
IEICE TRANS. FUNDAMENTALS, VOL.E86–A, NO.10 OCTOBER 2003
2473

PAPER Special Section on Information Theory and Its Applications

Iterative Decoding of High Dimensionality Parity Code

Toshio FUKUTA†, Student Member, Yuuichi HAMASUNA†, Ichi TAKUMI†a),
Masayasu HATA††, Regular Members, and Takahiro NAKANISHI†††, Nonmember

SUMMARY Given the importance of the traffic on mod-
ern communication networks, advanced error correction methods
are needed to overcome the changes expected in channel qual-
ity. Conventional countermeasures that use high dimensionality
parity codes often fail to provide sufficient error correction capa-
bility. We propose a parity code with high dimensionality that
is iteratively decoded. It provides better error correcting capa-
bility than conventional decoding methods. The proposal uses
the steepest descent method to increase code bit reliability and
the coherency between parities and code bits gradually. Further-
more, the quantization of the decoding algorithm is discussed.
It is found that decoding with quantization can keep the error
correcting capability high.
key words: high dimensionality parity code, iterative decoding,
steepest descent method, bit reliability, quantization

1. Introduction

We have been researching the high dimensionality par-
ity code (HDPC). Its structure is so simple that hard-
ware implementation can be realized easily [1]. Addi-
tionally, high decoding speeds are also expected [2], [3].
This code can deal with not only random errors but also
burst errors through the addition of our original inter-
leaving function [4] which diffuses errors within a code-
word. Conventional decoding methods that are based
on high dimensionality parity code include “Iterative
Corrections on every 2D sub-code” [5] and “Majority
Logic Decoding” [1]. They involve hard decision decod-
ing and iteration of deterministic error corrections. If
the bit error rate(BER) is around 10−3, conventional
decoding methods offer adequate error correcting capa-
bility. At BERs under 10−1–10−2, however, the conven-
tional methods fail to provide sufficient error correction
capability.

Our proposal, the iterative decoding with steep-
est descent method, offers high error correcting ability
because the value of each code bit is assigned a reliabil-

Manuscript received January 20, 2003.
Manuscript revised April 19, 2003.
Final manuscript received June 6, 2003.

†The authors are with the Department of A.I. and Com-
puter Science, Nagoya Institute of Technology, Nagoya-shi,
466-8555 Japan.

††The author is with Chubu University, Kasugai-shi, 487-
8501 Japan.

†††The author is with Gunma University, Maebashi-shi,
371-8510 Japan.
a)E-mail: takumi@ics.nitech.ac.jp

ity term [7]. This paper explains the features and the
decoding algorithm with steepest descent method. A
comparison of its error correcting capability to that of
a conventional decoding method confirms its superior-
ity. Since iterative calculation of code bit reliability is
excessively expensive if floating point calculations are
used, we consider the quantization of the decoding al-
gorithm. Although quantization reduces computational
cost, it is possible that error correcting capability may
be degraded. In our computer simulations, this algo-
rithm with limited accuracy of the high dimensionality
parity code keeps high error correcting capability.

2. High Dimensionality Parity Code

2.1 Construction of HDPC

HDPC is an extension of a 2 dimensional direct product
code of single parity codes to higher dimensions. It
has an n dimensional discrete hyper-cubical structure.
Each edge is m bits long, and the code block consists
of mn code bits. Code structure is denoted as nDmm,
when n is dimension and m is size. For example, 3Dm4
means a code with dimension of three and size of four as
shown in Fig. 1. nDmm code has (m− 1)n information
digits and mn total digits including parity redundant
digits, so the transmission rate is R = (1− 1/m)n.

2.2 Transmission Order of Code Bit

The transmission order of HDPC is set to isolate the
transmission intervals between the bits on the same par-
ity check line as described in Ref. [6]. The minimum dif-
ference in code bit transmission order on the same par-

Fig. 1 Parity check for each bit (3Dm4 code).

2474
IEICE TRANS. FUNDAMENTALS, VOL.E86–A, NO.10 OCTOBER 2003

(a) (b)

Fig. 2 Relation between the transmission order of 3Dm3 code
and coordinates (r0, r1, r2).

ity check line is described in the appendix. This trans-
mission order ensures that burst errors are distributed
uniformly within a code. An example of the transmis-
sion order for the 3Dm3 code is shown in Fig. 2(a). The
numbers attached to the bits indicate the transmission
order. Figure 2(b) shows the position of each bit using
coordinates. When this coordinate expression is used,
the bit transmitted as the t-th(0 ≤ t ≤ mn − 1) bit
has coordinates (r0, r1, · · · , rn−1) given by the follow-
ing formulas.

r0 =

(
n−1∑
i=0

⌊
t/mi

⌋)
mod m

rk =
⌊
t/mn−(k+1)

⌋
mod m

(k = 1, 2, · · · , n− 1)




(1)

3. Conventional Decoding Methods

This section briefly reviews the conventional decoding
methods of Iterative Correction on every 2D sub-code
and Adaptive Threshold Decoding.

3.1 Iterative Correction on Every 2D Sub-Code

The behavior of the conventional decoding algorithm of
Iterative Correction on every 2D sub-code is very easy
to understand. The nDmm code has m 2Dmm sub-
codes which are parallel in the code structure. Since the
nDmm code has n axes, it has mn−2 ·n C2 2Dmm sub-
codes. Each 2Dmm sub-code can correct a single bit
error. If a sub-code is challenged with multiple errors,
the error correction is abandoned to other sub-codes
which contain a part of the error bits. This algorithm
does not fully utilize the code dimension of n.

� ✏
1. Investigate ei for each code bit Ci(0 ≤ i ≤

mn−1). ei is the number of parity check lines
penetrating Ci and on which parity error has
been detected.

2. emax is the maximum of all ei.

a. When emax is 0: go to 4.
b. When emax is not 0: Bit Ci which has ei

equaling emax is reversed.

3. 1.–2. is repeated a predetermined number of
times (Hard Decision Limit).

4. Decoding completed.
✒ ✑

Fig. 3 Adaptive threshold decoding algorithm.

3.2 Adaptive Threshold Decoding

Each code bit in nDmm is checked by n orthogonal
parity check lines. When a majority of n parity check
lines penetrating a code bit detect error, the code bit
is flagged for correction. Majority logic decoding offers
higher error correction performance than Iterative Cor-
rection on every 2D sub-code, but Adaptive Threshold
Decoding described in Fig. 3 is the best of all hard deci-
sion algorithms proposed for high dimensionality parity
code, because it has the fewest erroneous corrections in
which correct bits are incorrectly flagged.

4. Iterative Decoding with Steepest Descent
Method

4.1 The Correcting Method

4.1.1 Bit Reliability αi

We start by defining the bit reliability, αi, of each
bit. αi expresses the probability that the bit is right
(0≤ αi ≤1). When the bit is presumed correct by parity
check, αi should be increased. On the other hand, when
the bit is presumed wrong, αi should be decreased. Er-
ror bits are specified by iterating these presumptions.
This paper assumes that basically no bit is known to
be corrupted before error decision, that is, all bits are
hardly decided before error correction, so all αi values
are set equal in the initial condition.

4.1.2 The Reliability βj of Parity Check

The next step is to define the reliability, βj , of each
parity check. Each parity check is reliable with prob-
ability βj(0 ≤ βj ≤ 1); this represents the consistency
between parity check result and all bit reliabilities αi.
A nDmm code has m bits on every parity check line.
The reliabilities of m bits on the line are denoted by

FUKUTA et al.: ITERATIVE DECODING OF HIGH DIMENSIONALITY PARITY CODE
2475

Fig. 4 Calculation of βright for a parity check. The gray box
means error bit.

α0, α1, α2, . . . , αm−1.
Describing the notation more properly, we can de-

note j by coordinates (r0, r1, .., rk−1, x, rk+1, .., rn−1)
when the parity line lies in parallel with the rk axis.
(x has no meaning other than indicating the position
of k.) The parity line penetrates the m code bits whose
coordinates are (r0, r1, .., rk−1, i, rk+1, .., rn−1) (i =
0, 1, .., m− 1). αi is the reliability of a code bit at that
coordinate.

The reliability of the parity check is βright if the
parity check has not detected an error. βright is proba-
bility of any even numbers of error bits occuring on the
parity line (Fig. 4). βright is given by

βright = α0α1α2 · · ·αm−1

+ (1− α0)(1− α1)α2 · · ·αm−1

+ (1− α0)α1(1− α2) · · ·αm−1 + · · · · · ·

=
1
2

+
1
2

m−1∏
k=0

(2αk − 1). (2)

βright has a value between 0 and 1, because all αk (k =
0, 1, .., m− 1) lie between 0 and 1.

We say that the reliability of the parity check is
βwrong if the parity check has detected an error. βwrong
is probability of any odd number of error bits occuring
on the parity line. βwrong also equals to 1 − βright and
given by

βwrong =
1
2
− 1

2

m−1∏
k=0

(2αk − 1). (3)

βwrong has a value between 0 and 1 for the same reason
as βright.

Therefore, reliability βj of each parity check is
βright when the real parity check detects no error, and
βj is βwrong when the real parity check detects an error.

When no bits or an even number of code bits on
a parity line have reliabilities αi under 0.5, the corre-
sponding βright will be greater than 0.5. If the real par-
ity check does not detect parity error, bit reliability αi

and the real parity check are consistent, and αi should
be modified to increase βright; that is, to increase βj . If
the real parity check does detect parity error, bit relia-
bility αi and the real parity check are inconsistent, and

αi should be modified to increase βwrong, i.e. increase
βj .

Similarly, when an odd number of code bits on a
parity line have reliabilities αi under 0.5, consistency
between αi and real parity check is achieved by modi-
fying αi to increase βj .

Here, βmin is the minimum of all βj . When βmin

exceeds 0.5, no error would be detected by any parity
check line if the bits whose αi is lower than 0.5 have
been reversed. Therefore, all αi are modified so that
all βj exceed 0.5. Note that the modification of αi is
stopped and hard decided when all βj exceed 0.5.

4.1.3 Modification of Bit Reliability αi

We use the so-called gradient algorithm to increase βj

by modifying αi. In the algorithm, bit reliabilities αi

are the controlled parameters and parity check reliabil-
ities βj are the evaluation function or objective func-
tion. αi are increased or decreased according to the
partial differential coefficient of βj . If the step size of
the gradient algorithm is small enough, parameters αi

converge at the point where βj are maximum. If all βj

equal 1 after convergence, parameter αi must be at the
global maximum, which means that the code block has
recovered consistency with regard to the parity check.

As for αi, the partial differential coefficients of
βright and βwrong are derived from Eqs. (2) and (3) as
follows,

∂βright
∂αi

=
m−1∏

k=0,k �=i

(2αk − 1) (4)

∂βwrong
∂αi

= −
m−1∏

k=0,k �=i

(2αk − 1), (5)

where,

0 ≤ ∂βright
∂αi

≤ 1 (6)

−1 ≤ ∂βwrong
∂αi

≤ 0 (7)

because of the range of αk (k = 0, 1, .., m− 1).
One of the two above equations (Eqs. (4) and (5))

is employed as ∂βj/∂αi according to the real parity
check mentioned above.

Since the steepest descent method is applied to the
modification of αi, αi should be increased correspond-
ing to ∂βj/∂αi. In an nDmm code, αi is checked by n
parity checks whose reliabilities are β0, β1, β2, . . . , βn−1.
αi should be increased corresponding to

∑n−1
j=0 ∂βj/∂αi

in order to increase βj (j = 0, 1, .., n−1) in total. Since
modified αi should lie in the range 0 to 1, the modifi-
cation formula is given by Eq. (8).

2476
IEICE TRANS. FUNDAMENTALS, VOL.E86–A, NO.10 OCTOBER 2003

� ✏
1. All bit reliabilities αi are set to the same initial

value.
2. The reliability βj of each parity check is cal-

culated by Eqs. (2) and (3).
3. a. When the minimum value βmin of βj is

higher than 0.5: go to 5.
b. When βmin is 0.5 or less: the bit reliabil-

ity, αi, of each bit is modified by Eq. (8).
4. 2.–3. is repeated until the iteration number

reaches the preset limit (Iteration Limit).
5. The bits whose αi is lower than 0.5 are re-

versed.
6. Decoding completion.

✒ ✑
Fig. 5 Iterative decoding algorithm for high dimensionality
parity code.

αi ←




αi +
1− αi

n

n−1∑
k=0

∂βk

∂αi

(
when

n−1∑
k=0

∂βk

∂αi
≥ 0

)

αi +
αi

n

n−1∑
k=0

∂βk

∂αi

(
when

n−1∑
k=0

∂βk

∂αi
< 0

)

(8)

where the second terms have the ranges of

0 ≤ 1−αi

n

∑n−1
k=0

∂βk

∂αi
≤ 1− α (9)

−αi ≤ αi

n

∑n−1
k=0

∂βk

∂αi
< 0 (10)

because of Eqs. (6), (7) and the cases implied by the
summation of Eq. (8). The new αi will lie between 0
and 1.

The modification of bit reliability αi of each bit
is repeated by iterating Eq. (8). This iteration should
ensure that αi of the right bit converges to 1 while αi

of the error bit converges to 0 so as to achieve better
consistency between the parity check and bit reliability.
After convergence, bits with low αi are judged to be
corrupted and are corrected by hard decision.

4.1.4 Decoding Algorithm

The proposed decoding algorithm is summarized in
Fig. 5.

4.2 Behavior of Bit Reliability αi and Reliability βj

of Parity Check

Proposed decoding was applied to the 3Dm2 code(code
length 8, R = 0.125) and the behavior of bit reliability
αi and reliability βj of parity check were observed.

Figure 7 shows the behavior of bit reliability αi

for the case where there are 3 error bits in the code
as shown in Fig. 6(a). Notations for αi are shown in
Fig. 6(b). In addition, the initial values of all αi were

(a) (b) (c)

Fig. 6 Initial error bits and notation of αi and βj .

Fig. 7 Behavior of bit reliability αi.

Fig. 8 Behavior of the reliability βj of parity check.

set to 0.625, which equals the rate of right bits in the
code block. Figure 7 shows the convergence of all αi to
0 or 1. This means that error bits can be revealed by
repeating the modification of αi.

Figure 8 shows the behavior of the reliability βj

of parity check in this decoding process. Notations for
βi are shown in Fig. 6(c). The value of βj in the first
iteration is divided into two values, 0.531 and 0.469.
The first time value of βj exceeds 0.5 corresponds to the
real parity check that does not detect an error. On the
other hand, the first time βj lower than 0.5 corresponds
to the real parity check to detect an error. In Fig. 8,
all βj converge to 1 independently, regardless of their

FUKUTA et al.: ITERATIVE DECODING OF HIGH DIMENSIONALITY PARITY CODE
2477

Fig. 9 Probability of iteration reaching the limit (3Dm5, Initial
αi = 0.8).

Fig. 10 Average iteration number when iteration stops before
the limit (3Dm5, Initial αi = 0.8).

initial value. The convergence of all βj to 1 means
that consistency between all parity checks and all of
bit reliabilities has been recovered. So, reversing all
bits with αi = 0 makes the code block correct.

4.3 Iteration Limit and Bit Error Rate

Here we discuss the iteration limit and decoded bit error
rate (BER) as discerned from the simulation results. In
the simulation, initial values of α were 0.8 and 0.85 for
3Dm5 and 4Dm6, respectively. Numbers of samples in
the simulation were 105 and 104, respectively.

Figures 9 and 12 show the probabilities if the iter-
ation number reaching the various iteration limits in
3Dm5 and 4Dm6, respectively. When the iteration
number reaches the given limit, some βj are less than
0.5 and hard decision or error correction based on αi

will leave errors. The probabilities increase according
to the input BER as shown in Figs. 9 and 12. Espe-
cially in Fig. 12, most iterations reach the limit when
the input BER is greater than 0.09; error correcting
capability can not be expected at these BER values.

In Fig. 9, the probability of reaching the limit for
limit=30 and limit=50 are almost the same. This
means that iterations in excess of 50 are useless. On

Fig. 11 Decoded bit error rate for various iteration limit values
(3Dm5, Initial αi = 0.8).

Fig. 12 Probability of iteration reaching the limit (4Dm6,
Initial αi = 0.85).

Fig. 13 Average iteration number when iteration stops before
the limit (4Dm6, Initial αi = 0.85).

the other hand, Fig. 12 shows that the probabilities for
the various limits examined are very similar.

Figures 10 and 13 show the average number of iter-
ations for samples for which the iteration stops before
reaching the limit. These averages increase with the
input BER, which indicates the difficulty of error cor-
rection at high error rates.

Figures 11 and 14 show the decoded BER for all

2478
IEICE TRANS. FUNDAMENTALS, VOL.E86–A, NO.10 OCTOBER 2003

Fig. 14 Decoded bit error rate for various iteration limit values
(4Dm6, Initial αi = 0.85).

simulation samples. In both figures, the plots are very
similar and higher limits slightly decrease the decoded
BER at lower input BER. In all cases, the decoded BER
does not exceed the input BER.

In practice, the iteration limit is determined by
how many iterations are possible in each time period
from the moment when a block is received to the mo-
ment when the next block is received. Accordingly, the
limit is restricted by bit transmission speed and pro-
cessing speed.

5. Comparison with Conventional Decoding
Method

In this section, we compare the proposed decoding
method with the conventional decoding method of
Adaptive Threshold Decoding in terms of random error
correcting capability and burst error correcting capabil-
ity.

5.1 Random Error Correction

First, random error correcting capability is compared.
Figure 15 shows decoded BER for 3Dm5 code (R =
0.512) and 4Dm6 code (R = 0.482). The hard decision
limit, shown in Fig. 3, of Adaptive Threshold Decod-
ing is 15 times, and the bit correcting iteration is fully
converged.

On the other hand, the initial value of αi is 0.80
for the 3Dm5 code with proposed decoding and 0.75 for
the 4Dm6 code. The maximum modification number of
αi is 50 times for the 3Dm5 code, and 100 times for the
4Dm6 code. The maximum modification number, that
is the iteration limit in the proposed decoding algorithm
described in Fig. 5, is discussed in Sect. 4.3, and the
given limit of 50 or 100 yields reasonable decoded BER.

Figure 15 shows that the proposed decoding
method has higher error correcting capability regard-
less of code dimensionality or input BER.

Fig. 15 Comparison of random error correction capability.

Fig. 16 Comparison if burst error correction capability.

5.2 Burst Error Correction

Figure 16 compares the burst error correcting capability
of the two methods. In this simulation, each sample of
code block contains 1 solid burst error. That is, the
BER in the burst equals 1. In practice, however, the
BER in a burst generally does not exceed 0.5. Decoding
conditions such as codes used, the initial value of αi,
and the maximum modification number of αi, and so
on are the same as used in the above subsection.

Figure 16 shows that the proposed decoding
method has higher error correcting capability than
Adaptive Threshold Decoding. Furthermore, its error
correcting capability is never worse than that of random
error correction (see Fig. 15). When the input BER is
0.05 or less and the proposed decoding method is ap-
plied, burst errors are corrected completely (Fig. 16).
We note the proposed method fails to correct all ran-
dom errors when the input BER is 0.02 or less as shown
in Fig. 15. Overall, this code has higher error correcting
capability against burst errors than the conventional
code.

FUKUTA et al.: ITERATIVE DECODING OF HIGH DIMENSIONALITY PARITY CODE
2479

6. Quantization of Proposed Algorithm

The proposed decoding method described above is com-
putationally expensive so hardware implementation is
difficult. Our solution is to quantize the numerical rep-
resentations and calculations; i.e. αi, βj and differenti-
ated βj . Figures 17 and 18 show the decoded BER us-
ing the quantization procedure; the input BER is 0.05.
Figure 17 is for the 3Dm5 code and Fig. 18 is for the
4Dm6 code. The numbers attached to the plots in the
figures represent the quantization bit numbers. The er-
ror correcting capability of the proposed method with-
out quantization and that of the conventional method
are also shown for reference.

Figure 17 shows that 6 bit-quantization yields vir-
tually the same performance as the original code if the
initial value of αi is greater than 0.8. For the 3Dm5
code, therefore, the proposed algorithm can be quan-
tized to 6 bits. Moreover, we see that the proposed
method has better error correcting capability than hard
decision decoding. Quantization with fewer than 6 bits
degrades the error correcting performance because cal-
culated modified values are less than the quantization
step size. If the modified value of αi had been en-
larged by the algorithm, performance would have been

Fig. 17 Decoded BER with quantized algorithm for 3Dm5.

Fig. 18 Decoded BER with quantized algorithm for 4Dm6.

improved. Some study on formula (Eq. (8)) which mod-
ifies αi, is required

Figure 18 also shows the benefit of 6 bit-
quantization if the initial value of αi lies between 0.85
to 0.95. The impact of the initial value of αi on er-
ror correcting capability must be investigated further
to calculate the optimum initial value.

Consider the decoded BER for input BER in the
range 0.01 to 0.1 with various quantization values as
shown in Figs. 19 and 20, which correspond to 3Dm5
and 4Dm6. Initial αi values are 0.8 and 0.85, which
agree with the above discussion. Once again 6 bit-
precision is shown to be sufficient for the proposed
method.

Next we consider the circuit scale of the decoders
with and without 6 bit-quantization. The above sim-
ulation results without quantization were obtained by
using 32 bit floating-point arithmetic. However, all val-
ues of αi, βj and their partial differential coefficients
lie between 0 and 1. This means that the practical
precision of 32 bit floating-point arithmetic is 24 bit
fixed-point: sign bit and 23 bit mantissa. Multiplica-

Fig. 19 Decoded BER with quantized algorithm for 3Dm5
(Initial αi = 0.8).

Fig. 20 Decoded BER with quantized algorithm for 4Dm6
(Initial αi = 0.85).

2480
IEICE TRANS. FUNDAMENTALS, VOL.E86–A, NO.10 OCTOBER 2003

tion and division, present in the proposed algorithm,
have circuit scale of O(word-width2). Adders and reg-
isters correspond to O(word-width). When a data-flow
structure is adopted for the decoder, the latter factor
is dominant so the circuit scale of the decoder with 6
bit-quantization is at least 75% smaller than that with
floating-point.

7. Conclusion

This paper has introduced iterative decoding with
steepest descent method for error correction in high di-
mensionality parity code. Although it remains to fully
assess the proposed decoding method, we have delin-
eated its possible performance. We showed that the
proposed decoding method was superior to the conven-
tional method in terms of error correcting capability
and is feasible. To enhance the ease of implementation,
we quantized the iterative decoding algorithm. The
proposed decoding algorithm with 6 bit-quantization
offers virtually unchanged error correcting capability.
What remains to be confirmed is the true lower limit of
quantization bit number. To that end, we need to ex-
amine the initial value of αi and refine the modification
formula.

References

[1] Y. Hamasuna, M. Yamamura, T. Ishizaka, M. Matsuo, M.
Hata, and I. Takumi, “Hardware implementation of the high-
dimensional discrete torus knot code,” IEICE Trans. Funda-
mentals, vol.E84-A, no.4, pp.949–956, April 2001.

[2] S.I.R. Costa, E. Agustini, M. Muniz, and R. Palazzo, Jr.,
“Slepian-type codes on a flat torus,” ISIT2000, p.58, June
2000.

[3] D. Rankin and T.A. Gulliver, “Serial and parallel concatena-
tion of SPC product codes,” ISITA2000, W-B-1-2, pp.778–
781, Nov. 2000.

[4] M. Hata, E. Yamaguchi, and I. Takumi, “Probalistic er-
ror correcting code based on mean BER—Design of high-
dimensional discrete torus knot code,” Proc. SITA’98,
pp.169–172, Dec. 1998.

[5] S. Kuroda, E. Yamaguchi, I. Takumi, and M. Hata, “A ge-
ometrical decoding algorithm and correcting limit of high-
dimensional hyper-cubic-ring code—Correcting ability in
BER of 10−1–10−2,” IEICE Trans. Fundamentals (Japanese
Edition), vol.J80-A, no.12, pp.2145–2154, Dec. 1997.

[6] K. Hashimoto and M. Hata, “High-dimensional symmet-
ric parity check code capable of correcting 10−1–10−2 ran-
dom errors,” IEICE Trans. Fundamentals (Japanese Edi-
tion), vol.J75-A, no.8, pp.1257–1266, Aug. 1992.

[7] T. Fukuta, T. Usuda, I. Takumi, and M. Hata, “Soft deci-
sion decoding of a high dimensionality parity code,” IEICE
Technical Report, IT2001-8, May 2001.

Appendix: The Minimum Difference of Trans-
mission Order on the Same Parity
Check Line

Equation (1) is shown again as follows.

r0 =

(
n−1∑
i=0

⌊
t/mi

⌋)
mod m (A· 1)

rk =
⌊
t/mn−(k+1)

⌋
mod m (A· 2)

(k = 1, 2, · · · , n− 1)

Since 0 ≤ t < mn, we can express t as

t = an−1 + man−2 + ... + mn−2a1 + mn−1a0

=
n−1∑
i=0

mn−i−1ai (0 ≤ ai < m). (A· 3)

Substituting the above equation into Eq. (A· 2) gives,

rk =

⌊
n−1∑
i=0

mn−i−1ai/mn−(k+1)

⌋
mod m

= ak (1 ≤ k < n− 1) (A· 4)

and

t =
n−1∑
i=1

mn−i−1ri + mn−1a0. (A· 5)

Furthermore, substituting the above equation into
Eq. (A· 1) gives

r0 =


n−1∑

i=0



n−1∑

j=1

mn−j−1rj + mn−1a0


 /mi



mod m

=

(
n−1∑
i=1

ri + a0

)
mod m. (A· 6)

0 ≤ a0 < m, 0 ≤ r0 < m leads

a0 =

(
r0 −

n−1∑
i=1

ri

)
mod m. (A· 7)

Finally, we can obtain following equation for trans-
mission order t.

t=
n−1∑
i=1

mn−i−1ri + mn−1

((
r0 −

n−1∑
i=1

ri

)
mod m

)
.

(A· 8)

We now investigate difference drk of transmis-
sion order t for code bits on a parity check line of
direction rk, which is specified by the coordinates
r0, r1, .., rk−1, rk+1, .., rn−1.
(A) In the case of k �= 0,

drk = t|rk=i − t|rk=j (0 ≤ j < i ≤ m− 1)

= mn−k−1(i− j) +
{

mn−1(j − i)
mn−1(j − i + m)

(A· 9)

where, the assumption of i > j does not negate general-
ity. drk has two values because of the cyclic structure of

FUKUTA et al.: ITERATIVE DECODING OF HIGH DIMENSIONALITY PARITY CODE
2481

t with period mn. Since our purpose is to find the min-
imum difference, difference |drk| must be the smaller of
the two.

min
i,j

∣∣mn−k−1(i− j) + mn−1(j − i)
∣∣

= mn−1 −mn−k−1, (A· 10)

which is given when i− j = 1, and

min
i,j

∣∣mn−k−1(i− j) + mn−1(j − i + m)
∣∣

= mn−1 + mn−k −mn−k−1, (A· 11)

given when i− j = m − 1. The former value is always
the smaller of the two minima, so,

min
i,j
|drk| = mn−1 −mn−k−1 (k ≥ 1). (A· 12)

(B) In the case of k = 0,

dr0 = t|r0=i − t|r0=j (0 ≤ j < i ≤ m− 1)

=
{

mn−1(j − i)
mn−1(j − i + m) (A· 13)

Similarly, the difference |dr0| must be the smaller of the
two.

min
i,j

∣∣mn−1(j − i)
∣∣ = mn−1, (A· 14)

which is given when i− j = 1, and

min
i,j

∣∣mn−1(j − i + m)
∣∣ = mn−1, (A· 15)

given when i− j = m− 1. The above two minima are
the same so

min
i,j
|drk| = mn−1 (k = 0). (A· 16)

In total, the minimum distance is given by

min
k=0,1,..,n−1

|drk| = mn−1 −mn−2. (A· 17)

We note that the minimum difference of transmis-
sion order t on parity check lines varies according to the
direction of parity line. This means that the definition
of a parity check in a code block is not satisfied, so the
transmission order could not be optimum.

Here we must remember that the number of par-
ity check lines with a certain direction is mn−1 and
that each line contains m digits out of mn digits in the
code. For these mn−1 parity lines, we can isolate the
transmission order perfectly on each line by selecting
t’s every mn−1 digits. In that case, the minimum dif-
ference of t’s is mn−1. In other words, the minimum
difference never exceeds mn−1.

Since the number of such perfect selections is mn−1

and they are exhausted for above parity lines of the
direction, the minimum difference can not reach mn−1

in parity lines with other directions.

In conclusion, we have not obtained a rigorous
proof that confirms the transmission order yielded by
Eq. (1) to be the optimum. Instead we consider it to
be quasi-optimum.

Toshio Fukuta received B.E. and
M.S. degrees from Nagoya Institute of
Technology, Nagoya, Japan in 2001 and
2003, respectively. He is researching Er-
ror Correcting Codes in the Institute.

Yuuichi Hamasuna received B.E.
(1991) and M.S. (1993) degrees in Elec-
tronic Engineering from Saga University,
Saga, Japan. He joined DDS Inc. in 1995
and is conducting R&D activities on Er-
ror Correction Technologies.

Ichi Takumi received B.E. and M.S.
degrees from Nagoya Institute of Tech-
nology, Nagoya, Japan in 1982 and 1984,
respectively, both in electronics engineer-
ing. After graduation he joined Oki Elec-
tric Co. He has a Doctor of Eng. de-
gree from Nagoya Institute of Technol-
ogy. Since December 1985, he has been
with the Nagoya Institute of Technology,
where he is now a professor at the College
of Shikumi. His current research interests

include digital signal processing and digital communications.

Masayasu Hata graduated in 1958
from the Department of Electronic Engi-
neering, Faculty of Engineering, Nagoya
Institute of Technology, and is affiliated
with Oki Electric Co. He has a Doctor of
Eng. degree from Tokyo Institute of Tech-
nology. He was engaged in the R&D of
digital communication systems, applica-
tion of electronic circuits and millimeter
wave communication equipment. He re-
tired from Oki Electric Co. in 1985 and

became a Professor of Nagoya Institute of Technology. Since
2002 he has been with Chubu University as a Professor. He is
currently researching digital signal processing techniques and in-
formation communication.

2482
IEICE TRANS. FUNDAMENTALS, VOL.E86–A, NO.10 OCTOBER 2003

Takahiro Nakanishi received B.E.
and M.S. degrees from Nagoya Institute
of Technology, Nagoya, Japan in 1993 and
1995, respectively, both in electronic and
information engineering. He has a Doctor
of Eng. degree from Nagoya Institute of
Technology. Since 2003, he has been with
Gunma University.

