 2 (Mnu − 1) , µ2DH = 2M (nv + nu) (3.23)

∗) Because the dimension of Kβ is 2, εβ is written εβ = sign(Kβ
1 ) + sign(Kβ

2 ), where Kβ
i is the

i-th eigenvalue of Kβ. It can also be calculated by εβ = sign(Kβ
11) + sign(detKβ/Kβ

11) for Kβ
11 �= 0,

and εβ = sign(Kβ
22) + sign(detKβ/Kβ

22) for Kβ
22 �= 0. Here, sign(x) = ±1 for x >

< 0 and 0 for x = 0.

 at N
agoya Institute of T

echnology on M
arch 15, 2015

http://ptp.oxfordjournals.org/
D

ow
nloaded from

 

http://ptp.oxfordjournals.org/


866 A. G. Magner, K. Arita, S. N. Fedotkin and K. Matsuyanagi

and
ν2DE = µ2DE − 1

2
ε2DE + 2 (Mnu − 1) , µ2DE = 3Mnv (3.24)

respectively. Note that the total phase includes the argument of the complex ampli-
tude (3.16), and it depends on both the deformation and energy.

Near the bifurcation deformations, the stationary points σ∗
i are close to the

boundary of the finite area (2.5). In such cases, the asymptotic forms of the error
functions are not good approximations, and we have to carry out the integration
over σi in the calculation of the error functions in Eq. (3.16) exactly within the finite
limits. It should also be noted that the contributions from “ghost” periodic orbits
are important near the bifurcation points. They make the trace formula continuous
as a function of η at all bifurcations.

Also when the stationary phase points σ∗
i are close to other boundaries of the tori,

the integrals have to be evaluated with finite limits; for instance, near the triangular
side σ1 = σ+1 (σ2), where we have the “creeping” points for the 3DPO inside the tori
(2.5) and the meridian elliptic 2DPO near the endpoint (σ1 = σ+1 , σ2 = 0) with a
large number of vertices, nv → ∞. Another example of such a special bifurcation
point is the separatrix (σ1 = 1, σ2 = 0), where 3DPO and hyperbolic 2DPO have a
finite limit nu/nv → 1/2 for nv → ∞ and nu → ∞. In this case, the curvature K11

becomes infinite, and the amplitude (3.16) approaches zero. Thus, to improve the
trace formula near the bifurcations, we have to evaluate the generalized error integral
erf(Zβ−i ,Zβ+i ) (or corresponding complex Fresnel functions46)) in Eq. (3.16) within
the finite limits Zβ±i given by Eq. (3.19) or (3.20).

For a spheroidal cavity, we have another bifurcation in the spherical limit, where
the “azimuthal” Jacobian Jβ22 and Jβ12 (3.13) (σ2 ∝ I2ϕ) vanish.9) This is the reason
for the divergence of the standard POT result (3.21) in the spherical limit. Our im-
proved trace formula (3.16) is finite in the spherical limit, because the “azimuthal”

generalized error function erf(Zβ−2 ,Zβ+2 ) is proportional to
√
Jβ22 in this limit, and

thus this “azimuthal” Jacobian is exactly canceled by that coming from the denomi-
nator of Eq. (3.16). Thus, as shown in Ref. 9), the elliptic 2DPO term (K=2) in the
level density approaches the spherical Balian-Bloch result for the most degenerate
planar orbits with larger degeneracy (K = 3):

δg
(3)
sph(ε) =

√
kR

ε0

∑
t≥1, q>2t

sin
(

2πt
q

)√
sin(2πt/q)

qπ

× sin
[
2kRq sin

(
πt

q

)
− 3π

2
q − (t− 1)π − π

4

]
, (3.25)

where t = Mnu and q = Mnv. Note that Eq. (3.25) can be derived directly from
the phase-space trace formula (3.2) or from the Poisson-sum trace formula, both
rewritten in terms of the spherical action-angle variables.

3.5. Equatorial-plane orbits

We cannot apply the Poisson-sum trace formula (3.9) for equatorial-plane orbits,
because, although the stationary-phase conditions for Θ′′

ϕ and Θ′′
v in Eq. (3.8) hold
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identically, this is not the case for the angle variable Θ′′
u. We thus apply the ISPM

for the integration over Θ′′
u.

Returning to Eq. (3.6), we transform the phase-space trace formula into new
“parallel” (Θ′′

v ; I
′
v) and “perpendicular” (Θ′′

u, Θ
′′
ϕ; I

′
u, I

′
ϕ) variables, as explained in

Appendix B for more general (integrable and non-integrable) systems. We then carry
out the integration over the variables (I ′u, I ′ϕ) in terms of the ISPM by transforming
them into the variables σi. Next, we consider the integration over the angle variable
Θ′′
u using the ISPM, as there is an isolated stationary point at Θ∗

u = 0 (or an integer
multiple of 2π). We expand the exponent phase in a power series of Θ′′

u about
Θ∗
u = 0,

Sα
(
I, I ′′, tα

)
+
(
I ′′ − I

) · Θ′′

= pLEQ +
1
2

∑
ij

JEQij (σi − σ∗
i )(σj − σ∗

j ) +
1
2
JEQ⊥

(
Θ′′
u

)2 + · · · , (3.26)

where the stationary point σ∗
1 = σ∗

2 ≡ σ∗ is given by

σ∗ =
(
I∗ϕ
pζ

)2
=

a2 cos2 φ
ζ2

=
cos2 φ
η2 − 1

, I∗ϕ = p a cosφ. (3.27)

The length of the equatorial polygon with nv vertices and M rotations, LEQ, is given
by

LEQ = 2MnvR sinφ, φ = πnϕ/nv. (3.28)

In this way, we finally obtain the contribution of EQPO,

δg
(1)
EQ(ε) =

1
ε0

Re
∑
EQ

A
(1)
EQ exp

{
i
(
kLEQ − π

2
νEQ

)}
, (3.29)

with the amplitudes A(1)
EQ given by

A
(1)
EQ =

√
sin3 φ

πMnvkRηF
EQ
z

erf
(Z−

1 ,Z+
1

)
erf

(Z−
2 ,Z+

2

)
erf

(Z−
3 ,Z+

3

)
(3.30)

(see Appendix B for a detailed derivation). Here, Z±
i are the limits given by

Eq. (3.19) or (3.20) for i = 1, 2, and Z−
3 = 0,Z+

3 = Z+
⊥ from Eq. (B.19). The latter

is related to the finite limits 0 ≤ Θu ≤ π/2 for the angle Θu in the trace integration
in Eq. (3.6), taking into account explicitly the factor 4, due to the time-reversal and
spatial symmetries.

For the total asymptotic phase νEQ, we find

νEQ = µEQ +
1
2
, µEQ = 3Mnv, (3.31)

where µEQ is the Maslov index. We calculated this phase using the Maslov-Fedoryuk
theory43) at a point asymptotically far from the bifurcations. Note that the total
phase is defined as the sum of the asymptotic phase νEQ and the argument of the
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Table I. Bifurcation points of some short periodic orbits.

periodic orbit ηbif periodic orbit ηbif

(4,2,1)
√
2 (6,3,1) 2

(5,2,1) 1.618... (7,3,1) 2.247...

(6,2,1)
√
3 (8,3,1) 2.414...

(7,2,1) 1.802... (9,3,1) 2.532...

(8,2,1) 1.848...

amplitude AEQ, given by Eq. (3.30), so that it depends on kR and η through the
complex arguments of the product of the error functions. In the derivations of
Eq. (3.30) we have taken into account the off-diagonal curvature, as in the previous
subsection, but much smaller corrections due to the mixed derivatives of the action
Sα with respect to Θ′′

u and σi are ignored, taking σi = σ∗
i in Eq. (3.26).

The bifurcation points are associated with zeros of the stability factor FEQ
z and

given by

ηbif =
sinφ

sin (nφ/M)
, n = 1, 2, · · · ,M. (3.32)

The bifurcation points most important for the superdeformed shell structure are
listed in Table I.

When the stationary points are located inside the finite integration region far
from the ends, we transform the error functions in Eq. (3.30) into the Fresnel func-
tions and extend their arguments to ±∞, except in the case that the lower limit
is exactly zero. From the definitions of the limit, Eqs. (3.19) and (B.19), for Z±

i ,
we have asymptotically Z+

i → +∞ (i = 1, 2, 3), Z−
1 = Z−

3 → 0 and Z−
2 → 0 for

diameters and Z−
2 → −∞ for the other EQPO. Finally, we arrive at the standard

Balian-Bloch formula3) for the amplitude A(1)
EQ,

A
(1)
EQ =

fEQ√
πkRη

√
sin3 φ

MnvF
EQ
z

, (3.33)

where fEQ = 1 for the diameters and 2 for the other EQPO [erf(Z−
2 ,Z+

2 ) → fEQ in
this limit].

As seen from Eq. (3.33), there is a divergence at the bifurcation points where
FEQ
z → 0. We emphasize that our ISPM trace formula (3.29) has no such divergences.

Indeed, the stability factor FEQ
z responsible for this divergence is canceled by FEQ

z

from the upper limit Z+
3 , Eq. (B.19), of the last error function in Eq. (3.30), Z+

3 ∝√
FEQ
z , and we obtain the following finite result at the bifurcation point:

A
(1)
EQ =

η1/3 sinφ
√
η2 − sin2 φ√

2i(η2 − 1)Mnv
erf

(Z−
1 ,Z+

1

)
erf

(Z−
2 ,Z+

2

)
. (3.34)

It is very important to note that there is a local enhancement of the amplitude
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(3.34) by a factor of order
√
kR∗) near the bifurcation point. This enhancement

is associated with a change of the degeneracy parameter K by one locally near the
bifurcation point. In general, any change of the degeneracy parameter K by ∆K
is accompanied by an amplitude enhancement by a factor of (kR)∆K/2, because
∆K extra exact integrations are carried out. This enhancement mechanism of the
amplitude obtained in the ISPM is quite general, and it is independent of the specific
choice of the potential shapes.

We mention that a more general trace formula that can be applied also to non-
integrable but axially symmetric systems can be derived from the phase-space trace
formula (see Appendix B).

The contribution of the equatorial diameters in Eq. (3.29) for deformations far
from bifurcation points reduces to the Balian-Bloch result for spherical diameters
(K = 2),

δg
(2)
sph(ε) = − 1

ε0

∑
M

1
2πM

sin(4MkR). (3.35)

The amplitudes for planar polygons in the equatorial plane vanish in the spherical
limit (see Appendix B). Note that the contributions of the planar polygons in the
spherical cavity, Eq. (3.25), are obtained as the limit of A(2)2D, Eq. (3.16), for elliptic
orbits in the meridian plane.9)

3.6. Long diametric orbits and separatrices

As mentioned in §2, the curvatures Kβ
ij become infinite near the separatrix

(σ1 = 1, σ2 = 0) (see Appendix C). This separatrix corresponds to the isolated
long diameters (K = 0) along the symmetry axis. Thus, for the derivation of their
contributions to the trace formula, the expansion up to second order in action-
angle variables considered above fails, as for the turning and caustic points in the
usual phase space coordinates. However, we can apply the Maslov-Fedoryuk the-
ory39), 41)–43) in a similar way as the calculation of the Maslov indices associated
with the turning and caustic points, but with the use of the action-angle variables
in place of the usual phase-space variables. This is similar to the derivation of the
long diametric term in the elliptic billiard.28)

Starting from the phase-space trace formula (3.6), we note that the spheroidal
separatrix problem differs from that for the elliptic billiard system28) by the integrals
over the two azimuthal variables Θ′′

ϕ and I ′ϕ, which are additional to the integrals
over Θ′′

u and I ′u. We expand the phase of the exponent in Eq. (3.6) with respect to
the action I ′ϕ and angle Θ′′

ϕ about the stationary points I∗ϕ = 0 and an arbitrary Θ∗
ϕ

(for instance, Θ∗
ϕ = 0), and take into account the third order terms, in a similar way

as for the variables Θ′′
u and I ′u (see Appendix C). Note that we consider here small

deviations from the long diameters, and Θ∗
ϕ determines the azimuthal angle of the

final point r′′ of this trajectory near the symmetry axis.

∗) The parameter of our semiclassical expansion is in practice
p

kLβ

�
∝ √

kR
�
. It is actually

large for 3D orbits (Lβ ∼ 10R) associated with superdeformed shell structures in nuclei.
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After the procedure explained in Appendix C, we obtain

δg
(0)
LD(ε) =

πb

2ε0R
Re

∑
M

1
kR

eikLLD−iπ
2
νLD

2∏
j=1

e
2i
3

h
(w

‖
j )

3/2+(w⊥
j )

3/2
i
(
w

‖
jw

⊥
j

)1/4
√

|c‖2,jc⊥2,j|
×[Ai(−w‖

j ) + iGi(−w‖
j )]

×[Ai(−w⊥
j ,Z−

⊥ ,Z+
⊥ ) + iGi(−w⊥

j ,Z−
⊥ ,Z+

⊥ )] (3.36)

(see Appendix C for the notation used here).
For finite deformations and sufficiently large kR, i.e. for large pζ ∝ kR

√
η2 − 1,

near the separatrix σ1 → 1, σ2 → 0, the incomplete Airy functions in this equation
can be approximated by the complete ones. Thus, Eq. (3.36) reduces to the standard
Gutzwiller result for isolated diameters,3), 9)

δg
(0)
LD(ε) =

2b
πε0kR2

∑
M

1
|FLD
xy | cos

[
kLLD(M)− π

2
νLD

]
, (3.37)

with the length LLD(M) = 4Mb = 4Mη2/3R and the stability factor FLD
xy for long

diameters given by Eq. (C.20).
For the calculation of the asymptotic phase νLD, we use this asymptotic ex-

pression and calculate the Maslov indices µLD using the Maslov-Fedoryuk theory,43)

obtaining
νLD = µLD + 2, µLD = 4M. (3.38)

The additional phases, dependent on deformation and energy, come from the argu-
ments of the complex exponents and Airy functions of the complex amplitude.

In the spherical limit, both the upper and lower limits of the incomplete Airy
functions in Eq. (3.36) approach zero, and the angle integration has the finite limit
π/2 (see Appendix C). With this, the other factors ensure that the amplitude for
long diameters becomes zero; that is, the long diametric contribution to the level
density vanishes in the spherical limit.

§4. Level density, shell energy and averaging

4.1. Total level density

In spheroidal cavity systems, the ISPM total semiclassical level density can be
written as a sum over all periodic orbit families:

δgscl(ε) = δg
(2)
3D(ε) + δg

(2)
2D(ε) + δg

(1)
EQ(ε) + δg

(0)
LD(ε) =

∑
β

δg
(β)
scl (ε), (4.1)

where the first two terms represent the contributions from the most degenerate (K =
2) families of periodic orbits, the 3DPO and the meridian-plane 2DPO, given by
Eq. (3.15), the third term the EQPO given by Eq. (3.29), and the fourth term the
long diameters given by Eq. (3.36).
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4.2. Semiclassical shell energy

The shell energy δE can be expressed in terms of the oscillating part δg(β)scl (ε) of
the semiclassical level density (4.1) as4), 9), 10)

δE =
∑
β

(
�

tβ

)2
δg

(β)
scl (εF), N =

∫ εF

0
dε g(ε). (4.2)

Here, tβ denotes the period for a particle moving with the Fermi energy εF along the
periodic orbit β,

tβ = MTβ =
2πM
Ωβ

, (4.3)

Tβ being the primitive period (M = 1), M the number of repetitions, and Ωβ the
frequency. The Fermi energy εF is determined by the second equation of (4.2), where
N is the particle number.

In the derivation of Eq. (4.2) we used an expansion of the amplitudes Aβ(ε)
about the Fermi energy ε = εF. Although the Aβ(ε) are oscillating functions of
the energy ε (or kR), we can apply such an expansion, because the Aβ are much
smoother than the oscillations coming from the exponent function of kLβ. The latter
oscillations are responsible for the shell structure, while the oscillations of Aβ merely
lead to slight modulations with much smaller frequencies.

Thus, the trace formula for δE differs from that for δg only by the factor
(�/tβ)2 = (�2kF/mLβ)2 near the Fermi surface, i.e. longer orbits are additionally
suppressed by the factor 1/L2β. The semiclassical shell energy is therefore determined
by short periodic orbits.

4.3. Average level density

For the purpose of presentation of the level density improved at the bifurcations
we need to consider only an average level density, thus also avoiding the convergence
problems that usually arise when one is interested in a full semiclassical quantization.

The average level density is obtained by folding the level density with a Gaussian
of width Γ :

gΓ (ε) =
1√
πΓ

∫ ∞

−∞
dε′ g(ε′) e−(

ε−ε′
Γ

)2 . (4.4)

The choice of the Gaussian form of the averaging function is insignificant and is
made here only for the sake of mathematical simplicity.

Applying now the averaging procedure defined above to the semiclassical level
density (4.1), we obtain3), 9)

δgΓ,scl(ε) =
∑
β

δg
(β)
scl (ε) e

−(ΓMTβ
2~

)2 =
∑
β

δg
(β)
scl (ε) e

−( γLβ
2R

)2 . (4.5)

The latter equation is written specifically for cavity problems in terms of the orbit
length Lβ (in units of the typical length scale R) and the dimensionless parameter
γ defined by

Γ = 2γ
√
εε0 , (4.6)
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where γ is the averaging width with respect to kR. Thus, the averaging yields an
exponential decrease of the amplitudes with increasing Lβ and γ. In Ref. 9), the
value of γ is chosen to be 0.6. In this case, all longer orbits are strongly damped and
only the short periodic orbits contribute to the oscillating part of the level density.
For the study of the bifurcation phenomena in the superdeformed region, we need a
significantly smaller value of γ.

Finally, we can say that the contribution of an orbit family to the average density
of states is more important as the degeneracy of the orbit is higher, and as the volume
occupied by the orbit family in the phase space is larger, and also as the length of
the orbit is shorter.

§5. Quantum spheroidal cavity

5.1. Oscillating level density

We calculated the quantum spectrum using the spherical wave decomposition
method,50) in which wave functions are decomposed into the spherical waves as

ψm(r) =
∑
l

′
Cl jl(kr)Ylm(Ω). (5.1)

Here, m denotes the magnetic quantum number, and
∑′ indicates that l is summed

over even (odd) numbers for positive (negative) parity states. The functions jl and
Ylm are the usual spherical Bessel functions and spherical harmonics, respectively.
The expansion coefficients Cl are determined so that the wave function (5.1) satisfies
the Dirichlet boundary condition

ψm(r = R(Ω)) = 0, (5.2)

or equivalently, ∫
dΩY ∗

lm(Ω)ψm(r = R(Ω)) = 0, ∀l. (5.3)

By inserting (5.1) into (5.3), we obtain the matrix equation

∑
l′

′
Bll′(k)Cl′ = 0, Bll′(k) =

∫
dΩY ∗

lm(Ω)jl′(kR(Ω))Yl′m(Ω). (5.4)

Truncating the summation l at a sufficiently large number lc, we can obtain the
energy eigenvalue εn = �

2k2n/2m by searching for the roots satisfying

detB(kn) = 0. (5.5)

Figure 5 displays the energy level diagram for the prolate spheroidal cavity as func-
tions of the axis ratio η > 1. In Fig. 6, we plot shell structure energy

δE(N, η) =
N∑
n=1

εn(η)− Ẽ(N, η) (5.6)
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Fig. 5. Single-particle spectrum for the spheroidal cavity as a function of the axis ratio η. Solid

and dashed curves represent the positive and negative parity levels, respectively.

as a function of η and particle number N . As well as the strong shell effect at the
spherical shape (η = 1), one clearly sees a prominent shell structure for a superde-
formed shape (η ∼ 2).

Next, we calculated the coarse-grained level density with the usual Strutinsky
smoothing procedure by treating the wave number k as smoothing variable:

gγ(k) =
1
γ

∫ ∞

0
dk′RfM

(
kR− k′R

γ

)
g(k′). (5.7)

As the smoothing function fM (x), we use a Gaussian with M -th order curvature
corrections,

fM (x) =
1√
π
e−x

2
L
1/2
M/2(x

2), (5.8)

where Lαn(z) represents a Laguerre polynomial. Equation (4.4) corresponds to the
case of M = 0. In the following, we set the order of curvature corrections to M = 6
and the smoothing width to γ̃ = 2.5, with which we can nicely satisfy the plateau
condition.44) A coarse-graining is also performed using the same smoothing function
but with smaller γ. We define the oscillating part of the level density by subtracting
the smooth part as

δgγ(k) = gγ(k)− gγ̃(k). (5.9)

The left-hand side of Fig. 7 displays δgγ(k) with γ = 0.3 as a function of η and
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2
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8
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N
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3

η
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δE [h  –2/2mR2]

Fig. 6. Shell structure energy δE as a function of η and N1/3, where N is the neutron (pro-

ton) number, taking the spin-degeneracy factor into account. Energies are counted in units of

~
2/2mR2 (∼ 30A−2/3MeV).

kR. It is seen that a clear shell structure emerges for η ∼ 2, corresponding to the
superdeformed shape.

Let us consider the mechanism of this strong shell effect. If a single orbit makes
a dominant contribution to the periodic-orbit sum

δgscl(ε) =
∑
β

aβ(k) cos(kLβ − πνβ/2), aβ(k) = Aβ/ε0, (5.10)

the major oscillating pattern in δg should be determined by the phase factor of the
dominant term. In that case, the positions of the valley curves for δg in the (η, kR)
plane are given by

kLβ − πνβ/2 = (2n+ 1)π. (n = 0, 1, 2, · · · ) (5.11)

The right-hand side of Fig. 7 plots the stationary action curves (5.11) for several
periodic orbits. The green solid curves represent the triangular orbit in the meridian
plane. The other longer meridian orbits exhibit the same behavior but with smaller
distances. The red dashed curves represent the star-shaped orbit with five vertices in
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the equatorial plane. It bifurcates at η = 1.618 . . . and the 3D orbit (5,2,1) thereby
appears (red solid curves). The sequence (n, 2, 1) (n = 5, 6, 7, · · · ) exhibit similar
behaviors, shifting the bifurcation points slightly to larger η. Comparing with the
plot of quantum δg, there is a clear correspondence between the superdeformed shell
structure and the bifurcation of above star-shaped orbits. There is also a correspon-
dence between the bifurcations of the equatorial-plane orbits (n, 3) (n = 7, 8, 9, · · · )
with the hyperdeformed shell structure emerging at η � 2.5. The significant shell
energy gain occurring at the superdeformed shape obtained in Fig. 6 is considered
to be a result of this strong shell effect in the level density.

5.2. Fourier analysis of the level density

Fourier analysis is a useful tool to investigate the quantum-classical correspon-
dence in the level density.3) Due to the simple form of the action integral Sβ = �kLβ,
it is easy to Fourier transform the semiclassical level density gscl(k) with respect to
k. Let us define the Fourier transform F (L) by

F (L) =
∫

dke−ikLg(k). (5.12)

In actual numerical calculations, we multiply the integrand of the right-hand side of
this equation by a Gaussian truncation function, obtaining

F∆(L) =
∆√
2π

∫
dke−

1
2
(k∆)2e−ikLg(k). (5.13)

Inserting the semiclassical level density (5.10), the Fourier transform is expressed as

F scl
∆ (L) = F̄∆(L) +

1
2

∑
β

e−iπνβ/2aβ
(
i
∂

∂L

)
exp

[
−1

2

(
L− Lβ

∆

)2]
. (5.14)

This is a function that has peaks at the lengths of the classical periodic orbits L = Lβ.
On the other hand, we can calculate F (L) by inserting the quantum mechanical level
density g(k) =

∑
n δ(k − kn) as

F qm
∆ (L) =

∆√
2π

∑
n

e−
1
2
(kn∆)2e−iknL. (5.15)

This quantity should exhibit successive peaks at orbit lengths L = Lβ. Thus we can
extract information concerning classical periodic orbits from the quantum spectrum.
On the left-hand side of Fig. 8, we plot the Fourier transform (5.15) as a function of L
and η. On the right-hand side of Fig. 8, the lengths of classical periodic orbits Lβ(η)
are shown. There, red curves represent the orbits M(nv, 2, 1) (nv = 4, 5, 6, · · · ).
We find strong Fourier peaks at η � 2, corresponding to the periodic orbits (5,2,1),
(6,2,1) and (7,2,1) just after the bifurcation points. We also find Fourier peaks at
η � 2.5, corresponding to the periodic orbits (7,3,1) and (8,3,1), etc. Thus, we can
conclude that these periodic orbit bifurcations play essential roles in the emergence
of superdeformed and hyperdeformed shell structures.
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5.3. Coarse-grained shell structure energy

In order to prove that the shell structure at the superdeformed shape is due to
the bifurcated orbits, we calculated the ‘coarse-grained’ shell energy defined by

δẼγ(N) =
∫ k̃F(γ)

ε(k)gγ(k)dk −
∫ k̃F(γ̃)

ε(k)gγ̃(k)dk, (5.16)

where the smoothed Fermi wave number k̃F in each term is determined so that they
satisfy the particle number condition∫ k̃F(γ)

gγ(k)dk =
∫ k̃F(γ̃)

gγ̃(k)dk = N. (5.17)

By coarse-graining with the width γ, a shell structure of resolution ∆kR = γ is
extracted. Classical orbits relevant to such a structure are those with lengths

L < Lmax =
2πR
γ

. (5.18)

Setting γ = 0.6, contributions from periodic orbits with L>∼ 10R are smeared out.
Around the superdeformed shape, bifurcated orbits have lengths L ∼ 10R, and these
contributions are significantly weakened by smoothing with γ = 0.6, and the major
oscillating pattern of δE should disappear if these bifurcated orbits are responsible
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Fig. 9. Shell structure energies plotted as functions of N1/3. Solid curves represent the exact shell

structure energies. Dashed and dotted curves represent those calculated by using the coarse-

grained level density gγ(k) with the smoothing widths γ = 0.3 and 0.6, respectively.
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for the superdeformed shell effect. In Fig. 9, the coarse-grained shell energies (5.16)
calculated for η = 1, 2 and 2.5 with γ = 0.3 and 0.6 are compared with the exact shell
structure energies. In the upper panel, it is seen that the spherical shell structure
survives after smoothing with γ = 0.6, indicating that the major structure is deter-
mined by orbits whose lengths are sufficiently shorter than 10R. In contrast with it,
the middle panel shows that the major oscillating pattern of the superdeformed shell
structure is considerably broken after smoothing with γ = 0.6. The same argument
is valid also for η = 2.5. This strongly supports the significance of bifurcated orbits
for the superdeformed and hyperdeformed shell structures.

§6. Enhancement of semiclassical amplitudes near the bifurcation points

In this section, we present some results of the semiclassical ISPM calculation,
which clearly show enhancement phenomena of the semiclassical amplitudes |A3D|
and |AEQ| near the bifurcation points.

Figure 10(a) shows the modulus of the complex amplitude A3D [Eq. (3.16)]
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Fig. 10. (a) Semiclassical amplitudes |A3D| for the 3DPO (5,2,1) and |AEQ| for the EQPO (5,2),

calculated at kR = 25 with the ISPM, are plotted as functions of the deformation parameter

η by thick and thin solid curves, respectively. They are compared with the SSPM amplitudes

(dashed curves). (b) The same as (a), but for the 3DPO (6,2,1) and the EQPO 2(3,1).
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Fig. 11. (a) ISPM3 amplitudes for the 3DPO (5,2,1), calculated at kR = 25, are plotted as functions

of the deformation η by thick-solid curves. For comparison, the ISPM amplitudes and the results

of exact integration in the Poisson-sum trace formula are plotted by thin-solid and thick-dotted

curves, respectively. (b) The same as (a), but for the 3DPO (6,2,1).
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for the 3DPO (5, 2, 1) and AEQ [Eq. (3.30)] for the EQPO (5, 2) as functions of
the deformation parameter η. They are compared with those of the SSPM. The
SSPM amplitude for the EQPO (5, 2) is divergent at the bifurcation deformation
ηbif = 1.618 . . ., while the ISPM amplitude is finite and continuous through this
bifurcation point, with a rather sharp maximum at this point. This difference is
due to a local change of the symmetry parameter K from 1 to 2 at the bifurcation,
and the associated enhancement of the amplitude is of order

√
kR. As seen from

Fig. 10(a), the ISPM amplitude for the (5, 2, 1) is continuous through the bifurcation
point and exhibits a significant enhancement slightly to the right of it. It approaches
the SSPM amplitude given by Eq. (3.21) away from the bifurcation point. The ISPM
enhancement for the 3DPO is also of order

√
kR, because here, as in the case of the

bifurcating EQPO, the degeneracy parameter K changes from 1 to 2. The same is
true for the 3DPO (6,2,1) and the EQPO 2(3,1), as shown in Fig. 10(b).

In Fig. 11, we consider corrections from the 3rd-order terms in the expansion of
the action about the stationary point. Here we incorporate the 3rd-order terms in
the variable σ1 (ISPM3) which are expected to be important for the 3DPO (6,2,1)
whose curvature K11 is identically zero (see Appendix D). We also show results of
the exact integration in the Poisson-sum trace formula (3.10) (marked “POISSON”).
It is seen that the results of the ISPM3 for the (5, 2, 1) and (6, 2, 1) orbits are in
good agreement with those of the ISPM in the most important regions, near the
bifurcations, and on their right-hand sides. It is gratifying to see that the ISPM
and the ISPM3 amplitudes |A3D| for (5, 2, 1) and (6, 2, 1) are also in good agreement
with the results of the exact integration in the Poisson-sum trace formula. With the
3rd-order corrections, excessive ghost orbit contributions in the ISPM (bumps in the
ISPM amplitudes on the left-hand side of the bifurcation point) are removed, and
better agreement with the result of the exact integration is obtained. Except for this,
the corrections due to the 3rd-order terms are rather small, and good convergence
is achieved up to the second-order terms.

The amplitudes |Aβ| are slightly oscillating functions of kR. Because the period
of this oscillation is much larger than that of the shell energy oscillation, the expan-
sion about the Fermi energy εF (or kFR) can be used in the derivations of both the
semiclassical ISPM shell energy δEscl and the oscillating level density δgscl (3.15).
Figure 12 displays the semiclassical amplitudes A3D for the 3DPO (5,2,1) and AEQ

for the EQPO (5, 2) as functions of kR at η = 1.618 . . . (top panel) and η = 2 (bot-
tom panel). In this figure, the semiclassical amplitudes A3D for the 3DPO (6,2,1)
and AEQ for the EQPO 2(3,1) are also plotted as functions of kR at the bifurcation
point η =

√
3 (middle panel). We see that for η = 2 the amplitudes |A3D| for the

3DPO (5, 2, 1) and (6, 2, 1) become much larger than the amplitude |AEQ| for the
EQPO.

§7. Comparison between quantum and semiclassical calculations

In this section we present results of calculations of the level densities and shell
energies using the quantum Strutinsky method and the semiclassical ISPM, and make
comparisons between the quantum and semiclassical calculations. In the quantum
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(a) η=1.618… (5,2,1)
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0

0.1

0.2
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0.4

|A
β|

(b) η=1.732… (6,2,1)
2(3,1)

Fig. 12. (a) Semiclassical amplitudes |A3D| for the 3DPO (5,2,1) and |AEQ| for the EQPO (5,2)

plotted by bold and thin solid curves, respectively, as functions of kR at the bifurcation point

η = 1.618 . . .. (b) The same as (a), but for the 3DPO (6,2,1) and the EQPO 2(3,1) at the

bifurcation point η = 1.732 . . .. (c) Semiclassical amplitudes |A3D| for (5,2,1), (6,2,1) and |AEQ|
for (5,2) plotted by thin-solid, thick-solid and dotted curves, respectively, as functions of kR at

η = 2.0.

calculations, the averaging parameter γ = 0.3 is used.
Figure 13 displays oscillating level densities δg for relatively small deformations.

There, QM and ISPM denote the δg obtained with the quantum Strutinsky method
and the semiclassical ISPM, respectively. For η = 1.2 we obtain good convergence of
the periodic orbit sum (4.1) by taking into account the short elliptic 2DPO with nv ≤
12, nu = 1, the short EQPO with the maximum vertex number pmax = M(nv)max =
14, and the maximum winding number tmax = Mnϕ = 1 (M = 1, nϕ = 1). The
ISPM result is in good agreement with the quantum result. For the bifurcation
point η =

√
2 of the butterfly orbit (4, 2, 1) and η = 1.5 slightly to the right of it,

the convergence of the periodic-orbit sum is achieved by taking into account the
contributions from the bifurcating orbits, (4, 2, 1) and the twice-repeated diameter
2(2, 1) with tmax = 2, in addition to the 2DPO and the EQPO considered in the
η = 1.2 case.

Figure 14 presents the oscillating level densities for the bifurcation deformations:
η = 1.618 . . . for the EQPO (5, 2), η =

√
3 for the EQPO 2(3, 1), and η = 2 for the

triply repeated equatorial diameters 3(2, 1). It is interesting to compare this figure
with Fig. 15, where some results of simplified semiclassical calculations are given. In
the top panel of Fig. 15, the SSPM is used instead of the ISPM. We see that the
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0.4 (a) η=1.2

Quantum
ISPM

Fig. 13. Oscillating level densities evaluated with the semiclassical ISPM and a quantum mechan-

ical method are shown by dotted and solid curves, respectively, as functions of kR for several

deformations η.
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Quantum
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Fig. 14. The same as Fig. 13 but for larger deformations.

SSPM is a good approximation for η = 1.2. In the middle and bottom panels, only
bifurcating orbits are taken into account in the periodic-orbit sum: Only the 3DPO
(5, 2, 1), the EQPO (5, 2) and the butterfly (4, 2, 1) are accounted for in the middle
panel, while only the 3DPO (5, 2, 1), (6, 2, 1), (7, 2, 1) and (8, 2, 1) in the bottom
panel. By comparing with the corresponding ISPM results shown in Fig. 15, we see
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Fig. 15. Comparison of the oscillating level densities calculated with a quantum mechanical method

(solid curves) and those obtained with some specific semiclassical calculations (dotted curves):

(a) the top panel gives a comparison with the SSPM result for η = 1.2; (b) the middle panel

displays the ISPM result in which only the bifurcating 3DPO (5, 2, 1), the EQPO (5, 2) and the

2DPO butterfly (4, 2, 1) are taken into account for the POT sum in Eq. (3.15) for η = 1.618 . . .;

(c) the bottom panel displays the ISPM result, in which only the four shortest 3DPO are taken

into account for η = 2.0.

that, for η = 1.618 . . . and 2, the major patterns of the oscillation are determined by
these short 3DPO.

Figures 16 and 17 display the shell energies, which respectively correspond to the
oscillating level densities shown in Figs. 13 and 14. Again, we see good agreement
between the results of the semiclassical ISPM and the quantum calculations. For
η = 1.2, good convergence is obtained by including only the shortest elliptic 2DPO
and EQPO, in the same way as for the level density δg (see Ref. 9)). For η =

√
2

and 1.5, the properties of the ISPM shell energies are similar to those considered
for the elliptic billiard system in Ref. 28). Now, let us more closely examine the
bifurcation effects in the superdeformed region by comparing Fig. 17 with Fig. 18.
In the top panel of Fig. 18, we show the ISPM result for η = 1.618 . . . in which only
the bifurcating 3DPO (5, 2, 1), the short EQPO (5, 2) and the hyperbolic 2DPO
(4, 2, 1) are taken into account. In the middle panel of this figure, we show the ISPM
shell energies at η = 1.732 . . ., calculated by taking into account only the 3DPO
(5, 2, 1), the bifurcating 3DPO (6, 2, 1) and the EQPO 2(3, 1). These comparisons
clearly indicate that a few dominant periodic orbits determine the properties of the
quantum shell structure at those bifurcation deformations. The bottom panel in
this figure displays the dominant contributions of only the few shortest 3DPO at
η = 2.0. Evidently, the short 3DPO (5, 2, 1), (6, 2, 1), (7, 2, 1) and (8, 2, 1) determine
the major oscillating pattern of the shell energy. Thus, we can say that they are
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Fig. 16. Semiclassical ISPM and quantum shell energies (in units of ε0) are plotted by dotted and

solid curves, respectively, as functions of N1/3.
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Fig. 17. The same as Fig. 16, but for larger deformations.

responsible for the formation of the shell structure at large deformations around the
superdeformed shape. These results of the calculation are in good agreement with
those obtained in Ref. 23) from the analysis of the length spectra (Fourier transforms
of the quantum level densities).
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Fig. 18. Comparison of quantum shell energies (solid curves) with those obtained with specific

semiclassical calculations (dotted curves): (a) the top panel presents the ISPM result for η =

1.618..., where only the bifurcating orbits (5,2,1), (5,2) and (4,2,1) are taken into account; (b) the

middle panel displays for η = 1.732... the contributions of only three orbits, the 3DPO (5, 2, 1)

and (6, 2, 1), and the EQPO 2(3, 1); (c) the bottom panel plots for η = 2.0 the contributions of

only the four shortest 3DPO to the ISPM sum.

§8. Conclusion

We have obtained an analytical trace formula for the 3D spheroidal cavity model,
which is continuous through all critical deformations where bifurcations of peri-
odic orbits occur. We find an enhancement of the amplitudes |Aβ| at deformations
η ∼ 1.6–2.0 due to bifurcations of 3D orbits from the short 2D orbits in the equa-
torial plane. The cause of this enhancement is quite general and independent of
the specific potential shapes. We believe that this is an important mechanism that
contributes to the stability of superdeformed systems, also in the formation of the
second minimum related to the isometric states in nuclear fission. Our semiclassical
analysis may therefore lead to a deeper understanding of shell structure effects in su-
perdeformed fermionic systems — not only in nuclei and metallic clusters, but also,
e.g., in deformed semiconductor quantum dots whose conductance and magnetic
susceptibilities are significantly modified by shell effects.
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Appendix A
Curvatures

A.1. Three-dimensional orbits

The action is written

S = 2πM (nvIv + nuIu + nϕIϕ) , (A.1)

where Iu, Iv and Iϕ are the partial actions. In a dimensionless form, they are

Iu =
pζ

π
Ĩu, Iv =

pζ

π
Ĩv, Iϕ =

pζ

π
Ĩϕ, (A.2)

where

Ĩu = 2
∫ z−

0

dz

1− z2

√
(z2 − z2−)(z2 − z2+), (A.3a)

Ĩv =
∫ zb

z+

dz

z2 − 1

√
(z2 − z2−)(z2 − z2+), (A.3b)

Ĩϕ = π
√
σ2. (A.3c)

The quantities z± are related to the variables σi by

z2+ + z2− = σ1 + 1, z2+z
2
− = σ1 − σ2. (A.4)

In terms of the elliptic integrals, (A.3) can be expressed as

Ĩu =
2
z+

[
(z2− − 1)F(k)− σ2Π(z2−, k) + z2+E(k)

]
, (A.5a)

Ĩv =
1
z+

{
(z2+ − z2−) [F(ϕ, k)− Π(ϕ, n, k)]− z2+E(ϕ, k)

}
+ zb sinϕ, (A.5b)

with

k =
z−
z+

, n =
1 − z2−
1 − z2+

, ϕ = arcsin

√
z2b − z2+
z2b − z2−

, zb = cosh vb =
η√

η2 − 1
. (A.6)

Here, we have used the standard definitions of the elliptic integrals of the first and
the third kind,∗)

F(ϕ, k) =
∫ ϕ

0

dx√
1 − k2 sin2 x

, (A.7a)

∗) The definitions of the elliptic integrals (A.7) are related with those in Ref. 46) as F(θ, κ) ≡
F(θ|α) and Π(θ, n, κ) = Π(n, θ|α) (κ = sinα).
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E(ϕ, k) =
∫ ϕ

0

√
1 − k2 sin2 x dx, (A.7b)

Π(ϕ, n, k) =
∫ ϕ

0

dx

(1− n sin2 x)
√

1− k2 sin2 x
, (A.7c)

and we have omitted the argument ϕ = π/2 for complete elliptic integrals.
The action (A.1) is written as

S = 2pζM
(
nv Ĩv + nuĨu + nϕĨϕ

)
. (A.8)

The curvatures Kij of the energy surface ε = H(σ1, σ2, ε) are defined as

Kij =
pζ

π
K̃ij =

∂2Iv
∂σi∂σj

+
ωu
ωv

∂2Iu
∂σi∂σj

+
ωϕ
ωv

∂2Iϕ
∂σi∂σj

, (A.9)

and the frequency ratios in Eq. (A.9) are given by

ωu
ωv

≡ −
(
∂Iv
∂Iu

)
Iϕ

= −∂Ĩv/∂σ1

∂Ĩu/∂σ1
, (A.10)

ωϕ
ωv

≡ −
(
∂Iv
∂Iϕ

)
Iu

= −2
√
σ2
π

[
∂Ĩv
∂σ2

+
ωu
ωv

∂Ĩu
∂σ2

]
. (A.11)

We have used here the properties of Jacobians for the transformations from the
variables (Iu, Iϕ) to (σ1, σ2). For the first derivatives of the actions (A.3) with
respect to σ1 and σ2, we obtain

∂Ĩu
∂σ1

=
1
z+

F(k) ,
∂Ĩv
∂σ1

= − 1
2z+

F(ϕ, k) , (A.12a)

∂Ĩu
∂σ2

= − 1
z+

Π(z2−, k) ,
∂Ĩv
∂σ2

= CF F(ϕ, k) + CΠΠ(ϕ, n, k) , (A.12b)

with

CF =
z2+ − 1
2z+σ2

= − 1
2z+(z2− − 1)

,

CΠ = −z2+ − z2−
2z+σ2

=
z2+ − z2−

2z+(z2+ − 1)(z2− − 1)
. (A.13)

For the second derivatives of these actions, we obtain

∂2Ĩu
∂σ21

=
1

2z3+

{
1
k2

[
Π(k2, k)− F(k)

](∂z2−
∂σ1

− k2
∂z2+
∂σ1

)
− ∂z2+

∂σ1
F(k)

}
, (A.14a)

∂2Ĩv
∂σ21

= − 1
4z3+

{
1
k2

[
Π(ϕ, k2, k)− F(ϕ, k)

](∂z2−
∂σ1

− k2
∂z2+
∂σ1

)

−∂z2+
∂σ1

F(ϕ, k) +
2z2+
∆ϕ

∂ϕ

∂σ1

}
, (A.14b)
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∂2Ĩu
∂σ22

=
1

2z5+k21

[
Π(z2−, k) + 2z2+

∂Π(z2−, k)
∂n

+
1 + k2

k

∂Π(z2−, k)
∂k

]
, (A.14c)

∂2Ĩv
∂σ22

=
∂CF
∂σ2

F(ϕ, k) + CF

(
1
∆ϕ

∂ϕ

∂σ2
+
∂F(ϕ, k)

∂k

∂k

∂σ2

)
+
∂CΠ
∂σ2

Π(ϕ, n, k)

+CΠ

(
∂Π(ϕ, n, k)

∂ϕ

∂ϕ

∂σ2
+
∂Π(ϕ, n, k)

∂n

∂n

∂σ2
+
∂Π(ϕ, n, k)

∂k

∂k

∂σ2

)
,

(A.14d)

and

∂2Ĩu
∂σ1∂σ2

= − 1
2z5+k21

[
F(k) +

1 + k2

k

∂F(k)
∂k

]
, (A.14e)

∂2Ĩv
∂σ1∂σ2

=
1

4z5+k21

[
F (ϕ, k)− (σ1 + 1 − 2z2b ) tan θ

∆ϕz2b∆
2
θk1

+
1 + k2

k

∂F(ϕ, k)
∂k

]
.

(A.14f)

Here,

∆x =
√

1 − k2 sin2 x, k1 =
√

1− k2, θ = arcsin
(
z+
zb

)
, (A.15)

and

∂z2±
∂σ1

=
1
2

[
1 ± σ1 − 1√

(σ1 − 1)2 + 4σ2

]
=

1
2

[
1± z2+ + z2− − 2

z2+ − z2−

]
, (A.16)

∂ϕ

∂σ1
=

1
2

∂z2−
∂σ1

(z2b − z2+)− ∂z2+
∂σ1

(z2b − z2−)

(z2b − z2−)
√

(z2b − z2+)(z2+ − z2−)
, (A.17)

∂k2

∂σ2
= −1 + k2

z4+k
2
1

, (A.18)

∂CF
∂σ2

=
z2− − 2z2+ − 1

4z3+(1− z2−)2(z2+ − z2−)
, (A.19)

∂CΠ
∂σ2

= −σ2(3z2+ + z2−)− 2z2+(z2+ − z2−)2

4z3+σ22(z
2
+ − z2−)

, (A.20)

∂ϕ

∂σ2
=

(
2z2b − (σ1 + 1)

)
tan θ

2z2b z
4
+k

3
1∆

2
θ

, (A.21)

∂n

∂σ2
=

σ1 − 1
(1− z2+)2(z2+ − z2−)

, (A.22)

∂z2±
∂σ2

= ± 1
z2+ − z2−

. (A.23)

Derivatives of the elliptic integrals are given by

∂F(ϕ, k)
∂k

=
1
k

[
Π(ϕ, k2, k)− F(ϕ, k)

]
, (A.24)
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∂Π(ϕ, n, k)
∂ϕ

=
1

(1− n sin2 ϕ)∆ϕ
, (A.25)

∂Π(ϕ, n, k)
∂n

=
1
n

[Π21(ϕ, n, k)− Π(ϕ, n, k)] , (A.26)

∂Π(ϕ, n, k)
∂k

=
1
k

[Π13(ϕ, n, k)− Π(ϕ, n, k)] , (A.27)

with
Πij(ϕ, n, k) =

∫ ϕ

0

dx

(1− n sin2 x)i(1− k2 sin2 x)j/2
. (A.28)

A.2. Meridian-plane orbits

For the meridian-plane orbits for which Iϕ = 0 (σ2 = 0), the actions Iu and Iv
defined by Eq. (2.3) can be simplified. In the dimensionless form (A.2) we obtain
for the elliptic orbits,

Ĩu = 2
√
σ E

(
1√
σ

)
, (A.29a)

Ĩv =
√
σ

[
E
(
θe,

1√
σ

)
− E

(
1√
σ

)]
+

√
η2 − σ(η2 − 1)

η
√
η2 − 1

. (A.29b)

Here we have used the identity47)

Π(ϕ, k2, k) =
[
E(ϕ, k)− k2 sinϕ cosϕ/

√
1− k2 sin2 ϕ

]
/(1− k2) . (A.30)

In this subsection, we omit the suffix “1” on the variable σ1 for brevity. For the
hyperbolic orbits, we have

Ĩu = 2
[
E(

√
σ)− (1− σ) F(

√
σ)
]
, (A.31a)

Ĩv = (1− σ)
[
F(

√
σ)− F(θh,

√
σ)
]
+ E(θh,

√
σ)

−E(
√
σ) +

√
η2 − σ(η2 − 1)

η
√
η2 − 1

. (A.31b)

Equations (A.29) and (A.31) can be regarded as parametric equations in terms of the
parameter σ for the energy surface of the meridian-plane orbits, ε(Ĩu, Ĩv, Ĩϕ = 0),
for its elliptic and hyperbolic parts, respectively.

The curvature K11 of the energy curve for the meridian-plane orbits can be
obtained by differentiating Eqs. (A.29) and (A.31) implicitly through the parameter
σ. In this way we obtain Eq. (3.13) with the dimensionless derivatives for the elliptic
orbits

∂Ĩu
∂σ

=
1√
σ

F
(

1√
σ

)
, (A.32a)

∂Ĩv
∂σ

= − 1
2
√
σ

[
F
(

1√
σ

)
− F

(
θe,

1√
σ

)]
, (A.32b)
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∂2Ĩu
∂σ2

= − 1

2
√
σ3

Π
(

1
σ
,

1√
σ

)
, (A.32c)

∂2Ĩv
∂σ2

=
1

4
√
σ3

[
Π
(

1
σ
,

1√
σ

)
− Π

(
θe,

1
σ
,

1√
σ

)
+

η
√
η2 − 1√

1− (1− σ−1)η2

]
.

(A.32d)

For the hyperbolic orbits, we have

∂Ĩu
∂σ

= F(
√
σ), (A.33a)

∂Ĩv
∂σ

=
1
2
[
F(θh,

√
σ)− F(

√
σ)
]
, (A.33b)

∂2Ĩu
∂σ2

=
1
2σ

[
Π(σ,

√
σ)− F(

√
σ)
]
, (A.33c)

∂2Ĩv
∂σ2

=
1
4σ

[
Π(θh, σ,

√
σ)− Π(σ,

√
σ)z + F(

√
σ)− F(θh,

√
σ)
]
. (A.33d)

Thus, for elliptic orbits, we obtain

K̃11 =
1

4
√
σ3

[
F(θe, κ)
F(κ)

Π(κ2, κ) − Π(θe, κ2, κ) +

√
η2 − σ(η2 − 1)

η
√
η2 − 1

]
, (A.34)

and for hyperbolic orbits,

K̃11 = − 1
4σ

[
F(θh, κ)
F(κ)

Π(κ2, κ) − Π(θh, κ2, κ)
]
. (A.35)

A.3. Equatorial-plane orbits

For the equatorial limit σ2 = σ1 ≡ σ we have, from (A.4),

z2− = 0, z2+ = σ + 1 . (A.36)

We thus obtain in this limit (k → 0)

∂Ĩu
∂σ1

=
π

2
√
σ + 1

,
∂Ĩv
∂σ1

= − ϕEQ

2
√
σ + 1

,
∂z2±
∂σ1

=
{
σ/(σ + 1)
1/(σ + 1)

}
(A.37)

and

∂2Ĩu
∂σ21

=
π(1− 2σ)
8(σ + 1)5/2

,

∂2Ĩv
∂σ21

=
1

8(σ + 1)5/2

{
(2σ − 1)ϕEQ +

1
2

sin (2ϕEQ)

−2
√
σ + 1

[
z2b (1− σ)− (σ + 1)

]
z2b

√
z2b − (σ + 1)

}
,

ϕEQ = arcsin

√
z2b − (σ + 1)

zb
. (A.38)
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Substituting (A.37) and (A.38) into (A.9), we finally obtain the equatorial limit,

K̃EQ
11 =

z2b (2σ − 1) + (σ + 1)

8z2b (σ + 1)2
√
z2b − (σ + 1)

. (A.39a)

In the same way, we obtain

K̃EQ
22 =

z2b (2− σ) + σ(σ + 1)

8z2bσ(σ + 1)2
√
z2b − (σ + 1)

, (A.39b)

K̃EQ
12 =

3z2b − (σ + 1)

8z2b (σ + 1)2
√
z2b − (σ + 1)

. (A.39c)

The determinant of the curvature matrix for EQPO becomes

det K̃EQ = − 1
32z2bσ(σ + 1)2

, (A.40)

which is negative for any orbit and for any deformation η > 1. This shows that
bifurcations of EQPO occur only through the zeros of the stability factor FEQ

z .

Appendix B
Derivation of the Trace Formula for the Equatorial-Plane Orbits

We start with the phase-space trace formula9), 28), 31), 40)

δgscl(ε) = Re
∑
α

∫
dq′′dp′

(2π�)3
δ
(
ε−H

(
q′,p′)) ∣∣J (

p′′
⊥,p

′
⊥
)∣∣1/2

× exp
{
i

�

[
Sα

(
p′,p′′, tα

)
+
(
p′′ − p′) · q′′]− i

π

2
να

}
, (B.1)

where the sum runs over all trajectories α, q = qα(t, q′′,p′) determined by the fixed
initial momentum p′ and the final coordinate q′′, H (q,p) is the classical Hamilto-
nian, and να is the phase related to the Maslov index, number of caustics and turning
points.39), 41)–43) The function Sα (p′,p′′, tα) is the action in the mixed phase-space
representation,

Sα
(
p′,p′′, tα

)
= −

∫ p′′

p′
dp · q (p) , (B.2)

related to the standard definition of the action Sα (q′, q′′, ε),

Sα
(
q′, q′′, ε

)
=
∫ q′′

q′
dq · p (q) , (B.3)

by the Legendre transformations (integration by parts),

Sα
(
p′,p′′, tα

)
= Sα

(
q′, q′′, ε

)
+
(
p′ − p′′) q′′, (B.4)
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tα being the time for a particle to revolve the trajectory α. The quantity J (p′′
⊥,p

′
⊥)

in Eq. (B.1) is the Jacobian for the transformation from p′′
⊥ to p′

⊥. Here, we have
introduced the local system of the phase-space coordinates q =

{
q‖, q⊥

}
and p ={

p‖,p⊥
}
, splitting the vectors into the parallel and perpendicular components with

respect to the trajectory α.
For the equatorial-plane periodic orbits (EQPO), one of the components in q⊥

and p⊥ can be taken along the symmetry axis, say z and pz, keeping for other per-
pendicular components the same suffix, q⊥ and p⊥. After the transformation to this
local phase-space coordinate system and integration over the “parallel” momentum
p‖ = p =

√
2mε by using the δ-function in Eq. (B.1), we obtain, for the contribution

from the EQPO (K = 1),

δg
(1)
EQ(ε) =

1
(2π�)3

Re
∑
α

∫ dq′′‖
|q̇′′‖ |

∫
dq′′⊥dp

′
⊥

∫
dz′′dp′z

∣∣J (
p′′,p′)∣∣1/2

× exp
{
i

�

[
Sα

(
p′,p′′, tα

)
+
(
p′′ − p′) · q′′]− i

π

2
να

}
, (B.5)

where q̇‖ = ∂H/∂p‖ = p/m is the velocity. In spheroidal action-angle variables,
q‖ = Θv, p‖ = Iv, q̇‖ = ωv, q⊥ = Θϕ = ϕ, p⊥ = Iϕ, z = Θu, pz = Iu, and we have

δg
(1)
EQ(ε) =

1
(2π�)3

Re
∑
α

∫
dΘ′′

v

|ωv|
∫

dΘ′′
ϕ dI

′
ϕ

∫
dΘ′′

u dI
′
u

∣∣J (
I ′′ϕI

′′
u , I

′
ϕI

′
u

)∣∣1/2
× exp

{
i

�

[
Sα

(
I ′, I ′′, tα

)
+
(
I ′′ − I ′) · Θ′′]− i

π

2
να

}
. (B.6)

We now perform the integrations using the expansion of the action Sα about the
stationary points:

Sα
(
I ′, I ′′, tα

)
+
(
I ′′ − I ′) · Θ′′

= Sβ(ε) +
1
2

∑
ij

Jij(σi − σ∗
i )(σj − σ∗

j ) +
1
2
J⊥ (z − z∗)2 + · · · . (B.7)

Here, we omit the corrections associated with mixed derivatives of type ∂2S/∂Θ∂I
for simplicity. J⊥ is the Jacobian corresponding to the second variation of the action
Sα with respect to the angle variable Θu:

JEQ⊥ =
(
∂2Sα

∂Θ′
u
2 + 2

∂2Sα
∂Θ′

u∂Θ
′′
u

+
∂2Sα

∂Θ′
u
2

)
EQ

=
(
− ∂I ′u
∂Θ′

u

− 2
∂I ′u
∂Θ′′

u

+
∂I ′′u
∂Θ′′

u

)
EQ

.

(B.8)

This quantity can be expressed in terms of the curvatures KEQ and the Gutzwiller
stability factor FEQ

z ,

FEQ
z = −

[(
− ∂I ′u
∂Θ′

u

− 2
∂I ′u
∂Θ′′

u

+
∂I ′′u
∂Θ′′

u

)/ ∂I ′u
∂Θ′′

u

]
EQ

= 4 sin2
[
1
2
Mnv arccos

(
1− 2η−2 sin2 φ

)]
, (B.9)
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as

JEQ⊥ = − FEQ
z

(Ju − J2uϕ/Jϕ)EQ
= − FEQ

z

2πMnv(Ku −K2
uϕ/Kϕ)EQ

. (B.10)

In these equations we have used the simple identical Jacobian transformations(
∂I ′u
∂Θ′′

u

)−1

I′ϕ
=

∂(Θ′′
u, I

′
ϕ)

∂(I ′u, I ′ϕ)
=

∂Θ′′
u

∂I ′u
− ∂Θ′′

u

∂I ′ϕ

∂I ′ϕ
∂I ′u

= Ju − Juϕ
Juϕ
Jϕ

.

The curvature KEQ
u is the quantity Ku defined in (B.13), evaluated at the stationary

point σ1 = σ2 = σ∗ given by Eq. (3.27), and so on.
The integrand of (B.6) does not depend on the angles (Θv, Θϕ), and we ob-

tain simply (2π)2 for the integration over these angle variables. We transform the
integration variables (Iu, Iϕ) into (σ1, σ2) to obtain simple integration limits, and
integrate over (σ1, σ2) using the ISPM. In this way we obtain

δg
(1)
EQ(ε) =

√
π

2�3
Re

∑
β

ei(kLβ−πνβ/2) 1
ωv

∣∣∣∣∂(Iu, Iϕ)∂(σ1, σ2)

∣∣∣∣
√

1
J⊥| det JEQ|

× erf(Z−
⊥ ,Z+

⊥ ;Z−
1 ,Z+

1 ;Z−
2 ,Z+

2 ), (B.11)

where

erf
(
x−, x+; y−, y+; z−, z+

)
=
(

2√
π

)3 ∫ x+

x−
dx

∫ y+

y−
dy

∫ z+

z−
dz e−x

2−y2−z2.

(B.12)

Note that the integration limits for the internal integrals over y and z in
erf (x−, x+; y−, y+; z−, z+) in general depend on the variable of the next integra-
tions, y± = y±(x) and z± = z±(x, y). Here we define curvatures in the variables
(Iu, Iϕ) as

Ju =
∂2Sα
∂I2u

= 2πMnvKu, Jϕ =
∂2Sα
∂I2ϕ

= 2πMnvKϕ,

Juϕ =
∂2Sα
∂Iu∂Iϕ

= 2πMnvKuϕ. (B.13)

Using (B.10) and the relations

det J ≡ J11J22 − J12
2 =

∣∣∣∣∂(Iu, Iϕ)∂(σ1, σ2)

∣∣∣∣
2

(JuJϕ − Juϕ
2), (B.14)

Kϕ =
1

πpa sinφ
, ωv =

πp

ma sinφ
, (B.15)

we finally obtain

δg
(1)
EQ(ε) =

1
ε0

Re
∑
EQ

AEQ exp
(
ikLEQ − i

π

2
νEQ

)
, (B.16)
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AEQ =
1
2

√
sin3 φ

πMnvkRηFz
erf

(Z−
⊥ ,Z+

⊥ ;Z−
1 ,Z+

1 ;Z−
2 ,Z+

2

)
, (B.17)

where LEQ represents the length of the EQPO. The “triple” error function in Eq. (B.17)
can be separated into the product of three standard error functions as

erf
(Z−

⊥ ,Z+
⊥ ;Z−

1 ,Z+
1 ;Z−

2 ,Z+
2

) ≈ erf
(Z−

⊥ ,Z+
⊥
)
erf

(Z−
1 ,Z+

1

)
erf

(Z−
2 ,Z+

2

)
(B.18)

by taking the limits at the stationary points for all deformations, except in a small
region near the spherical shape. In this way, we obtain the simple results (3.30).
The arguments of the error functions are given by (3.19) or (3.20) for Z±

i (i = 1, 2)
and

Z±
⊥ = ±π

2

√
− iJEQ⊥

2�
= ±�(kζ)2

16

√
iFEQ
z

Mnvka sinφσ∗(σ∗ + 1) detKEQ
. (B.19)

The spherical limit is easily obtained by using the spherical action-angle variables
{Θθ, Θr, Θϕ; Iθ, Ir, Iϕ}. In these variables,

AEQ =
1
2

√
sin3 φ

πMnrkRηFz
erf

(Z−
⊥ ,Z+

⊥ ;Z−
θ ,Z+

θ ;Z−
ϕ ,Z+

ϕ

)
, (B.20)

where nr ≡ nv for the equatorial-plane orbits with (nv, nϕ), and the invariant sta-
bility factor Fθ ≡ FEQ

z is given by (B.9):

Z±
⊥ =

√√√√ −iπFEQ
θ

16Mnr�K
EQ
θ

(z± − z∗), Z±
{ θ

ϕ
} =

√
−iπMnrK

EQ

{ θ
ϕ
}/�

(
I±{ θ

ϕ
} − I∗{ θ

ϕ
}

)
.

(B.21)

The quantities KEQ
θ and KEQ

ϕ , given by

KEQ

{ θ
ϕ
} =


 ∂2Ir
∂I2{ θ

ϕ
}



EQ

, (B.22)

are the curvatures of the energy surface ε = H(Iθ, Ir, Iϕ) in the spherical coordinate
system. In that system, the maximum value of Iϕ is equal to the absolute value
of the classical angular momentum Iθ, I±ϕ = ±Iθ, I+θ being the maximum value of
|Iθ|, and I−θ = 0. We note that for the diametric orbits, the stationary points I∗θ
and I∗ϕ are exactly zero and there are also specific integration limits in Eq. (B.20).
In this case, the internal integral over Iϕ within a small region can be evaluated
approximately as 2Iθ, and we obtain for the “triple” error function,

erf
(Z−

⊥ ,Z+
⊥ ;Z−

θ ,Z+
θ ;Z−

ϕ ,Z+
ϕ

) →
√

−4iFz
Mπ2nr�K

EQ
θ

=

√
−4iFzkR

2πM
. (B.23)
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Here, we have used the fact that in the spherical limit, Fz → 0, the integral over Zθ
can be approximated by the upper limit Z+

θ given by Eq. (B.21). We also omitted
the strong oscillating value of

∫
dz2e−z2 at the upper limit, because it vanishes after

any small averaging over kR and equals 1 in this approximation. We also accounted
for the fact that KEQ

θ → 1/(πpR) for the diameters (see Eq. (B.22) and note that
φ = π/2 for the diameters). Finally, the stability factor Fz is canceled, and we
obtain the Balian-Bloch result (3.33) for the contribution of the diametric orbits in
the spherical cavity.3)

For all other EQPO there are the stationary points I∗ϕ = I∗θ �= 0, and Iϕ is
identical to its maximum value Iθ in the spherical limit. This is the reason that
there is no next order (1/

√
kR) corrections to the Balian-Bloch trace formula for the

contribution of the planar orbits with nr ≥ 3. The latter comes from the spherical
limit of the elliptic orbits in the meridian plane (3.16) (see Ref. 9)).

Appendix C
Separatrix

As in the case of the turning points,39), 41)–43) we first expand the exponent phase
in Eq. (3.6) with respect to I ′u:

Sα
(
I ′, I ′′, tα

)− (
I ′′ − I ′) · Θ′′ = c

‖
0 + c

‖
1x+ c

‖
2x

2 + c
‖
3x

3 + · · ·
≡ τ

‖
0 + τ

‖
1 z +

1
3
z3. (C.1)

Here,

x =
1
�

(
I ′u − I ′u

∗)
, (C.2)

c
‖
0 =

1
�

[
S∗
α

(
I ′, I ′′, ε

)− (
I ′ − I ′′)∗ · Θ′′∗] =

1
�
S∗
α

(
Θ′,Θ′′, ε

)
, (C.3)

c
‖
1 =

(
∂Sα
∂I ′u

−Θ′′
u

)∗
= Θ′

u −Θ′′
u → 0, σ1 → 1, (C.4)

c
‖
2 =

�

2

(
∂2Sα

∂I ′u
2

)∗
= 2pζM�K̃α

u → ∞, σ1 → 1, (C.5)

c
‖
3 =

�
3

6

(
∂3Sα

∂I ′u
3

)∗
=

2π3�2M
3(pζ2)2

(
∂K̃α

u

∂Ĩu

)
< 0, σ‖ → 1, (C.6)

where the superscript asterisk indicates the value at I ′u = I ′′u = I∗u. The asymptotic
behavior of the constants c‖i near the separatrix σ1 ≈ 1 is found from

K̃α
u → log [(1 + sin θ)/(1 − sin θ)]

(σ1 − 1) log3(σ1 − 1)
, σ1 → 1, (C.7)

and with θ → θh(η) [see Eq. (2.6)],

∂K̃α
u

∂Ĩu
→ −2 log [(1 + sin θ)/(1 − sin θ)](

(σ1 − 1) log2(σ1 − 1)
)2 , σ1 → 1. (C.8)
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The rightmost part of Eq. (C.1) is obtained using a linear transformation with some
constants α and β:

x = αz + β, α =
(
3c‖3

)−1/3
, β = −c‖2/(3c‖3), (C.9)

τ
‖
0 =

(
c0 − c1c2/(3c3) + 2c32/(27c

2
3)
)‖
, τ

‖
1 = α

[
c1 − c22/(3c3)

]‖
. (C.10)

Near the stationary point for σ1 → 1, we obtain c
‖
1 → 0 and τ

‖
1 → −w‖, with the

positive quantity

w‖ =
(

c22
(3c3)4/3

)‖
→

∣∣∣∣M log [(1 + sin θ)/(1 − sin θ)] (σ1 − 1)
� log(σ1 − 1)

∣∣∣∣
2/3

. (C.11)

Using expansion (C.1) in Eq. (3.6) and evaluating the integral over Θ′′
v exactly (i.e.,

obtaining a factor of 2π for this integral), we obtain

δg
(0)
LD = − 2

2π�2
Re

∑
α

∫
dΘ′′

ϕ

∫
dI ′ϕ

∫
dΘ′′

u

1
|ω∗
v |
e
i
�
τ
‖
0−π

2
να

�

×
√√√√√

w‖

c
‖
2

[
Ai

(
−w‖,Z−

‖ ,Z+
‖
)

+ iGi
(
−w‖,Z−

‖ ,Z+
‖
)]

≈ −2
�

Re
∑
α

∫
dΘ′′

u

1
|ω∗
v |

√√√√√
w‖

c
‖
2

[
Ai

(
−w‖

)
+ iGi

(
−w‖

)]
e
i
�
τ
‖
0−π

2
να

�
,

(C.12)

where

Z−
‖ =

√
w‖, Z+

‖ =

√
c
‖
2√
w‖

I
(cr)
u

�
+
√
w‖. (C.13)

Here, Ai(−w, z1, z2) and Gi(−w, z1, z2) are the incomplete Airy and Gairy functions
defined by {

Ai
Gi

}
(−w, z1, z2) =

1
π

∫ z2

z1

dz
{cos

sin

}(
−wz +

z3

3

)
, (C.14)

Ai(−w) and Gi(−w) are the corresponding standard complete functions, and I
(cr)
u =

Iu(σ
(cr)
1 , σ

(cr)
1 ) is the “creeping” elliptic 2DPO value defined in §2. In the second

equality of (C.12), we have used

Z−
‖ → 0,

Z+
‖ → 4

[
M log [(1 + sin θ)/(1 − sin θ)] pζ

2(σ1 − 1)2 log4(σ1 − 1)

]1/3 [ η√
η2 − 1

E

(√
η2 − 1
η

)
− 1

]

→ ∞, (C.15)
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for any finite deformation η and large kR near the separatrix (σ1 → 1). Using an
analogous expansion of the action τ

‖
0 in (C.12) with respect to the angle Θ′′

u to third
order and a linear transformation like (C.9), we arrive at

δg
(0)
LD(ε) =

b

2ε0π2R�
Re

∑
α

∫
dΘ′′

ϕ

∫
dI ′ϕ

1
kR

(
w‖w⊥)1/4√

|c‖2c⊥2 |
×
[
Ai

(
−w‖

)
+ iGi

(
−w‖

)] [
Ai

(
−w⊥,Z−

⊥ ,Z+
⊥
)

+ iGi
(
−w⊥,Z−

⊥ ,Z+
⊥
)]

× exp
{
i

�

[
S∗
α

(
I ′, I ′′, ε

)− (
I ′ − I ′′)∗ · Θ′′∗]

+
2i
3

[
(w‖)3/2 + (w⊥)3/2

]
− i

π

2
να

}
, (C.16)

where

w⊥ =
(

c22
(3c3)4/3

)⊥
> 0, (C.17)

Z−
⊥ =

√
w⊥, Z+

⊥ =
π

2

∣∣∣3c⊥3 ∣∣∣1/3 +
√
w⊥, (C.18)

c⊥2 =
1
2�

(
J⊥
u,α

)∗
=
(
∂2Sα

∂Θ′
u
2 + 2

∂2Sα
∂Θ′

u∂Θ
′′
u

+
∂2Sα

∂Θ′′
u
2

)∗

LD

= − FLD
xy

2πMKα
u

. (C.19)

Here, FLD
xy is the stability factor for long diameters,

FLD
xy = −4 sinh2

[
M arccosh

(
2η2 − 1

)]
, (C.20)

c⊥3 =
1
6�

[
∂3Sα

∂Θ′
u
3 + 3

∂3Sα

∂Θ′
u
2∂Θ′′

u

+ 3
∂3Sα

∂Θ′
u∂Θ

′′
u
2 +

∂3Sα

∂Θ′′
u
3

]∗

=
1
6�

[
∂J⊥
u,α

∂Θ′
u

+
∂J⊥
u,α

∂Θ′′
u

]∗
< 0 . (C.21)

Note that according to (C.19), the quantity c⊥2 approaches zero near the separatrix
(σ1 → 1) as in the caustic case. This is the reason that we apply the Maslov-Fedoryuk
theory39), 41)–43) for the transformation of the integral over the angle Θ′′

u from (C.12)
to (C.16). The remaining two integrals over the azimuthal variables (I ′ϕ and Θ′′

ϕ) can
be calculated in a manner similar to that explained in the text.

The divergence of the curvature Kϕ, Eq. (B.13), for the long diameters (σ1 → 1,
σ2 → 0) can be easily seen from the following expression, valid for any polygon orbit
with a vertex on the symmetry axis:

Kβ
ϕ =

L0c

ρ20nvM�

[
2η2

1 + η2 tan2 ψ
− 1

]
. (C.22)

Here, L0 denotes the length of the side having a vertex at the pole, ρ0 the cylindrical
coordinate of the other end of this side, and ψ the angle between this side and the
symmetry axis. For the long diameters, L0 → 2bM , ρ0 → 0 and ψ → 0, so that
Kβ
ϕ → ∞.
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Appendix D
Derivation of the Third-Order Term

D.1. Third-order curvatures

For the curvature K(3)
1 , which appears in the third-order terms in the expansion

of the action S/� with respect to σ1, we obtain

K̃
(3)
1 =

π

pζ
K
(3)
1 =

∂3Ĩv
∂σ31

+
nu
nv

∂3Ĩu
∂σ31

, (D.1)

where

∂3Ĩv
∂σ31

= − 1
4z3+

[
∂Bv
∂σ1

+ 6z+
∂z2+
∂σ1

∂2Ĩv
∂σ21

]
,

∂3Ĩu
∂σ31

=
1

2z3+

[
∂Bu
∂σ1

− 3z+
∂z2+
∂σ1

∂2Ĩu
∂σ21

]
, (D.2)

Bv =
[
Π(ϕ, k2, k)− F(ϕ, k)

]
∂̃k −

∂z2+
∂σ1

F(ϕ, k) +
2z2+
∆ϕ

∂ϕ

∂σ1
, (D.3)

Bu =
[
Π(k2, k)− F(k)

]
∂̃k −

∂z2+
∂σ1

F(k) ,

∂̃k =
z2+
k2

∂k2

∂σ1
=

1
k2

∂z2−
∂σ1

− ∂z2+
∂σ1

, (D.4)

with the derivatives

∂Bu
∂σ1

= k

[
∂Π(k2, k)

∂∂k
− ∂F(k)

∂k

]
∂̃2k
2z2+

+
[
Π(k2, k)− F(k)

] [− ∂̃k
z2−

∂z2−
∂σ1

+
1
k2

∂2z2−
∂σ21

− ∂2z2+
∂σ21

]
− k

∂F(k)
∂k

∂̃k
2z2+

∂z2+
∂σ1

− ∂2z2+
∂σ21

F(k) ,

∂2z2±
∂σ21

= ± 2σ2
[(σ1 − 1)2 + 4σ2]

3/2
, (D.5)

∂Bv
∂σ1

= ∂̃k

[
∂Π(ϕ, k2, k)

∂σ1
− ∂F(ϕ, k)

∂σ1
+
(
1 − 1

z2−

∂z2−
∂σ1

)]
− ∂2z2+

∂σ21
F(ϕ, k)

−∂z2−
∂σ1

∂F(ϕ, k)
∂σ1

+
1
∆ϕ

[(
2
∂z2+
∂σ1

− z2+
∆2
ϕ

∂∆2
ϕ

∂σ1

)
∂ϕ

∂σ1
+ 2z2+

∂2ϕ

∂σ21

]
. (D.6)

Here,

∂Π(k2, k)
∂k

=
k2∂̃k
k21z

2
+

[
Π(k2, k) +

1
2k2

(E(k)− F(k))
]
, (D.7)
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∂F(k)
∂k

=
1
k

[
Π(k2, k)− F(k)

]
, (D.8)

∂Π(ϕ, k2, k)
∂σ1

=
1
k21

[
k2∂̃k
z2+

{
Π(ϕ, k2, k) +

1
2k2

(E(ϕ, k)− F(ϕ, k))

−sin(2ϕ)
4∆3

ϕ

(
1 +∆2

ϕ

)}
+∆ϕ

∂ϕ

∂σ1

{
1− k2

4∆4
ϕ

[
4∆2

ϕ cos(2ϕ) + k2 sin2(2ϕ)
]}]

,

(D.9)

∂F(ϕ, k)
∂σ1

=
∂̃k
2z2+

[
Π(ϕ, k2, k)− F(ϕ, k)

]
+

1
∆ϕ

∂ϕ

∂σ1
, (D.10)

∂2ϕ

∂σ21
=

1
sin(2ϕ)

{
1(

z2b − z2−
)3

[(
∂2z2−
∂σ21

(
z2b − z2+

)− ∂2z2+
∂σ21

(
z2b − z2−

))

+ 2
∂z2−
∂σ1

(
∂z2−
∂σ1

(
z2b − z2+

)− ∂z2+
∂σ1

(
z2b − z2−

))]− 2 cos(2ϕ)
(
∂ϕ

∂σ1

)2}
,

(D.11)

∂∆2
ϕ

∂σ1
= −k2

[
∂̃k
z2+

sin2 ϕ+ sin(2ϕ)
∂ϕ

∂σ1

]
. (D.12)

D.2. Stationary phase method with third-order expansions

After the expansion of the action in the Poisson-sum trace formula (3.10) up to
second order with respect to σ2 and up to third order with respect to σ1, we obtain

δg(2)(ε) =
kζ2

4π2Rε0
Re

∑
β

Lβ

MnvR
√
σ∗
2

(
∂Ĩu
∂σ1

)∗
exp

(
ikLβ − i

π

2
νβ

)

×
∫ σ+

2

0
dσ2

∫ x+

x−
dx exp

[
ikζMnvK̃22

(
σ2 − σ∗

2 +
K12

K22
(σ1 − σ∗

1)
)2

+i
(
c1x+ c2x

2 + c3x
3
)]
, (D.13)

where

c1 → 0, c2 = kζMnv
det K̃
K̃22

, c3 =
1
3
kζMnvK̃

(3)
1 , (D.14)

x = σ1 − σ∗
1 , x± = σ±

1 − σ∗
1 . (D.15)

After transformation from σ2 to the new variable Z2, defined by

Z2 =
√

−ikζMnvK̃22

(
σ2 − σ∗

2 +
K12

K22
(σ1 − σ∗

1)
)
, (D.16)

and a linear transformation from x to z through

x = q1z + q2, with q1 = (3c3)−1/3, q2 = − c2
3c3

, (D.17)
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we obtain Eq. (3.15) with the ISPM3 amplitude

A
(2)
3D(ε) =

Lβ

8MnvR
(
kζMnvK̃

(3)
1

)1/3
√

ikζ3

πMnvR2K̃22σ∗
2

(
∂Ĩu
∂σ1

)∗
exp

(
2
3
iτ3/2

)

× erf
(Z−

2 ,Z+
2

)
[Ai (−τ, z−, z+) + iGi (−τ, z−, z+)] . (D.18)

Here, Z±
2 is defined by Eq. (3.20b), and

τ = (3c3)−1/3
(
c22
3c3

− c1

)
, z± =

x± − q2
q1

. (D.19)

In the limit c1 → 0, we obtain

τ =
c22

(3c3)4/3
=

(kζMnv)2/3(det K̃/K̃22)2(
K̃
(3)
1

)4/3 . (D.20)

For finite curvatures far from the bifurcations, the limits of the Airy and Gairy
functions can be extended as z− → 0 and z+ → ∞, yielding the complete Airy
Ai(−τ) and Gairy Gi(−τ ) functions. Then, using the asymptotic forms of these
functions for large τ ∝ (kR)2/3 (large kR),{

Ai
Gi

}
(−τ) ∼ 1√

πτ1/4

{
sin
cos

}(
2
3
τ3/2 +

π

4

)
, (D.21)

and that of the erf-function given in Eq. (D.18), we obtain the SSPM limit, (3.21).
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