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SUMMARY This paper describes a new context clustering
technique for average voice model, which is a set of speaker inde-
pendent speech synthesis units. In the technique, we first train
speaker dependent models using multi-speaker speech database,
and then construct a decision tree common to these speaker de-
pendent models for context clustering. When a node of the de-
cision tree is split, only the context related questions which are
applicable to all speaker dependent models are adopted. As a
result, every node of the decision tree always has training data of
all speakers. After construction of the decision tree, all speaker
dependent models are clustered using the common decision tree
and a speaker independent model, i.e., an average voice model
is obtained by combining speaker dependent models. From the
results of subjective tests, we show that the average voice models
trained using the proposed technique can generate more natural
sounding speech than the conventional average voice models.
key words: decision tree, context clustering, average voice
model, HMM-based speech synthesis, speaker independent model

1. Introduction

Speech synthesis is one of the key component for re-
alizing natural human-computer interaction. For this
purpose, text-to-speech (TTS) synthesis systems are re-
quired to have an ability to generate speech with arbi-
trary speaker’s voice characteristics and various speak-
ing styles. There have been proposed a number of TTS
techniques, and state-of-the-art TTS systems based on
unit selection and concatenation can generate natural
sounding speech. However, it is still a difficult problem
to synthesize speech with various voice characteristics
and speaking styles.

We have proposed an HMM-based TTS system
in which each speech synthesis unit is modeled by
HMM[1], [2]. A distinctive feature of the system is that
speech parameters used in the synthesis stage are gener-
ated directly from HMMs by using a parameter genera-
tion algorithm [3], [4]. Since the HMM-based TTS sys-
tem uses HMMs as the speech units in both modeling
and synthesis, we can easily change voice characteristics
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of synthetic speech by transforming HMM parameters
appropriately. In fact, we have shown in [5]–[7] that
the TTS system can generate synthetic speech which
closely resembles an arbitrarily given speaker’s voice
using a small amount of target speaker’s speech data
by applying speaker adaptation techniques based on
MLLR (Maximum Likelihood Linear Regression) algo-
rithm [8]. In that system, a speaker independent model
trained using multi-speaker speech database is used as
an initial model of speaker adaptation. Since the syn-
thetic speech generated from the speaker independent
model can be considered to have averaged voice char-
acteristics and prosodic features of speakers used for
training, we refer to the speaker independent model as
the average voice model, and the synthetic speech gen-
erated from the average voice model as average voice.

It is thought that quality of the average voice cru-
cially affects quality of synthetic speech generated from
adapted models, and that training data of the average
voice model affects quality of the average voice. Al-
though it is shown empirically that we can synthesize
average voice of good quality from the average voice
model trained using a large amount of speech data,
recording of a large number of sentences is not an easy
task for speakers and the cost for constructing database
will be very expensive. To reduce the cost for con-
structing speech database and the computational cost
for training, it is desirable that the amount of data for
each speaker is as small as possible. It is also desirable
that the individual sentence sets are used for respec-
tive speakers to make database rich in phonetic and
linguistic contexts. However, synthetic speech gener-
ated from the average voice model trained using the
individual sentence sets for respective speakers would
sound unnatural compared to the model trained using
the same sentence set for all speakers, especially when
the amount of training data of each speaker is limited.
If the individual sentence sets are used for respective
speakers, the contexts contained in each speaker’s data
are quite different. As a result, after the decision tree
based context clustering, the nodes of the tree do not al-
ways have training data of all speakers, and some nodes
have data from only one speaker. This will cause degra-
dation of quality of average voice, especially in prosody.

To overcome this problem, in this paper, we pro-
pose a new context clustering technique for the average
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voice model, which will be referred to as shared deci-
sion tree context clustering (STC). In the technique,
we first train speaker dependent models using multi-
speaker speech database, and construct a decision tree
for context clustering common to these speaker depen-
dent models. When a node of the decision tree is split,
only the context related questions which are applica-
ble to all speaker dependent models are adopted. As a
result, every node of the decision tree always has the
data of all speakers. Using the common decision tree,
all speaker dependent models are clustered and an av-
erage voice model is obtained by combining Gaussian
pdfs of speaker dependent models at each leaf node of
the decision tree.

A similar approach to the proposing technique has
been reported for SSS (successive state splitting) in [9],
named SP-SSS (speaker parallel SSS), in which the ini-
tial state of SSS is split in speaker domain before split
in temporal and contextual domains. However, there
are some differences between the proposing technique
and SP-SSS. In the proposing technique, models for all
speakers are always trained separately. Furthermore, it
is aimed to construct speaker independent models for
speech synthesis.

2. Speech Synthesis System Using Average
Voice Model

A block diagram of the HMM-based TTS system [7] is
shown in Fig. 1. The system consists of two stages, the
training stage and the synthesis stage.

In the training stage, spectral parameters and F0
observations are obtained from multi-speaker speech
database, and combined into one observation vector
frame by frame. Speaker independent phoneme HMMs
are trained using the observation vectors. Spectrum
and F0 are modeled by multi-stream HMMs in which
output distributions for spectral and F0 parts are mod-
eled by continuous probability distribution and multi-
space probability distribution (MSD) [10], respectively.
To model variations of spectrum and F0, phonetic and
linguistic contextual factors, such as phoneme identity
factors, stress related factors and locational factors, are
taken into account. Then, a decision tree based con-
text clustering technique [11], [12] is separately applied
to the spectral and F0 parts of the context dependent
phoneme HMMs. Finally, state durations are modeled
by multi-dimensional Gaussian distributions, and the
state clustering technique is applied to the duration
models.

In the synthesis stage, first, an arbitrarily given
text to be synthesized is transformed into a context
dependent phoneme label sequence. According to the
label sequence, a sentence HMM, which represents the
whole text to be synthesized, is constructed by concate-
nating context dependent HMMs. From the sentence
HMM, spectral and F0 parameter sequences are ob-

Fig. 1 A block diagram of an HMM-based speech synthesis
system using the average voice model.

tained using the algorithm for speech parameter gen-
eration from HMMs with dynamic features [3], where
phoneme durations are determined based on state du-
ration distributions [13]. Finally, by using the MLSA
filter [14], speech is synthesized from the generated mel-
cepstral and F0 parameter sequences.

Since the synthetic speech generated from the
speaker independent model can be considered to have
averaged voice characteristics and prosodic features of
the speakers, we refer to the speaker independent model
as the average voice model. Using an appropriate
model adaptation technique, it is shown that arbitrary
speakers’ voice can be generated from average voice
model [5]–[7].

In the average voice model of [6], [7] a single Gaus-
sian density was used. In speech recognition, a mixture
Gaussian density is usually used to model variations
of the parameters caused by variations of speakers in
detail for speaker independent models. On the other
hand, in speech synthesis using the average voice model,
since the average parameters of speakers in the training
data should be obtained for the average voice model, it
is thought that the use of a single Gaussian density is
an appropriate choice. In this paper, therefore, we con-
sider the case where a single Gaussian model is used,
as in [6], [7]. However, the extension to the mixture
Gaussian density can be done easily [4], [15].
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Fig. 2 A block diagram of training stage of the average voice
model.

3. Shared Decision Tree Context Clustering

3.1 Training of Average Voice Model

A block diagram of the training stage of average voice
model using the proposing technique is shown in Fig. 2.
First, context dependent models without context clus-
tering are separately trained for respective speakers to
derive a decision tree for context clustering common to
these speaker dependent models. Then, the decision
tree, which we refer to as a shared decision tree, is con-
structed using an algorithm described in Sect. 3.3 from
the speaker dependent models. Finally, all speaker de-
pendent models are clustered using the shared decision
tree. A Gaussian pdf of average voice model is obtained
by combining all speakers’ Gaussian pdfs at every node
of the tree. After the reestimation of parameters of the
average voice model using training data of all speak-
ers, state duration distributions is obtained for each
speaker. Finally, state duration distributions of the av-
erage voice model is obtained by applying the same
procedure.

3.2 Description Length of Average Voice Model

In the following, we will describe the case where the
MDL (minimum description length) criterion [12] is
used for selecting nodes to be split. However, it is also
possible to use other criteria such as the ML (maximum
likelihood) criterion [11].

Here a model represents a set of leaf nodes in a
decision tree. Let S0 be the root node of a decision
tree and U(S1, S2, . . . , SM ) be a model defined for the
leaf node set {S1, S2, . . . , SM} (see Fig. 3). Different

Fig. 3 Context clustering for average voice model using a de-
cision tree common to the speaker dependent models.

node sets correspond to different models. A Gaussian
pdf Nim of speaker i is assigned to each node Sm, and
the set of Gaussian pdfs of each speaker i for the node
set {S1, S2, · · · , SM} is defined as λi(S1, S2, · · · , SM ) =
{Ni1, Ni2, . . . ,NiM}.

The log-likelihood of λi for the training data is
given by

L(λi) = −1
2

M∑
m=1

Γim (K +K log(2π) + log |Σim|) , (1)

where K is the dimensionality of the data vector, Γim

and Σim are the state occupancy count and the covari-
ance matrix of Gaussian pdf of speaker i at node Sm,
respectively. Using (1), the description length of λi is
given by

D(λi) = −L(λi) + cKM logWi + C

=
1
2

M∑
m=1

Γim (K +K log(2π) + log |Σim|)

+ cKM logWi + C, (2)

where Wi =
∑M

m=1 Γim, and c is the weighting factor
for adjusting model size, and C is the code length re-
quired for choosing the model and is assumed to be
constant here.

Using (2), we define the description length for
model U as follows:

D̂(U) =
I∑

i=1

D(λi)

=
1
2

I∑
i=1

M∑
m=1

Γim (K +K log(2π) + log |Σim|)

+ c

I∑
i=1

KM logWi + IC, (3)

where I is the total number of speakers.
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3.3 Construction of Shared Decision Tree

Suppose that node Sm of model U is split into two
nodes Smqy and Smqn by applying a question q. Let U ′

be the model obtained by splitting Sm of model U by
the question q. The description length of model U ′ is
calculated as follows:

D̂(U ′) =
1
2

I∑
i=1

M∑

m′ �=m
m′=1

Γim′ (K +K log(2π) + log |Σim′ |)

+
1
2

I∑
i=1

Γimqy (K +K log(2π) + log |Σimqy|)

+
1
2

I∑
i=1

Γimqn (K +K log(2π) + log |Σimqn|)

+ c
I∑

i=1

K(M + 1) logWi + IC, (4)

where the number of nodes of U ′ is M+1, Γimqy, Γimqn

and Σimqy, Σimqn are the state occupancy counts and
the covariance matrices of Gaussian pdfs of speaker i
at nodes Smqy and Smqn, respectively.

The difference between the description lengths af-
ter and before the splitting is given by the following
equation:

δm(q) = D̂(U ′)− D̂(U)

=
1
2

I∑
i=1

(Γimqy log |Σimqy|+ Γimqn log |Σimqn|

− Γim log |Σim|) + c

I∑
i=1

K logWi. (5)

The procedure of construction of the shared deci-
sion tree is summarized as follows:

1. Define a set composed of root node S0 as model U ,
i.e., U = {S0}.

2. Find the node Sm′ in model U and the question q′

which minimizes δm′(q′).
3. Terminate if δm′(q′) > 0.
4. Split the node Sm′ by the question q′, and replace

U by the resultant node set.
5. Go to step 2.

Note that only the questions which are applicable to
all speaker dependent models are adopted in step 2.
The last term on the right-hand side of (5) corresponds
to the node splitting threshold for the increase in log-
likelihood.

After the construction of the shared decision tree,
we obtain Gaussian pdfs of the average voice model by
combining Gaussian pdfs of speaker dependent models.
The mean vector µm and the covariance matrix Σm of

the Gaussian pdf at node Sm are calculated as follows:

µm =
∑I

i=1 Γimµim∑I
i=1 Γim

(6)

Σm =
∑I

i=1 Γim

(
Σim + µimµ�

im

)
∑I

i=1 Γim

− µmµ�
m (7)

where � denotes matrix transpose, and µim is the mean
vector of the Gaussian pdf of speaker i at node Sm.

4. Experiments

4.1 Experimental Conditions

We used phonetically balanced sentences from ATR
Japanese speech database for training HMMs. Based
on phoneme labels and linguistic information included
in the database, we made context dependent phoneme
labels. We used 42 phonemes including silence and
pause.

Speech signals were sampled at a rate of 16 kHz
and windowed by a 25ms Blackman window with a
5ms shift. Then mel-cepstral coefficients were obtained
by mel-cepstral analysis [14], [16]. F0 values were ex-
tracted using ESPS get F0 program [17]. The feature
vectors consisted of 25 mel-cepstral coefficients includ-
ing the zeroth coefficient, logarithm of fundamental fre-
quency, and their delta and delta-delta coefficients.

We used 5-state left-to-right models. The average
voice models were trained using from 50 to 300 sen-
tences of each speaker’s speech data. Speakers were 3
females (FKN, FKS, FYM) and 3 males (MHO, MHT,
MYI). Tables 1 and 2 show the number of sentences
per speaker and corresponding sentence sets used for
training. The sentence sets A–I consist of 50 sentences,

Table 1 Sentences per speaker and sentence sets used for train-
ing for the case of the same sentence sets.

Sentences Female Male
per Speaker FKN FKS FYM MHO MHT MYI

50 A A A A A A
100 A, B A, B A, B A, B A, B A, B
150 A-C A-C A-C A-C A-C A-C
200 A-D A-D A-D A-D A-D A-D
250 A-E A-E A-E A-E A-E A-E
300 A-F A-F A-F A-F A-F A-F
450 A-I A-I A-I A-I A-I A-I

Table 2 Sentences per speaker and sentence sets used for train-
ing for the case of the individual sentence sets.

Sentences Female Male
per Speaker FKN FKS FYM MHO MHT MYI

50 A B C D E F
100 A, B B, C C, D D, E E, F F, G

150 A-C B-D C-E D-F E-G F-H
200 A-D B-E C-F D-G E-H F-I
250 A-E B-F C-G D-H E-I A, F-I
300 A-F B-G C-H D-I A, E-I A, B, F-I
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respectively. Table 1 shows the case in which the same
sentence sets were used for all speakers, and Table 2
shows the case in which the individual sentence sets
were used for respective speakers. A model trained us-
ing 450 sentences per speaker is used as a reference
model of the subjective evaluations in Sect. 4.4. The
following contextual factors are taken into account:

• the number of morae in sentence
• position of breath group in sentence
• the number of morae in {preceding, current, suc-
ceeding} breath group

• position of current accentual phrase in current
breath group

• the number of morae and accent type in {pre-
ceding, current, succeeding} accentual phrase

• {preceding, current, succeeding} part-of-speech
• position of current mora in current accentual
phrase

• difference between position of current mora and
accent type

• {preceding, current, succeeding} phoneme

It is noted that a unit of position is mora.
Average voice models are trained using the con-

ventional technique (described in Sect. 2) [6], [7] and the
proposed technique (described in Sect. 3). In the pro-
posed technique, the total number of parameters of
all speaker dependent models is considered, while the
number of parameters of only one speaker independent
model is considered in the conventional technique. This
causes increase of the last term on the right-hand side
of (5), and results in a higher node splitting threshold
for the increase in log-likelihood than the conventional
technique. Consequently, if the weighting factor c of
the description length of the proposed technique is set
to unity, as in the conventional technique, the num-
ber of the leaf nodes of the proposed decision tree be-
comes considerably small. The considerable decrease of
the leaf nodes of the decision tree makes the synthetic
speech unnatural. Therefore, we adjust the weighting
factor c to increase the number of leaf nodes of the pro-
posed decision tree. From the results of preliminary
experiments, we set the weighting factor c of the de-
scription length to 1 for the conventional models and
0.4 for the proposed models, respectively.

4.2 Results of Context Clustering

Tables 3 and 4 show the number of leaf nodes of the
decision trees constructed using the conventional and
proposed techniques. Table 3 shows the result for the
case of the same sentence sets, and Table 4 shows the
results for the case of the individual sentence sets.

Table 5 shows the number of leaf nodes which did
not have training data of all speakers and its percentage
when the average voice models were trained using the
individual 50-sentence sets of each speaker. In Table 5,

Table 3 The number of leaf nodes of decision trees for the case
of the same sentence sets.

Sentences Conventional Proposed
per Speaker Spec. F0 Dur. Spec. F0 Dur.

50 405 690 584 608 907 811
100 622 1126 934 998 1597 1372
150 799 1418 1287 1339 1605 1825
200 1004 1794 1660 1599 2578 2230
250 1163 2060 1923 1895 2977 2754
300 1310 2270 2271 2138 3433 3098
450 1697 2887 2892

Table 4 The number of leaf nodes of decision trees for the case
of the individual sentence sets.

Sentences Conventional Proposed
per Speaker Spec. F0 Dur. Spec. F0 Dur.

50 419 1011 911 548 818 814
100 670 1674 1416 913 1416 1497
150 834 2026 1820 1252 2009 2073
200 1015 2261 1974 1504 2438 2502
250 1158 2419 2293 1779 2908 2931
300 1284 2472 2369 2002 3257 3203

Table 5 The number of leaf nodes which did not have training
data of all speakers. (A) shows the number of leaf nodes lacking
one or more speakers’ data and its percentage. (B) shows the
number of leaf nodes which had only one speaker’s data and its
percentage.

Conventional Proposed
(A) (B) (A) (B)

Spectrum 37 ( 8%) 14 ( 3%) 0 (0%) 0 (0%)
F0 505 (50%) 197 (19%) 0 (0%) 0 (0%)

(A) shows the number of leaf nodes lacking one or more
speakers’ data and its percentage, and (B) shows the
number of leaf nodes which had only one speaker’s data
and its percentage. From Table 5, it can be seen that
50% of leaf nodes of the conventional decision tree for
F0 lacked one or more speakers’ data and 19% of leaf
nodes had only one speaker’s data. On the other hand,
theoretically, every leaf node of the proposed decision
tree has the training data of all speakers. Therefore,
there is no node lacking one or more speakers’ data.

Figures 4 and 5 show examples of generated F0
contours for a Japanese sentence /he-ya-i-ppa-i-ni-ta-
ba-ko-no-no-mu-ga-ta-chi-ko-me-pau-yu-ru-ya-ka-ni-u-
go-i-te-i-ru/ (meaning “Cigarette smoke fills the whole
room, and is moving gently,” in English) which is not
included in the training sentences. Figure 4 shows the
result for the case of the same sentence sets, and Fig. 5
shows the results for the case of the individual sentence
sets. In Figs. 4 and 5, (a) and (b) show the F0 contours
generated from the average voice models trained using
50 sentences and 300 sentences per speaker. Dotted line
and solid line show the F0 contours generated from the
average voice models clustered using conventional and
proposed techniques, respectively.

From Fig. 4, it can be seen that the conventional
and proposed techniques provide similar results when
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(a) 50 sentences per speaker.

(b) 300 sentences per speaker.

Fig. 4 Comparison of F0 contours generated from average
voice models constructed using conventional and proposed tech-
niques for the case of the same sentence sets.

(a) 50 sentences per speaker.

(b) 300 sentences per speaker.

Fig. 5 Comparison of F0 contours generated from average
voice models constructed using conventional and proposed tech-
niques for the case of the individual sentence sets.

the same sentence sets were used. This is because the
intersection of context sets contained in the respective
speakers’ training data are large when the sentence sets
were the same†. On the other hand, from Fig. 5 (a), we
can see that the F0 contours generated from the con-
ventional and proposed models are quite different at
the beginning of the sentence; the values of F0 gener-
ated from the conventional model are unnaturally high,
whereas there is no obviously unnatural part in the
F0 contour generated from the proposed model. This
is due to the fact that leaf nodes of the conventional
model corresponding to the beginning of the sentence
had only one female speaker’s training data. However,
from Fig. 5 (b), we can see that there is no significant
difference between the F0 contours generated from the
conventional and proposed models. This is due to the
fact that the size of the intersection of sentence sets

(a) The same sentence sets.

(b) The individual sentence sets.

Fig. 6 Result of the paired comparison test.

increases as the number of sentences for each speaker
increases. For example, when the number of sentences
for each speaker is 300, the sentence set F is included
by all speakers’ sentence sets. As a result, the number
of leaf nodes biased to a speaker or a gender decreases
in the conventional model.

4.3 Subjective Evaluations

We conducted paired comparison tests for synthetic
speech generated from the average voice models trained
using the conventional and proposed techniques. Sub-
jects were eleven males. For each subject, eight test
sentences were chosen at random from the 53 test sen-
tences which were not contained in the training data.
Subjects were presented a pair of average voices synthe-
sized from average voice models trained using conven-
tional and proposed techniques in random order, and
asked which synthetic speech sounded more natural.

Figure 6 shows the results of the paired comparison
test. In Fig. 6, (a) shows the results for the case of the
same sentence sets, and (b) shows the results for the
case of the individual sentence sets. The horizontal axes
indicate the preference score, and the bars indicate the

†The context sets of respective speakers’ data do not al-
ways the same even if the sentence sets are the same, since
some contextual factors, such as position of pause and ac-
centual type, are not determined by text and vary depend-
ing on speakers.
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results for the models trained using 50, 100, 150, 200,
250 and 300 sentences per speaker, respectively.

From these figures, it can be seen that the average
voice generated from the proposed models sound more
natural than the average voice from conventional mod-
els regardless of the number of training sentences and
sentence sets. It can also be seen that differences be-
tween the scores of proposed and conventional models
are greater in the case of the individual sentence sets
for respective speakers than the case of the same sen-
tence sets. Moreover, the difference becomes greater
as the number of training sentences decreases. Espe-
cially, when individual sentence set for respective train-
ing speakers were used and the number of sentences for
each speaker is less than 150, the scores of the proposed
technique attained more than 80%.

This can be due to the following reason. When the
sentence sets for respective training speakers are differ-
ent, context sets of respective speakers’ data become
quite different, and the intersection of context sets be-
comes smaller as the number of sentences decreases.
Even if the same sentence set is used for all speakers,
the context sets of respective speakers’ data are not
usually identical. Using the conventional technique, as
the context sets of respective speakers’ data becomes
more different, the number of leaf nodes lacking one or
more speakers’ data increases, and quality of average
voice generated from conventional models tends to de-
grade. On the other hand, since the proposed technique
is robust to difference of context sets between training
speakers’ data, quality of average voice generated from
proposed models does not degrade seriously.

4.4 Comparison to the Model Trained Using a Large
Amount of Speech Data

We conducted a comparison category rating test to
evaluate the naturalness of the average voice generated
from the model trained using the proposed technique.
As a reference model, we used a conventional model
trained using 450 sentences (sentence set A–I) per a
speaker. A subject was required to judge quality of test
speech on a seven point scale (3: much better, 2: bet-
ter, 1: slightly better, 0: almost the same, −1: slightly
worse, −2: worse, −3: much worse) compared to refer-
ence speech on naturalness and intelligibility. Subjects
were seven males. For each subject, four test sentences
were chosen at random from the 53 test sentences which
were not contained in training data.

Figure 7 shows the result of the evaluation of the
naturalness. In Fig. 7, (a) shows the results for the case
of the same sentence sets, and (b) shows the results for
the case of the individual sentence sets. The vertical
axes indicate the average score and the horizontal axes
indicate the number of sentences.

From this figure, it is seen that naturalness of the
average voice of the proposed technique is higher than

(a) The same sentence sets.

(b) The individual sentence sets.

Fig. 7 Result of evaluation of naturalness.

the conventional technique. Comparing Figs. 7 (a) and
(b), when the number of sentences is limited, scores for
the conventional models using the individual sentence
sets are lower than the conventional models using the
same sentence sets, whereas scores for proposed mod-
els using the individual sentence sets are higher than
proposed models using same sentence sets. Moreover,
using proposed technique and the individual sentence
sets, there is only a little degradation on naturalness
of the average voice even when training data is lim-
ited. In fact, the average voice which was trained using
only 50 sentences per speaker is almost equivalent on
naturalness to the average voice trained using 450 sen-
tences by the conventional technique. This is due to
the facts that difference between context sets does not
cause degradation of naturalness of average voice for
proposed models, and that when the size of database
is almost the same, the average voice model trained
using “context-rich” database can generate more natu-
ral sounding speech than model trained using “context-
poor” database.

4.5 Evaluations of the Model with F0 Normalization

To show effectiveness of the proposed technique, we
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Table 6 Result of the evaluation of average voice model
trained using speech data with F0 normalization. Score shows
the average number of sentences which are judged to be clearly
unnatural.

Clustering Method Conventional Proposed
F0 Normalization No Yes No Yes

Score 21.0 14.2 7.0 1.3

compared it with an F0 normalization technique. F0
normalization was achieved by shifting F0 contours in
logarithmic domain so that the mean value of F0 of
each speaker is equal to mean value of F0 of all train-
ing speakers. Then average voice models were trained
using individual 50-sentence sets. Subjects were five
males and required to judge whether or not test speech
was clearly unnatural. The test sentences were 53 sen-
tences which were not contained in the training data.

Table 6 shows the result of the evaluation. In the
table, each score shows the average number of sentences
which are judged to be clearly unnatural. It can be
seen that the average voices using the training data
with F0 normalization sound more natural than those
without F0 normalization. It is due to the fact that the
influence of leaf nodes biased to a speaker or a gender is
reduced in the decision tree of F0. It can also be seen
that the average voices using the proposed technique
sound more natural than the conventional technique
with the F0 normalization. It has been observed from
the informal listening tests that the proposed technique
reduces the influence of leaf nodes biased to a speaker
or a gender in the decision tree of spectrum and state
duration, as well as F0.

5. Conclusion

In this paper, we have proposed a new context clus-
tering technique, named shared decision tree context
clustering, for an HMM-based speech synthesis system.
An advantage of the technique is that every node of
the decision tree always has the data of all speakers.
In other words, there is no node lacking one or more
speakers’ data. We have shown that the average voice
models constructed using the proposed technique can
synthesize more natural sounding speech than the con-
ventional models.

Future work will focus on evaluation of synthetic
speech generated using models adapted from average
voice models based on the proposed technique. Train-
ing using the proposed technique and SAT (Speaker
Adaptive Training) [18] at the same time is also our fu-
ture work.
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