
2006
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.10 OCTOBER 2003

PAPER Special Issue on Development of Advanced Computer Systems

ReVolver/C40: A Scalable Parallel Computer for Volume

Rendering—Design and Implementation—

Shin-ichiro MORI†, Regular Member, Tomoaki TSUMURA††, Masahiro GOSHIMA†,
Yasuhiko NAKASHIMA††, Hiroshi NAKASHIMA†∗, Nonmembers,

and Shinji TOMITA†, Fellow

SUMMARY This paper describes the architecture of Re-
Volver/C40 a scalable parallel machine for volume rendering and
its prototype implementation. The most important feature of Re-
Volver/C40 is view-independent real time rendering of translu-
cent 3D object by using perspective projection. In order to realize
this feature, the authors propose a parallel volume memory ar-
chitecture based on the principal axis oriented sampling method
and parallel treble volume memory. This paper also discusses
the implementation issues of ReVolver/C40 where various kinds
of parallelism extracted to achieve high-perfromance rendering
are explained. The prototype systems had been developed and
their performance evaluation results are explained. As the results
of the evaluation of the prototype systems, ReVolver/C40 with
32 parallel volume memory is estimated to achieve more than 10
frame per second for 2563 volume data on 2562 screen by using
perspective projection. The authors also review the development
of ReVolver/C40 from several view points.
key words: volume rendering, parallel processing, scalable ar-
chitecture, visualization

1. Introduction

Volume rendering is a visualization technique for a
three dimensional object called volume data which has
color and transparency on its grid points called voxels.
Such a volume data is conventionally obtained by med-
ical scanning equipments such as CT and MRI scanner,
but recently it is also produced by scientific computa-
tion such as for structural analysis and fluid dynam-
ics. Since volume rendering requires a huge amount
of computational power and resources, it is necessary
to exploit parallel processing techniques for high speed
rendering.

In order to realize real-time volume rendering for
large volume data, we had proposed a parallel hardware
architecture [6], [29] for volume rendering and we have
designed ReVolver/C40 [22], [23], [30] as its prototype
implementation (Fig. 1).

In this paper, we introduce the architecture of Re-
Volver/C40 in Sect. 2. Then we discuss issues related
to the implementation of ReVolver/C40 in Sect. 3, fol-
lowed by its performance evaluation in Sect. 4. After
that, we review the development of ReVolver/C40 from

Manuscript received January 24, 2003.
†The authors are with Graduate School of Informatics,

Kyoto University, Kyoto-shi, 606–8501 Japan.
††The authors are with Graduate School of Economy,

Kyoto University, Kyoto-shi, 606–8501 Japan.
∗Presently, with Toyohashi University of Technology.

Fig. 1 ReVolver/C40-demo.

several view points in Sect. 5 and conclude in Sect. 6.

2. Characteristics of ReVolver/C40

2.1 Fundamental Features in ReVolver/C40

ReVolver/C40 adopts ray-casting style volume render-
ing algorithm which is widely used in image-space ap-
proach. This algorithm traces rays through the vol-
ume, accumulating color along each ray (Fig. 2). Let
v0, v1, . . . , vn be voxels along a ray spatially ordered
from view point, ci and ti be color and transparency of
vi respectively. The pixel value (or color) C for this ray
is

C =
n−1∑

i=0

ci(1− ti)
i−1∏

j=0

tj . (1)

This calculation is referred to as composition opera-
tion [1] and it can be computed recursively using the
following equation.

Cout = Cin + Tin × ti × ci

Tout = Tin × ti
(2)

where Cout and Tout are the total accumulated color
and transparency just after the ray hits i-th voxel, and
Cin and Tin are the total accumulated color and trans-
parency just before the ray hit the voxel. This calcu-
lation is referred to as over operation [1]. It is because
Cout and Tout can be thought as color and opacity of
the combined object in which an object that has color



MORI et al.: ReVolver/C40 : A SCALABLE PARALLEL COMPUTER FOR VOLUME RENDERING
2007

Fig. 2 Volume rendering (Ray casting algorithm).

Cin and transparency Tin is placed over voxel vi.
These equations show that volume rendering be-

longs to a class of memory intensive computation. Thus
the memory performance is crucial to the rendering
speed. If we are able to have enough memory perfor-
mance, we can benefit too much from fruitful sources
of parallelisms exist in this rendering alogrithm. The
ReVolver/C40 was designed by compiling all these par-
allelisms into this machine.

Since the target of ReVolver/C40 is real-time visu-
alizaion of not only medical volume data but also scien-
tific data, ReVolver/C40 also has the following features.

1. Discrete and continuous models
In discrete model, it is assumed that a voxel is the
center of a unit cube and any point in the cube has
the same voxel value. On the other hand, voxels in
continuous model are at vertices of the cube and
the value of a point in the cube is obtained by lin-
ear interpolation of the voxel values. Both models
should be applicable depending on the objective of
rendering.

2. Translucent volumes
Volumes to be rendered should be translucent so
that the interior of objects is seen. The translu-
cent rendering also copes with an opaque object
by giving zero transparency to the voxels for its
surface.

3. Perspective and parallel projection
For the visualization of scientific computation re-
sults, such as analysis of seismic waves, perspective
projection is often suitable for showing wide range
of space. For small objects, such as human brain,
parallel projection is also available as in conven-
tional systems.

4. Real-time rendering
Quick response following the movement of view
point is essentially important to help the analysis
and recognition of complicated volume data. This
real-time rendering requires high processing speed
over 10 frames per second.

To include these features into ReVolver/C40, we
have devised a simplified voxel sampling method. We
have also contrived a three dimensional volume memory
fit for this algorithm in order to read all volume data
on a ray of any direction in parallel.

Fig. 3 Simplified sampling method.

2.2 Architectural Features of ReVolver/C40

2.2.1 Sampling Method and Parallel Volume Memory

Rendering one image (or frame) of N × N pixels from
N3 volume data requires the memory throughput pro-
portional to N3. Thus, to satisfy the real-time require-
ment, we had to develop a conflict free highly paral-
lel multi-bank memory which can simultaneously read
out all voxels along a ray of any direction. Since Re-
Volver/C40 supports perspective projection method as
well as parallel projection method, requirements to the
memory system are much more severe than the systems
which don’t support perspective projection. In order
to alleviate this severity, we had proposed a simplified
voxel sampling method [6], [29]. It is called object-based
(or slice-aligned) sampling recently [1], [2].

In this method, instead of sampling voxels on a
ray at regular intervals of the ray itself (Fig. 3 (a)), we
sample voxels on the ray at regular intervals of the ray’s
principal-axis. The principal-axis is one of x, y, or z-
axis in which the projection of the ray vector to the
corresponding axis is the biggest among all (Fig. 3 (b)).
Therefore, if the sampling interval is equal to the unit
of the volume coordinate system, the coordinates of all
sampling points with respect to the principal-axis are
different from each other. This makes it possible to
construct a bank-conflict free parallel volume memory
for both perspective and parallel projections (Fig. 4).
Here, the principal-axis of each ray varies among x-,
y-, and z-axis according to the view point and we want
to avoid coordinate transformation in the memory to
keep real-time follow-up to view point movement. So,
we slice the volume space into planes perpendicular to
x-, y-, and z-axis and store a set of i-th planes from
Xplanes, Yplanes and Zplanes into i-th Parallel Treble
Volume Memory node. As it is obvious from this mem-
ory structure, the effective memory throughput scales
with the number of the memory nodes, irrespective of



2008
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.10 OCTOBER 2003

Fig. 4 Parallel treble volume memory.

the view point and the projection method.

2.2.2 Composition Network

The next to be considered in the architectural design is
how to organize the composition network in which the
composition operation (Eq. 1) is performed.

Since a pixel value can be calculated by applying
the composition operation recursively, as we have men-
tioned before, it is relatively easy to organize a N-stages
linear pipeline of over operations (Eq. 2) [14], [30].

On the other hand, since this composition oper-
ation can be transformed also into a pipeline of tree
reduction style [6], [29], there exists parallel volume ren-
dering systems which adopt tree-based composition
network [8], [25]. In our initial proposal [6], [29], we also
used a tree-based composition network.

In ReVolver/C40, we organize the composition net-
work as one directional link structure (Fig. 5)†. The
primary advantages of this link network are good scal-
ability and ease of implementation; the cost of wiring
becomes half while the logical throughputs of both net-
works are the same at the output-end. Though the
latency increase from O(logN) to O(N), it is negligible
if each created image has the order of N2 pixels. This
argument is not always applicable to most parallel vol-
ume rendering systems [12], [25]. It is because they use
frame-based composition to hide their large communi-
cation overhead, whereas in ReVolver/C40 we can use
pixel-based composition since ReVolver/C40 has the
low latency composition network embedded into its N-
stages linear pipeline of over operations.

Fig. 5 Composition network.

Table 1 Preliminary specification.

Parallel Volume Memory
Number of Nodes (N) 128
Memory Size (total) 512MB
Memory Size (node) 4MB
Rendering Speed (perspective projection,discrete model)
1283 Volume on 1282 Screen 30>FPS
2563 Volume on 2562 Screen 30>FPS
5123 Volume on 5122 Screen 10FPS

3. Prototype Implementation

3.1 Preliminary Specification

As a prototype implementation of our parallel volume
rendering architecture, we have decided the specifica-
tion of ReVolver/C40 as shown in Table 1 based on the
technology available in early ’90s.

3.2 Hardware Configuration of ReVolver/C40

Figure 6 shows the overview of the hardware configura-
tion of ReVolver/C40. The system consists of a control
unit and a three-stage macro pipeline as follows. In
ReVolver/C40, we adopt TI’s Digital Signal Processor
(DSP) TMS320C40 [31] operating at 50MHz since it
has useful internal configuration for volume rendering
calculation.

System Control Unit (SCU) This unit gives other
units various data/commands, such as volume

†The latest version of PCB boards of ReVolver/C40 has
bi-directional ring structure [16] (see Sect. 5) but they are
still waiting for parts assembly.



MORI et al.: ReVolver/C40 : A SCALABLE PARALLEL COMPUTER FOR VOLUME RENDERING
2009

Fig. 6 Overview of the prototype system: ReVolver/C40.

data, viewing parameters (for example positions
of view point and screen), and rendering mode.

Ray Casting Stage (RCS) This stage casts rays
which start from the view point and penetrate into
pixels on the screen, and sends them to Pixel Cal-
culation Stage. In order to generate a ray data in
every machine cycle, this stage consists of 8 Ray
Casting Units (RCUs) where each RCU is config-
ured with one DSP and small working memory.
The unit of load distribution is one scanline and
the scanlines are statically assigned to each RCUs
in cyclic fashion. Generated ray data is stored into
a FIFO memory common to the 8 PCUs. The out-
put of the FIFO memory is directly connected to
the address generator mentioned below to feed ray
data directly into Pixel Value Calculation Stage.

Pixel Value Calculation Stage (PCS)
This stage organizes a 128-stages linear pipeline
of over operations. We call the unit correspond
to one stage of this pipeline Pixel value Calcula-
tion Unit (PCUs). Each PCU is configured with
Volume Memory (VM), Address Generator (AG),
C&T Look-Up-Table (LUT), and one DSP.
Volume Memory (VM): The VM corresponds
to the PTM node in Fig. 4 and may contains upto
3 sets† of four 5122 planes out of 5123 volume data.
Address Generator (AG): The Address Gener-
ator computes Volume Memory addresses of voxels
to be sampled using viewing parameters, current
pixel coordinate and PCU’s relative position in
PCS. Since this kind of computation includes a lot
of bit-based operations, we have implemented AG
with FPGA (Xilinx XC4010D, 10,000 gates). All
information necessary to compute the address is
transferred through the direct link between neigh-
boring AGs without any intervention by the DSP.
The AG also has an important function of voxel
preloading to hide the latency of the VM accesses,
as follows: Voxels to be sampled are read out from
the VM using the addresses generated by AG and
are stored into the Voxel Latch (see Fig. 7) while
the DSP is doing the over operation for the previ-

Fig. 7 Pixel value calculation unit (PCU).

ous pixel.
C&T Look-Up-Table (LUT): Before the over
operation, the sampled pixel value has to be trans-
lated into color and transparency. C&T Look-Up-
Table (LUT) is provided with each PCU to do this
translation. In our ReVolver/C40 implementation,
this table is allocated into the embedded memory
located at local bus inside the DSP so that it could
be accessed in one cycle.
Digital Singal Processor (DSP): As we have
metioned before, we have adopted TI’s DSP
TMS320C40, we call it C40 in the rest of this pa-
per, as our processing unit. It is because, 1) C40
has two physically separated 32-bit buses, called
Global Bus and Local Bus, which support simulta-
neous access to the two different external/internal
devices if they are located at different busses; 2)
C40 has two embedded SRAMs which can be used
as C&T LUT and storage for program memory and
runtime environments; 3) C40 has six embedded
bi-directional communication ports with 20MB/s
peak transfer speed for each which can be used
at initial program loading and debugging in Re-
Volver/C40.
A FIFO buffer (32 bits × 64 entries) is placed on
Global Bus as shown in Fig. 7. The output of this
FIFO buffer is directly connected to the Global
Bus of the C40 in the next PCU. The maximum
throughput of this FIFO is 100MB/s. During
volume rendering operation, the C40 picks up in-
termediate color and transparency data from the
FIFO of its previous PCU, then it performs the
over operations using preloaded voxels and stores
the result into its local FIFO.

Shading Stage (SS) This stage consists of a 4 × 4
two-dimensional array of Shading Units (SUs).
The SU consists of one C40 and two kinds of
double-buffered memories: Receive Buffer (RB)
and frame memory. The pixel value from the pixel
calculation stage is distributed among 16 RBs ac-

†These 3sets correspond to X-memory, Y-memory, and
Z-memory in Fig. 4, respectively



2010
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.10 OCTOBER 2003

Fig. 8 An exterior of the prototype system: ReVolver/C40.

cording to the pixel’s coordinate. When all pixels
belonged to an image get ready in RBs, this image
is shaded using depth gradient shading, by default,
if the user want to have better visual effect. The
final image is stored into the double-buffered video
memories distributed among 16 C40s. A video
signal generation circuit collects sub-images gen-
erated by each C40s, converts them into analog
video signal and sends it to a Disply.

3.3 PCB-Level System Configuration

We have designed four kinds of printed circuit board:
SCU boards, RCS boards, PCS board and SS board.
Each board except for SCU board is VME standard
triple-height board and each of these contains 8 C40s.
So, 16 PCS boards for the PCS and 2 SS boards for the
SS have to be mounted onto ReVolver/C40 prototype.
Figure 8 shows an exterior of the prototype system.

3.4 Overview of Rendering Pipeline in ReVolver/C40

Figure 9 shows how the rendering pipeline of Re-
Volver/C40 works. From the highest level, there is the
frame-based pipeline where image generation, shading,
and image output organize a 3-stages pipeline. The last
two stages are implemented by the well-known double
buffering of the frame memory in the SS. The second
level is pixel-based pipeline that exists in the image gen-
eration stage. This pipeline consists of the ray casting
stage and the N-stages linear pipeline of over opera-
tions. Though the RCS itself utilizes scanline-based
parallelism, it is not visible to the image generation
pipeline as long as there exists ray information in RCS’s
output FIFO.

3.5 Development of ReVolver/C40

After 5 years from the initial proposal of the ReVolver
architecture [6], [29], a part of RCS board with 3 RCUs,
one PCS board with 8 PCUs, and one SS board with

Fig. 9 Rendering pipeline.

8 SUs became operational in late 1998. Using these
parts, we have constructed a evaluation subsystem
which we call ReVolver/C40-mini. And then, in early
1999, we have reorganized it into a little bit larger sys-
tem which we call ReVolver/C40-demo. ReVolver/C40-
demo has been configured with four PCS boards (32
PCUs) and one SS board (8 SUs) but it has neither
voxel preload function of PCS boards† nor RCS boards.
In Revolver/C40-demo, all the communication between
neighboring DSPs is performed through the embedded
communication ports of TMS320C40 and host com-
puter (PentiumIII 800MHz) also functions as RCS. Due
to the memory size restriction, ReVolver/C40-demo can
render upto 2563 volume at the price of declining frame
rate.

4. Performance Evaluation

We have made detailed performance evaluation based
on ReVolver/C40-mini and the results are summarized
in [22], [23]. In this section, we have focused on the
evaluation of PCS since the performance of PCS is the
most dominant part in the overall performance. In the
following discussion, we assume the image size of 256×
256 unless noticed especially. We also assume that each
PCUs is responsible for 3-sets (Xplanes, Yplanes, and
Zplanes) of P -planes (256 × 256 in size) out of 2563

volume data where P is the number of planes per PCU
and P may vary among 1,2,4 and 8.

4.1 Rendering Performance

The voxel preloading is one of the most important is-
†Due to some miss implementaions in the circuits for

interface between two PCS boards, we have bypassed the
circuits in ReVolver/C40-demo configuration. This bypass
disables the function of AG and enables the communication
ports of C40s.



MORI et al.: ReVolver/C40 : A SCALABLE PARALLEL COMPUTER FOR VOLUME RENDERING
2011

Table 2 Performance of AG in ReVolver/C40-mini.

# of planes Voxel Preload Time (µs) Frame Rate (FPS)
per PCU (P)

1 2.52 6.05
2 2.80 5.45
4 3.36 4.54

Table 3 Effect of AG in ReVolver/C40-mini.

# of planes Rendering Time (µs/pixel)/Frame Rate (FPS)
per PCU (P) with AG without AG

1 3.28/4.65 8.31/1.84
2 4.80/3.18 11.96/1.28
4 7.24/2.11 19.11/0.80

sues in the implementation, we first examine the perfor-
mance of the address generator (AG). Table 2 shows the
time spent for preloading P voxels along a ray. From
this table, we could figure out that the AG by itself has
the performance of 6 FPS (Frame Per Second) if P =
1†.

The next thing to examine is the time spent for
over operation which determines the pipeline pitch of
the rendering pipeline. Table 3 shows rendering time
per pixel and frame rate for 256× 256 image. In order
to examine the effects of AG, this table contains the
result of two different configurations of PCU: with and
without AG. In case of PCU without AG, not only the
results of over operation but also ray-data have to be
transferred between C40s and also C40 has to substi-
tute for AG. This table confirms the great impact of AG
on the rendering performance. Indeed, the PCU with
AG performs roughly 2.5 times faster than the PCU
without AG. However, comparing with the results in
Table 2, the rendering performance has declined. It is
due to the communication overhead of C40. Because of
the implementation dependent critical timing of FIFO
access and the restriction of C40 on the consecutive
write accesses, roughly 2µs are spent for communica-
tion between C40 and FIFO memories. As a result,
effective throughput decreased to only 20MB/s which
is comparable to the embedded communication port of
C40.

In the above discussion we assumed ReVolver/C40-
mini. From now, we continue our discussion based on
the performance of ReVolver/C40-demo. Table 4 shows
the rendering performance of ReVolver/C40-demo. In
this table, the performance of simulated configuration
that assumes a perfect AG (which always supplies voxel
data in one cycle) is shown as well as the normal con-
figuration without AG. The normal configuration with-
out AG has better performance in ReVolver/C40-demo
than in ReVolver/C40-mini. It is due to the very
high internal I/O throughput (100MB/s) of commu-
nication ports in C40. When we assume the perfect
AG, the performance reaches to 11.6 FPS and seems
to be saturated when P < 4. From this result, we
can consider the effective throughput of communica-

Table 4 Rendering speed in ReVolver/C40-demo.

# of planes Rendering Time (s/frame)/Frame Rate (FPS)
per PCU without AG with perfect AG

(real system) (simulation)
1 0.31/3.2 0.086/11.6
2 0.56/1.8 0.086/11.6
4 1.0 /1.0 0.094/10.7
8 1.8 /0.55 0.26/3.8

tion port between two C40s in ReVolver/C40-demo to
be 12.2MB/s. According to the hand-coded assembly
program which assume the perfect AG, the peak per-
formance of ReVolver/C40-demo could achieve about
20FPS for P=1 if there is a sufficient bandwidth be-
tween two C40s.

In the above discussions, we always assume the im-
age size of 2562. Since the image size does not affect the
rendering time for a pixel, the overall rendering perfor-
mance is inversely proportional to the number of rays
in the image. On the other hand, if there is an enough
capacity to store volume data in each PCUs, the over-
all rendering performance decrease with the number of
planes (P) per PCU but it is much better than 1/P be-
cause the increase of the computational time for over
operation reduces the communication overhead relative
to the computational time.

4.2 Volume Data Initialization

This section discusses the issue of volume data initial-
ization. In advance to any rendering operation, volume
data should be stored into volume memories of PCUs.
In ReVolver/C40-demo, volume data stored in the hard
disk of host computer is downloaded sequentially as a
set of four consecutive voxels. This is done through
the communication link between SCU and PCU. Ev-
ery time a set of four voxels is arrived at a PCU, the
PCU performs the following operations: 1) It exam-
ines if any of them should be stored inside its volume
memory according to the voxel’s (x,y,z)-coordinate and
relative location of the PCU. 2) It performs memory
accesses if necessary. 3) It forwards them to the next
PCU. The parallel trebled volume memory is initialized
in this way. During the initialization, 9/4N 3 memory
accesses are performed in PCS. It takes about 500 ns for
each of this memory accesses including miscellaneous
overhead in PCU. Indeed, for 2563 volume data, we
have observed that it takes 19.8 sec on the host ma-
chine including disk access time. Recent graphics cards
for volume rendering [2], [9] also takes similar latency,

†We also have designed another version of the AG where
1) ray-data read-out from previous FIFO, 2) Address Calcu-
lation, 3) Volume Memory Access, and 4) ray-data store into
its FIFO are performed in pipelined fashion. The pipelined
version of AG could achieve 29.3FPS for P=1, but it was lit-
tle bit unstable. So we have used the non-pipelined version
of AG in this evaluation.



2012
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.10 OCTOBER 2003

though it is not negligible if the user wants to change
the volume data frequently. One solution to this prob-
lem is to have multiple paths to download the data [3],
[11].

5. Considerations

5.1 Advances in Technology

As we mentioned before, the design of ReVolver/C40 is
based on the technology roughly 10 years ago. So we
are going to review ReVolver/C40 from the view point
of technology advances.
1. Processor Technology
We adopt TI’s DSP TMS320C40 as our processing ele-
ment. The C40’s features which benefit ReVolver/C40
are 1) hardware support for inverse and inverse square
root which are very useful in the RCS, 2) parallel in-
structions which realize multiply-and-add like opera-
tions useful in all stages, 3) repeat block operation
which uses single cycle branch that is very useful in
PCS, for P=1 in particular, 4) embedded communica-
tion ports for parallel processing, 5) embedded small
local SRAM block, and so forth.

Indeed, we didn’t have any plan to use the embed-
ded communication during rendering operation at the
time of initial design, ReVolver/C40-demo exactly ben-
efits from the low latency read/write operations to the
communication ports. If they have much more through-
put, like Alpha 21364 [26], it would be very useful for
fine grain communication like we need in pixel-based
rendering pipeline.

Embedded memory of small-capacity, but fast, is
quite useful in the applications which does not neces-
sarily require high precision calculation. It is because
some function calls can be replaced by a single cycle
memory lookup, like C&T LUT in PCU.

A drawback in C40 is that it does not have mul-
timedia extension instruction like quadruplet instruc-
tions which can be used to compute color value. If C40
would have such an instruction, performance of over
operation in PCS would be tripled. Since the clock fre-
quency of the latest processor is more than 50 times
faster than C40, it is possible to achieve the 150 times
total speedup if we are able to use all these available
technologies.
2. Memory Technology
The volume memory in PCU is 4MB DRAM of 32 bit
width. It’s RAS latency is 160 ns and has throughput
of 66.6MB/s. Now, we can purchase 512MB DDR-
SDRAM module of 64-bits width, 2666MB/s, at the
similar price. This memory is large enough for a vol-
ume data of 5123 and has an acceptable bandwidth for a
screen of 5122. However, the ras access latency for ran-
dom accesses is still far beneath the required speed. So,
still there is need for parallel volume memory organiza-
tion even with the latest memory technology in order

to realize view-independent real-time volume rendering
by using perspective projection. However, if we allow
view-restricted or view-dependent rendering, there are
some possibilities to reduce the randomness in memory
access patterns: cache blocking, or tiling, technique is
one of such possibility.
3. FPGA and Dynamic Reconfigurable Tech.
The most powerful FPGA, we used in ReVolver/C40,
is Xilinx XC4010D which has 10,000 equivalent gates,
operating at 25MHz in our system. It was a biggest
FPGA reasonably available at that time. Since it was
impossible to implement both AG and circuits for over
operation in one chip, we had decided to employ DSP
for over operation. Now, we have various choices of
versatile FPGAs. Some FPGAs have embedded proces-
sor (or DSP)-cores running at 300MHz and up, some
have embedded synchronous memory block accessible
at 150MHz and up, and some have more than 10 mil-
lion gates. If we can use such an FPGA device, we
can implement a few tens of PCU including AG in one
FPGA with a few channels of DDR-SDRAMMemories.
Indeed, we are currently designing such a system in our
laboratory [18]. In addition to that, if we can utilize
the latest technique on dynamic reconfigurability [7], it
is possible to consider a graphics processor which can
dynamically adapt itself to meet the requirement of ren-
dering conditions, like projection modes, volume data
structures [15], lighting and shading parameters and so
on.

5.2 Volume Rendering Algorithm

The fundamental algorithm, we used in ReVolver/C40,
is the ray casting algorithm. Due to its simplicity and
its image quality, almost all of the hardware acceler-
ated volume rendering systems [5], [8], [9], [14], [21], [25]
adopt this algorithm. But none of these system support
parallel volume rendering by using perspective projec-
tion, except ReVolver/C40.

Recent advances in PC-based commodity graph-
ics cards which support α-blending for rendering non-
opaque polygon realize the texture-based approach to
the volume rendering [2]. If a whole volume data can
be stored inside video memory of such a graphics card,
it can perform volume rendering with acceptable frame
rate. However, such a commodity graphics card does
not have enough video memory to store large volume
data, so it significantly slows down for large volume
data due to the slicing effect. Some systems have pro-
posed to alleviate this effect by parallel processing [17],
[20].

There are some other algorithms [10] for parallel
volume rendering, like splatting and cell projection [13].
These algorithms have a capability of volume rendering
with unstructured grid volume data, though they are
difficult to implement in hardware due to some kind
of complicated list processing to keep the order of over



MORI et al.: ReVolver/C40 : A SCALABLE PARALLEL COMPUTER FOR VOLUME RENDERING
2013

operation to intermediate sub-images.

5.3 Human Visual Perception

So far, we have intended not to consider the approxima-
tion techniques in image generation because we think
that it is not acceptable in medical applications which
are the biggest market of volume rendering. However,
there are a lot of possibilities to increase rendering
speed if we take the human visual perception into ac-
count. Here we consider three types of approximation.
1. Early Ray Termination (ERT) [19], [24]
During the composition computaion, if the accumu-
lated transparency becomes very low, say ε, the fur-
ther accumulations do not affect the image too much.
The early ray termination is a technique which cuts off
the accumulation for the rest of sampling points on a
ray if the accumulated transparency < ε. This tech-
nique is known to be very useful. But it has no effect
in current ReVolver/C40 because, even if ERT applies,
intermediate results have to be propagated to the end
of rendering pipeline. If ReVolver/C40 is configured
with a feedback loop from the tail of rendering pipeline
to the top, say from the last PCU to the first PCU,
and we apply cyclic data distribution, we could benefit
from the ERT [16].
2. Level of Detail
If the view point moves very quickly, it is impossible
to recognize the detail of each image. So it is better to
generate less detailed image to keep track of the view
point movement in real time, rather than to generate
full detailed image but less frame rate. Since this tech-
nique is easy to implement in ReVolver/C40, we have
already examined in some cases and obtained very nice
results.
3. Pseudo-Perspective Projection
If the screen size S gets wider, parallel projection be-
comes no more acceptable. However, real-time render-
ing which uses perspective projection is fairly expensive
to support, in general. So, we have been investigating a
technique which we call Pseudo-Perspective Projection.
Let’s consider that the screen S has been divided into
sub-screens sij(i, j : [0 : N − 1]) of equal sizes. For a
sub-screen sij , calculate a ray Rij which goes through
the center of sij . In Pseudo-Perspective Projection, for
the pixels inside si,j , we cast rays parallel to Ri,j . If
N=1 it is equivalent to the parallel projection. As N
gets bigger, generated image gets closer to the image
using perspective projection. Because of the increased
ray coherency inside sij in Pseudo-Perspective Projec-
tion mode, it can increase the regularity in memory
access patterns. Though there exists trade off between
rendering time and image quality, we believe it is a
feasible approach to the real-time rendering using per-
spective projection.

6. Conclusion

We have described the architecture of ReVolver/C40 a
scalable parallel machine for volume rendering and its
prototype implementation. The most important fea-
ture of ReVolver/C40 is view-independent real time
rendering of translucent 3D object using perspective
projection. In order to realize this feature, we have pro-
posed a parallel volume memory architecture based on
the principal axis oriented sampling method and paral-
lel treble volume memory. According to the evaluation
of the prototype systems, ReVolver/C40 with 32 paral-
lel volume memory is estimated to achieve more than 10
frames per second for 2563 volume data on 2562 screen.
We have also confirmed the scalability of this system
though we could not describe its detail in this paper.

Currently, we are continuing the work on the par-
allel volume rendering for large-data visualization [27]
and interactive visualization of real-time simulation
data [3], [4], [17], [18]. As a part of these works, we have
been developing a new graphics card for parallel volume
rendering [18]. In order to deal with the time-varying
volume data, we are also developing a new rendering
algorithm based-on the work in [28] which does not re-
quire any replication of volume data.

Acknowledgment

Development ofReVolver/C40 can not be accomplished
without contribution of the following students who
graduated from Tomita Laboratory; H. Akashi, T.
Kitasuga, T. Kuroda, M. Susukita, Y. Tsushima, T.
Ogino, X. Jin, A. Nakayama, Y. Kiwata, T. Honda,
I. Kinaka, M. Fujiwara, N. Yoshitani, D. Shigeta, F.
Harase and S. Yamauchi. We wish to express our ap-
preciation for thier great work. We also thank to M.
Ikumo, M. Takayama, Y. Maruyama, S. Nakata, and
the other members of Tomita Laboratory.

A part of this research was supported by the
Grant-in-Aid for Scientific Research (A)(1)#06508001,
(B)(2)#10558045, (B)(2)#13480083 from Japan So-
ciety for the Promotion of Science and also by the
Grant-in-Aid for Scientific Research on Priority Areas
(C)#13224050 from the Ministry of Education, Cul-
ture, Sports, Science, and Technology of Japan.

References

[1] B. Lichtenbelt, R. Crane, and S. Naqvi, Introduction to
volume rendering, Prentice-Hall, Upper Saddle River, 1998.

[2] C. Rezk-Salama, et al., “Interactive volume render-
ing on standard PC graphics hardware using multi-
textures and multi-stage rasterization,” Proc. SIG-
GRAPH/EUROGRAPHICS Graphics Hardware Workshop
2000, pp.109–118, 2000.

[3] F. Harase, et al., “Real-time volume visualization on Re-
Volver/C40,” IPSJ SIG Notes, 2002-ARC-148, pp.7–12,
May 2002.



2014
IEICE TRANS. INF. & SYST., VOL.E86–D, NO.10 OCTOBER 2003

[4] F. Harase, et al., “A hardware assist for scientific visualiza-
tion,” Proc. 30th Symp. on Visualization, pp.119–122, July
2002.

[5] G. Knittel and W. Strasser, “VIZARD — Visual-
ization accelerator for real-time display,” Proc. SIG-
GRAPH/Eurographics Workshop on Graphics Hardware,
pp.139–146, 1997.

[6] H. Akashi, A parallel computer architecture for volume ren-
dering, Master Thesis, Dep. of Computer Science, Kyoto
University, Feb. 1993.

[7] H. Amano, “A dynamically adaptive hardware using a
multi-context reconfigurable processor,” IPSJ SIG Notes,
2002-ARC-150, pp.59–64, Nov. 2002.

[8] H. Pfister, et al., “Cube-3: A real-tme architecture for high-
resolution volume visualization,” Proc. 1994 Symp. on Vol-
ume Visualization, pp.75–82, 1994.

[9] H. Pfister, et al., “The VolumePro real-time ray-casting
system,” SIGGRAPH ’99 Conference Proceedings, pp.251–
260, 1999.

[10] K. Brodlie and J. Wood, “Recent advances in volume visu-
alization,” EUROGRAPHICS Computer Graphics Forum,
vol.20, no.2, pp.125–148, June 2001.

[11] K. Itakura, et al., “Parallel visualization for parallel data
stream,” Proc. JSPP2001, pp.189–196, June 2001.

[12] K.L. Ma, et al., “Parallel volume rendering using binary-
swap image composition,” IEEE Trans. Computer Graphics
and Applications, vol.14, no.4, pp.59–68, 1994.

[13] K.L. Ma, et al., “A scalable parallel cell-projection volume
rendering algorithm for three-dimensional unstructured
data,” Proc. Parallel Rendering Symposium (PRS’97),
pp.95–104, 1997.

[14] L. Moll, et al., “Sepia: Scalabel 3D compositing using PCI
Pammete,” Proc. 7th IEEE Symp. on Field-Programmable
Custom Computing Machines, April 1999.

[15] M. Fujihara, et al., “Realtime visualization method for hier-
archical grid volume data,” IPSJ SIG Notes, 98-ARC-128,
pp.7–12, March 1998.

[16] M. Ikumo, et al., “The effects of early ray termination in
parallel volume rendering with cyclic data distribution,”
Proc. Forum on Information Technology, vol.3, no.J-96,
pp.233–234, Sept. 2002.

[17] M. Ikumo, et al., “Parallel volume rendering environment
for interactive real-time simulation,” Proc. IPSJ Kansai-
branch Forum, pp.121–124, Nov. 2002.

[18] M. Ikumo, Development of a graphics card VisA for real-
time visualization of time-varying volume data, Master
Thesis, Grad. School of Informatics, Kyoto University, Feb.
2003.

[19] M. Levoy, “Efficient ray tracing of volume data,” ACM
Trans. Graphics, vol.9, no.3, pp.245–261, July 1990.

[20] M. Magallon, et al., “Parallel volume rendering using PC
graphics hardware,” Proc. Pacific Graphics, 2001.

[21] M. Meissner, et al., “VIZARD II: A reconfigurable interac-
tive volume rendering systems,” Proc. Graphics Hardware,
pp.137–146, Sept. 2002.

[22] N. Yoshitani, et al., “Performance evaluation of parallel vol-
ume rendering machine ReVolver/C40,” IPSJ SIG Notes,
99-ARC-132, pp.79–84, 1999.

[23] N. Yoshitani, Implementation and performance evaluation
of parallel volume rendering machine ReVolver/C40, Mas-
ter Thesis, Dep of Computer Science, Kyoto University,
Feb. 1999.

[24] P. Lacroute and M. Levoy, “Fast volume rendering using
a shear-warp factorization of the viewing transformation,”
Proc. SIGGRAPH’94, pp.451–458, July 1994.

[25] S. Muraki, et al., “VG cluster: Large scale visual computing
system for volumetric simulations,” SC2000 Research Gems

(Poster), Nov. 2000.
[26] S. Shubhendu, et al., “The Alpha 21364 network architec-

ture,” IEEE Micro, pp.26–35, Jan. 2002
[27] S. Yamauchi, et al., “Active volume rendering with sim-

ulation steering,” IEICE Technical Report, CPSY2001-35,
July 2001.

[28] X.D. Jin, et al., “Super-high speed volume rendering archi-
tecture based on pixel parallelism with the restrained visual
angle,” J. Inf. Process. Soc. Jpn., vol.38, no.9, pp.1668–
1680, 1997.

[29] Y. Tsushima, et al., “A parallel computer architecture for
volume rendering: ReVolver,” Trans. Inf. Process. Soc.
Jpn., vol.36, no.7, pp.1709–1718, 1995.

[30] Y. Tsushima, et al., “The parallel computer for volume ren-
dering —ReVolver/C40,” Proc. Joint Symp. on Parallel
Processing 1995, pp.11–18, 1995.

[31] Texas Instruments: TMS320C4x User’s Guide, 1993.

Shin-ichiro Mori was born in 1963.
He received his B.E. in electronics from
Kumamoto Univ. in 1987 and M.E. and
Ph.D. in computer science from Kyu-
shu Univ. in 1989 and 1995, respectively.
From 1992 to 1995, he was a research asso-
ciate in the Faculty of Engineering, Kyoto
University. Since 1995, he has been an
associate professor in the Department of
Computer Science, Kyoto University. His
research interests include computer archi-

tecture, parallel processing and visualization. He is a member of
IEEE, ACM, EUROGRAPHICS and IPSJ.

Tomoaki Tsumura was born in 1973.
He received his M.E. degree from Kyoto
Univ. in 1998. Since 2001 he has been an
research associate in Graduate School of
Economics, Kyoto Univ. His research in-
terests include computer architecture for
brain-like computing and parallel process-
ing. He is a member of IPSJ and JSAI.

Masahiro Goshima was born in
1968. He received his M.E. degree from
Kyoto Univ. in 1994. He was a research
fellow of the Japan Society for the Pro-
motion of Science from 1994. Since 1996
he has been in Kyoto Univ. as an assistant
professor. He has been engaging in the re-
search area of high-performance comput-
ing systems. He received IPSJ Yamashita
SIG research award and IPSJ best paper
award in 2001 and 2002, respectively. He

is a member of IPSJ and IEEE.



MORI et al.: ReVolver/C40 : A SCALABLE PARALLEL COMPUTER FOR VOLUME RENDERING
2015

Yasuhiko Nakashima was born in
1963. He received the B.E., M.E. and
Ph.D. degree in Computers Engineering
from Kyoto University, Japan in 1986,
1988, and 1998, respectively. He was a
computer architect at Computer and Sys-
tem Architecture Department, FUJITSU
Limited in 1988-1999. Since 1999 he has
been an Associate Professor in Graduate
School of Economics, Kyoto University.
His research interests include processor

architecture, emulation, CMOS circuit design, and evolutionary
computation. He is a member of IEEE CS, ACM and IPSJ.

Hiroshi Nakashima was born in
1956. He received his B.E., M.E. and
Ph.D. degree in Computer Science from
Kyoto Univ. in 1979, 1981 and 1991 re-
spectively. He had been in Mitsubishi
Electric Corporation since 1981 until 1992
and had deeply involved in the Fifth
Generation Computer Systems Project as
the chief architect of inference machines.
Then he joined Faculty of Engineering,
Kyoto Univ. as an associated professor.

Since 1997, he has been in Faculty of Engineering, Toyohashi
Univ. of Tech. as a professor. His research interests include
parallel/distributed processing. He received Motooka Memorial
Award and Sakai Memorial Award. He is a member of IEEE-CS,
ACM, IPSJ, ALP and TUG. He has been the Editor-in-Chief of
IPSJ Trans. Advanced Computing Systems since 2002.

Shinji Tomita was born in 1945. He
received the B.E., M.E. and Ph.D. degree
in Electronics from Kyoto University in
1968, 1970, and 1973, respectively. He
was a research associate from 1973 to 1978
and an associate professor from 1978 to
1986 both in the Department of Com-
puter Science, Kyoto University. From
1986 to 1991, he was a professor in the De-
partment of Information Systems, Kyu-
shu University. From 1991 to 1998, he was

a professor in the Faculty of Engineering, Kyoto University. Since
1998, he has been a professor in the Graduate School of Infor-
matics, Kyoto University. His current interests include computer
architecture and parallel processing. He is a member of IEEE,
ACM and IPSJ. He was a board member of IPSJ directors in
1995, 1996, 1998 and 1999. He is a fellow of IPSJ.


