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Temperature dependence of gate—leakage current in AlGaN  /GaN
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We report on the studies of the temperature dependence of gate—leakage current in AlIGaN/GaN
high-electron-mobility transistof$-HEMTS) for the temperature range 20—400 °C. The results show
that the temperature dependence of gate—leakage current for AlIGaN/GaN HEMTs at subthreshold
regime (Vos= — 6.5 V) have both negative and positive trends. It has been observed that the leakage
current decreases with the temperature up to 80 °C. Above 80 °C, the leakage current increases with
the temperature. The negative temperature dependence of leakage current with the activation energy
+0.61 eV is due to the impact ionization. The positive temperature dependence of leakage current
with the activation energy-0.20 eV is due to the surface related traps, and the activation energy
—0.99 eV is due to the temperature assisted tunneling mechanism. The drain voltage at a fixed
drain—leakage current reveals the occurrence of both pogiti@28 V/K) and negativg —0.53

V/K) temperature coefficients. @003 American Institute of Physics.

[DOI: 10.1063/1.1571655

Recently researchers have demonstrated very impressiEMTs on sapphire measured from high-voltage drain-
state of the art AlGaN/GaN microwave power high-electron-biased characteristics at subthreshold regim¥cg(
mobility transistordHEMTSs) as high as 11.2 W/mrRef. 1) =—6.5V) for the temperature range of 20-400°C. The
and power added efficiencies ranging from 25% to 40%breakdown mechanisms of AlIGaN/GaN HEMTs are also re-
Many authors have tried to find out the mechanism of breakported.
down voltage V) of GaN-based devices. Researchers have The AlGaN/GaN HEMT structures were grown on
observed positive® or negativ® temperature coefficients (0001)-oriented sapphire substrates using atmospheric pres-
of Vg for GaN-based devices. Dyakonoeaal® observed  sure metalorganic chemical vapor depositiblippon Sanso,
the impact ionization oV in AlGaN/GaN HEMTs with a  SR-2000. The device structure consisté @ 3 nmundoped
positive temperature coefficient for the temperature range oAlGaN barrier layer, a 15 nm silicon-doped AlGaN supply
17-43°C. Danget al* have also observed a positive tem- Jayer (n=4x 10 cm™3), a 7 nm undoped AlGaN spacer
perature coefficient o¥/g in AIGaN/GaN HEMTs for the |ayer, and a 3000 nm insulating GafNGaN) layer on a

temperature range of 100 to 100 °C. However, Taat al®  puffer layer[GaN (30 nm]. The Al content of AIGaN layers
observed a negative temperature coefficienVgfand posi-

tive temperature dependence of leakage current in AlGaN/
GaN HEMTs for the temperature range of 20—200 °C. Until
now, the exact mechanism wf; in GaN devices is not very
clear. The observation of drain— and gate—leakage currents at
different temperature will help in understanding the break- 10
down mechanism. Many authors have observed the drain—
and gate—leakage current of AlGaN/GaN HEMTs at sub- __
threshold regime increases with the increase of temperature. E
The increase of drain— and gate—leakage currents with the E

O

temperature is a clear disadvantage of devices operating at
elevated temperaturé<.We are only aware of two reports

. . " -4
which discuss the decrease of drain— and gate—leakage cur- 10 .
rents with the increase of temperatdfeHigh-temperature A o S 0000000000 50°C 1
(up to 500 °Q, low-voltage(0—20 V), drain-biased dc char- *eete iy ® o ]
acteristics of AlGaN/GaN HEMTs on both sapphire and Aghad A ‘_“*‘,‘-x"*‘*‘ 70¢ ]
semi-insulating-SiC substrates have already been reported . | & f \ A {
elsewheré? In this letter, we report the temperature depen- 40 42 44 46 48 50 52
dence of gate—leakage currentg(e) Of AlGaN/GaN

Vps (V)
dElectronic mail: aru1001@yahoo.com FIG. 1. | ;—Vpg characteristics of AIGaN/GaN HEMTSs for the gate voltage
YAuthor to whom correspondence should be addressed; electronic mai¥gs=—6.5V at different temperature®0, 40, 50, and 70 °C g values
egawa@elcom.nitech.ac.jp are negative.
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FIG. 3. Drain— and gate—leakage current of AIGaN/GaN HEMTs\gg

FIG. 2. 1 g—Vpg characteristics of AIGaN/GaN HEMTSs for the gate voltage :50\/' andeGS: —65V (szbthres_hold regimeInset figure activation en-
Ves= — 6.5 V at different temperaturé&20, 150, 200, 300, and 4007Qs  ©'9Y PlOt OflgLeax Measured aVes=—6.5V.
values are negative.

| gLeadmeasured at subthreshold regimégg=—6.5V), is

was maintained as 26%. The AlGaN/GaN heterostructureshown in the inset of Fig. 3. Up to the temperature of 80 °C,
growth, electrical properties, and device fabrication stepshe leakage current decreases with the activation energy of
have already been reported elsewhéréhe device dimen- +0.61 eV. This is due to the occurrence of deep acceptor
sions used for this study are as follows: source—drain disiitiated impact ionizatiod? Trivedi et al*® theoretically
tance (s =8.0 um; gate width V) =15 um; gate length  predicted the avalanche breakdown mechanism on wide
(Lg)=2 um, and source—gate distandes) =3.0um. The  band-gap semiconductors namely SiC and GaN. Mfgax
device dc characteristics were performed at different temincrease rate is considerably small with the activation energy
peratures in the range between 20 and 400 °C in, ambi-  of —0.20 eV, at the temperature between 90 and 1552
ent using Agilent 4156¢c semiconductor parameter analyzeFig. 3). A similar activation energysee Table )l was ob-
All the dc measurements were carried out in the dark. Tcserved for the temperature range of 20—200 °C by &tz 8
avoid the destruction of the device, the gate voltAgg;  The small increase df| ¢4« IS responsible for surface related
=—6.5V and drain voltag®/ps=50 V were chosen as the hopping conductiofi.Above 150 °C, the leakage current in-
optimal testing regime for the observation of leakage currencreases exponentially with an activation energy-@£99 eV.
dependence in the temperature range of 20—-40@%¥€n at It is clear that the increase of, .« iS associated with the
an elevated temperatyrelThe maximum drain current den- temperature assisted tunneling mecharism.
sity of the fabricated devices was 320 mA/mm and the maxi-  In order to estimate the temperature dependence of the
mum transconductance was 118 mS/mm. The roomVg, we used the drain voltagd/f) at a fixedl o ac.> The
temperature threshold voltage of this device-i4.67 V.  temperature dependence of thig for a fixed | o Of 6
Three-terminal breakdown voltages of the HEMTs in thex 10 3 wA/mm is shown in Fig. 4. Temperature coefficients
OFF state were close to 120 V. were calculated and tabulated in Table I. Up to the tempera-

Figure 1 shows high-voltage drain-biaseg-Vpg char-  ture of 80 °C, a positive temperature coefficiend.28 V/K
acteristics of AlIGaN/GaN HEMTs measured at subthreshold
regime(at Vgs= — 6.5 V) for different temperatures 20, 40, 1ag|E |. The temperature coefficient of breakdown values for different
50, and 70°C. The observation of a negative temperatur@evices from previous reports. The values with an asterisk denote values
dependence of theg qa IN AlIGaN/GaN HEMTs is due to  obtained in this work.
the occurrence of impact ionization phenomémaFigure 2
shows high-voltage drain-biasdg—Vpg characteristics of

Temperature coefficierv/K)

HEMTs measured at subthreshold regim@t Vgg Device Positive Negative
=—6.5V) for different temperatures 120, 150, 200, 300, gan and AlGaN diodes ~0.02% ~0.20° 0.0045  0.34%6.0°
and 400 °C. Above 80 °C, thig; ¢4 CUrrent started increas-  AlGaN/GaN HEMTs ~0.3370.05¢ 0.28  0.11" ~0.16! 0.53
ing with the increase in temperatures. The positive temperaflGaAs/inGaAs HEMTs ~0.033
ture dependence of leakage currents are due to the tempera- NGaAsP APDs ~0.042 ~0.02
ture assisted tunneling phenomé&n@A similar temperature InP APDs ~0.02¢
dependence dfy—Vps characteristicgsimilar to Figs. 1 and  2See Ref. 2. 9See Ref. 4.

2) has also been observédot shown here The negative ’C’See Ref. 5. :‘See Ref. 8.

and positive temperature dependence of drain— and gatedgiz ';g' %4' 1222 23' ?'7

leakage currents measuredvgs=50 V and at subthreshold egge Ret. 6. kSee Ref. 15.

regime is shown in Fig. 3. An activation energy plot of the ‘See Ref. 3.
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T J T T served in AlGaN/GaN HEMTs on sapphire. Up to the tem-
50} . perature 80°C, the leakage current decreases with an
o0 activation energy of-0.61 eV. This decrease of leakage cur-
+0.28 V/IK © (n] ) - . AT
[o] . rent is due to the deep acceptor initiated impact ionization.
40 o Q - Above 80 °C, the leakage current increases with activation
é’ . energies of—0.20 and—0.99 eV. This increase in leakage
b\ -0.53 V/IK current in AlIGaN/GaN HEMTSs is due to the surface-related
A% traps and temperature assisted tunneling mechanism. The
A positive(+0.28 V/K) and negativé—0.53 V/K) temperature
Q coefficients of drain voltage have been realized at a fixed
D drain—leakage current (610 % wA/mm) of AlGaN/GaN
o o} HEMTs.
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FIG. 4. Drain voltage Yp) of AlIGaN/GaN HEMTs at subthreshold regime
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