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The excitation fluence and magnetic field dependence of terafiéiiz radiation power from InAs

is investigated. At low excitation fluence, an enhancement of the THz-radiation power is observed
independent of the magnetic-field direction. As the excitation fluence is increased, a crossover of the
terahertz radiation mechanism is observed. At excitation fluence above this crossover, the radiation
power is either enhanced or reduced depending on the magnetic-field direction. These results are
explained by considering the different THz-radiation mechanisms from the InAs surface with or
without photoexcited carrier screening. @03 American Institute of Physics.
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Since the frequency region of terahe(z) radiation  over a wide range. It is found that the magnetic-field depen-
is between the well-developed microwave with gigahertz fredence of THz-radiation power exhibits completely different
guency and laser with PHz frequency, practical scheme tbehavior depending on the excitation fluence. For low exci-
generate intense THz radiation has not been established unt#tion fluence, the THz-radiation power increases regardless
recently. Up to now, many frontier works are still consideredof the magnetic field direction. In contrast, for high excita-
to be part of this region. Utilizing ultrafast optical pulses, tion fluence, the THz-radiation power increases or decreases
various THz-radiation emitters including photoconductivedepending on the magnetic field direction. These results can
switches! semiconductor surface,and nonlinear optical be explained by taking into account the different mechanisms
procesd have been reported. Due to the remarkable progressf THz-radiation from InAs.
of these devices, many applications, such as sensing/imaging The experimental setup for the THz-radiation emitter is
and time-resolved spectroscopy, were successfully demorshown in Fig. 1. A Ti:sapphire regenerative amplifier laser
strated in the far-infrared regid?. To facilitate these appli- system, which delivered 100 fs optical pulses at a center
cations, a compact and coherent light source is strongly rewavelength of 800 nm, is used as an excitation source. The
quired. In view of these, semiconductor surfaces havdaser provided 1 W average power with a repetition rate of 5
attracted a great deal of attention. After Zhanal.reported  kHz. A 75° angle of incidence, which is near the Brewster
the enhancement of THz-radiation power from GaAs undemngle, was selected and the laser spot area on the sample
an external magnetic fieflvarious semiconductors have surface was approximately 2.4 &P An undoped, slightly
been used as THz-radiation emittérs’ Recently, InAs irra-  n-type InAs bulk crystal with(100) surface and carrier den-
diated by near-infrared optical pulses is recognized as a visity (N) of 5x 10" cm™2 was used as the sample. By using
able emitter for real-world applicatiot$** This is because an electromagnet, the magnetic field was applied parallel to
of its narrow band gap and smaller effective mass than thahe sample surface with maximum field strength of about 1.7
of GaAs. The origin of THz radiation from the semiconduc- T. THz-radiation power was detected by a liquid-helium-
tor surface is generally categorized into two mechanisms;ooled Ge bolometelQGEB/2F:QMC Instrument Ltgl. and
namely, acceleration of photoexcited carriers by the surface
depletion-field and current-surge induced by the different dif- : BoloiTiter
fusion velocities between photoexcited electrons and holes. -Michelson-Interferometer
However, the mechanism of THz radiation from InAs has not o

THz-radiation

been clarified completef?~*8 This is partly due to the lack

of experimental results providing clear insights to explore it. Tisapphire regeneralive “ 75deg Magnetic field
In this letter, we report the dependence on optical exci- [ampliﬁer laser system ] ® UP

tation fluence of THz-radiation power from InAs using a  800-nm,100-fs, 1-W, 5-KHz InAs (100) & DOWN

Ti:sapphire regenerative amplifier laser system. Such a sys-

tem enables us to investigate the effect of excitation fluenc€iG. 1. Experimental setup for the THz radiation in a magnetic field. A
Ti:sapphire regenerative amplifier laser system is used as an excitation
source. The incident angle of 75° was selected, which is near the Brewster
dAuthor to whom correspondence should be addressed; electronic maiéngle. The sample used was an undoped, sligitlype InAs bulk crystal

htakahas@ims.ac.jp with (100 surface. THz-radiation power was detected by a liquid-helium-
YAlso at: Department of Photo Science, The Graduate University for Ad-cooled Ge bolometefQGEB/2F:QMC Instruments Lid and the THz-

vanced Studies, Shonan Village, Hayama 240-0193, Japan. radiation spectrum was obtained by a Michelson interferometer.
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FIG. 2. (a) The effect of excitation fluence on the magnetic-field induced tion. However, increasing the excitation fluence draStica"y
enhancement of THz-radiation power. The dotted arrow points to the excichanges this situation. At excitation fluence of around
tation fluence of 0.2:J/cn?, which corresponds to a photoexcited carrier (.2 MJ/Cm’—, the deviation from the quadratic magnetic-field
density of 5.8¢10°® cm °. (b) Magnetic-field dependence of THz-radiation yenendence is clearly observed, and the enhancement factors
power from an excitation fluence of 0.06—Q9/cnt. .. . . .

for both magnetic-field directions are dramatically reduced.

With increasing excitation fluence over Qud/cn?, the
the THz-radiation spectra were obtained by a Michelson in‘THz-radiation power increases or decreases depending on
terferometer. the magnetic-field direction. The magnetic-field dependence

Figure 2a) presents the effect of excitation fluence onof THz-radiation power at excitation fluence over g.%/cn?

the magnetic-field induced enhancement of THz-radiatioroverlapped that of 0.@J/cn?. For the up direction, THz-
power. All results consistently shows that THz-radiation av-radiation power increases with magnetic field at much
erage power increases with excitation fluence and exhibitsmaller enhancement factor than that of the low excitation
saturation at higher excitation fluence. Such saturation can fuence. Furthermore, for the down direction, THz-radiation
attributed to the large amount of electron-hole pairs genermonotonically decreases with magnetic field up to about 1.6
ated via optical absorptiof!. The generation of electron-hole T. The radiation spectra were obtained using a Michelson
pairs increases the carrier—carrier scattering rate. This causeserferometer to further investigate these phenomena. Figure
the THz radiation to be less coherent leading to a less effi3 presents the THz-radiation spectra at excitation fluences
cient THz-radiation emission. A crossover of the THz-0.1 and 0.QuJ/cnf. With an excitation fluence of
radiation mechanism is also observed at aroundu@/2nf  0.1uJd/cn?, the spectral wave form of THz radiation
excitation fluence. This crossover is further discussed in Figchanges significantly depending on magnetic-field direction.
2(b). The magnetic-field induced enhancement factor ofA shift of the spectral weight towards the low frequency
THz-radiation power at various excitation fluences is showrregion is observed for the down direction. In contrast, for the
in Fig. 2(b). At low excitation fluence below 0.2J/cn?, the 0.9 uJ/cn? excitation fluence no such shift is observed and
THz-radiation power is enhanced and exhibits quadratic dethe spectral wave form of THz radiation is unchanged.
pendence for both directions of the magnetic field as ob- To explain these phenomena, we consider the two
served in the previous repdrt.Additionally, the enhance- mechanisms for THz radiation from the InAs surface, i.e.,
ment factor of the THz-radiation power is observed to bethe acceleration under the surface depletion field and the dif-

higher for the down direction as compared to the up direcfusion process. THz radiation could also be generated via the
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optical rectification, which is described by the second-ordeent behavior depending on the excitation fluence. These re-
nonlinear susceptibility y(*)]. However, for InA$100), the  sults are explained by taking into consideration the different
contribution of this process in generating THz radiation ismechanisms of THz radiation from InAs. At low excitation
observed to be much smallé6%) than that of the surge fluence, the THz radiation mainly originates from the carrier
current as reported by Get al® The reason of this is that the acceleration by the surface depletion field and the THz-
(100 surface has a symmetric structure, while the nonzeraadiation power is enhanced regardless of magnetic field di-
x® results from the broken symmetry induced by the sur+ection. In contrast, at high excitation fluence, the surface
face depletion field and off-normal incidence of the excita-depletion field is almost screened out and the diffusion pro-
tion lase! Moreover, unlike the previously reporteg? cess becomes significant. This process becomes the main
originated THz radiation from INAg111) 22 the excitation mechanism for THz radiation and the radiation power is ei-
fluence in our experiment is two order smaller even at highether enhanced or reduced depending on the magnetic-field
excitation case. Therfore, surge current should be the domdirection.

nant mechanism for the generation of THz radiation. Sche-

matic diagrams of the carrier motion are depicted as insets in _ 11iS research was partially supported by the Sasakawa
Fig. 3. By considering an excitation fluence of @2/cn?, Scientific Research Grant from The Japan Science Society,
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X 10% cm~3. At low excitation fluence, the photoexcited ciety for the Promotion of ScienddSPS-RFTF 99P012D1
carrier density is below % 1016 cm™2 and the screening ef- The authors are very grateful to Dr. K. Sakai and Dr. S. Saito
fect of the surface depletion field is still not significant. In ©f Communication Research Laboratory for their helpful dis-
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