Surface passivation effects on AlGaN/GaN high-electron-mobility transistors with SiO_2 , Si_3N_4 , and silicon oxynitride

S. Arulkumaran,^{a)} T. Egawa,^{b)} H. Ishikawa, and T. Jimbo

Research Center for Nano-Device and System, Nagoya Institute of Technology, Showa-ku, Gokiso-cho, Nagoya 466-8555, Japan

Y. Sano

Advance Device Laboratory, Corporate Research and Development Center, Oki Electric Industry Co. Ltd., 550-5 Higashiasakawa-cho, Hachioji-shi, Tokyo 193-8550, Japan

(Received 16 September 2003; accepted 25 November 2003)

Surface passivation effects were studied on AlGaN/GaN high-electron-mobility transistors (HEMTs) using SiO₂, Si₃N₄, and silicon oxynitride (SiON) formed by plasma enhanced chemical vapor deposition. An increase of I_{Dmax} and g_{mmax} has been observed on the passivated (SiO₂, Si₃N₄ and SiON) HEMTs when compared with the unpassivated HEMTs. About an order of magnitude low I_{gLeak} and three orders of magnitude high I_{gLeak} was observed on Si₃N₄ and SiO₂ passivated HEMTs, respectively, when compared with the unpassivated HEMTs. The increase of I_{gLeak} is due to the occurrence of surface related traps, which was confirmed by the observation of kink and hysteresis effect on dc and ac $I_{\text{DS}}-V_{\text{DS}}$ characteristics, respectively. Though the Si₃N₄ passivated HEMTs show better dc characteristics, the breakdown voltage (BV_{gd}) characteristics are not comparable with SiO₂, SiON passivated and unpassivated HEMTs. The SiON is also a very promising candidate as a surface passivant for AlGaN/GaN HEMTs because it shows better BV_{gd} with low hysteresis width and small I_D collapse than Si₃N₄ passivated HEMTs. (© 2004 American Institute of Physics. [DOI: 10.1063/1.1642276]

In recent years, there has been intense development of AlGaN/GaN high-electron-mobility transistors (HEMTs) as candidates for high power and high temperature applications at microwave frequencies. Recently researchers have demonstrated impressive AlGaN/GaN microwave power HEMTs as high as 11.7 W/mm.¹ The performance of these devices are limited by trapping effects through drain-current collapse.² Much attention has been focused on the reduction of surface states using different passivation dielectrics.^{3–8} The Si₃N₄ and SiO_2 shown to be able to mitigate the effects of these states.^{3,5,6,9} Kikkawa et al.¹⁰ demonstrated free of current collapse and g_m dispersion by surface-charge controlled HEMTs by Si₃N₄. More than one order of magnitude higher gate leakage currents (IgLeak) after SiO2 and Si3N4 passivation were found earlier.^{11,12} On the other hand slightly lower IgLeak after passivation with Si₃N₄ were reported recently.⁵ Due to the occurrence of deep traps, SiO₂ passivated HEMTs show slow switching speed with high breakdown voltage $(BV_{\rm od})$.¹³ There is no report available for the surface passivation studies on AlGaN/GaN HEMTs with SiON. In this letter, we are reporting the surface passivation studies of SiO₂, Si₃N₄, and SiON on AlGaN/GaN HEMTs. In addition, unpassivated HEMTs are also compared with the passivated HEMTs.

The AlGaN/GaN heterostructure was grown on 2-in.diameter sapphire substrate using metalorganic chemical vapor deposition (Nippon Sanso SR2000). The device structure and the growth conditions were published elsewhere.¹⁴ After the device isolation with BCl₃ plasma reactive ion etching, SiO₂, Si₃N₄, and SiON dielectrics with a thickness of $\sim 100 \text{ nm}$ were deposited at 300 °C by plasma enhanced chemical vapor deposition (PECVD). Refractive indices of the deposited SiO₂, Si₃N₄, and SiON are 1.47, 1.88, and 1.58, respectively. The XPS spectra revealed the deposited SiO₂ and Si₃N₄ dielectrics³ were slightly silicon rich and SiON was slightly nitrogen rich. The source drain ohmic contacts were formed after etching the dielectrics with optimized buffered HF solution using Ti/Al/Ni/Au (20/72/12/40 nm) metals followed by lamp annealing at 775 °C for 30 s. The samples contact resistances were in the range between 1.25 and 1.77 Ω mm. The gate metal Pd/Ti/Au (40/20/60 nm) was formed by conventional lithography.²

The inset of Fig. 1 shows the schematic diagram of the surface passivated HEMTs. The dielectric layers: (i) sourcegate gap, (ii) gate-drain gap, and (iii) isolated region were covered. To observe the effect of surface passivation, unpassivated AlGaN/GaN HEMTs were also fabricated on the same wafer. The dc characteristics were carried out on the HEMTs using Agilent 4156c semiconductor parameter analyzer under dark and white-light illumination. To observe the drain current (I_D) collapse of the devices, ac $I_{DS}-V_{DS}$ characteristics were carried out at different drain sweep voltages (V_{DS} =0-8, 0-12, 0-15, 0-20, 0-25, and 0-30 V) using Tektronix 370A curve tracer.²

Figure 1 shows the good pinchoff $I_{\rm DS}-V_{\rm DS}$ characteristics of unpassivated and passivated 15- μ m-AlGaN/GaN HEMTs. Table I shows the dc parameters of unpassivated and passivated HEMTs. The device dimensions are: $W_g = 15 \ \mu$ m, $L_{sd} = 11 \ \mu$ m, $L_{sg} = 5 \ \mu$ m, and $L_g = 1.5 \ \mu$ m. An increase in the maximum drain current ($I_{D \text{ max}}$) and extrinsic transconductance ($g_{\text{m max}}$) of ~19% and 8% for SiO₂, 19% and 6% for Si₃N₄, and 11% and 2% for SiON passivated

613

^{a)}Electronic mail: arul001@yahoo.com

b)Author to whom correspondence should be addressed; electronic mail: egawa@elcom.nitech.ac.jp

FIG. 1. dc $I_{\rm DS}-V_{\rm DS}$ characteristics of Si₃N₄, SiO₂, SiON passivated and unpassivated AlGaN/GaN HEMTs on sapphire substrate: V_G = +1.5 V, ΔV_G = -2.0 V. Inset is a schematic diagram of passivated AlGaN/GaN HEMTs.

HEMTs, respectively, were observed when compared with the unpassivated HEMTs. Figure 2(a) shows the transfer characteristics of passivated and unpassivated HEMTs. Though, the $I_{D \max}$ and g_{\max} increased due to the surface controlled effect,¹⁰ the rise in gate-leakage current (I_{gLeak}) was observed^{11,12} except Si₃N₄ passivated HEMTs.⁵ Figure 2(b) shows the I_{gLeak} of unpassivated and passivated HEMTs measured at subthreshold regime ($V_G = -5.5$ V). Two terminals I_{gLeak} were also measured on Schottky diode and the results were similar to the results of three terminals I_{gLeak} . About an order of magnitude low I_{gLeak} and three orders of magnitude high IgLeak was observed on Si₃N₄ and SiO₂ passivated HEMTs, respectively, when compared with the unpassivated HEMTs. Similar behavior was observed for drain leakage current [see Fig. 2(a)]. The rise in I_{gLeak} for the SiO₂ and SiON passivated devices results in a significant output conductance, which was observed by other authors^{11,12} and would have implications for increased rf noise. The surface related traps with activation energy of 0.2 eV accounted for the I_{gLeak} mechanism.¹⁴

The I_D collapse behavior was realized using ac $I_{\rm DS} - V_{\rm DS}$ characteristics.² Inset of Fig. 3 shows the output resistance [ratio of knee voltage ($V_{\rm knee}$) and $I_{D \,\rm max}$] of passivated and unpassivated HEMTs for different $V_{\rm DS}$. The I_D reduction with the increase of $V_{\rm DS}$ up to 30 V was high for SiO₂ passivated HEMTs when compared with the other dielectric passivated and unpassivated HEMTs (see Table I). The ob-

FIG. 2. (a) Transfer characteristics of Si₃N₄, SiO₂, SiON passivated and unpassivated AlGaN/GaN HEMTs measured at $V_D = 4$ V, (b) $I_g - V_{DS}$ characteristics of passivated and unpassivated HEMTs measured at subthreshold regime ($V_G = -5.5$ V).

servation of high I_D collapse in SiO₂ passivated HEMTs are due to the effect of surface related traps, which was confirmed by the occurrence of hysteresis in ac $I_{\rm DS} - V_{\rm DS}$ measurements. The V_{knee} variation at a particular I_D is high for SiO₂ passivated HEMTs, very little variation has been observed in unpassivated HEMTs. The device output power (P_{out}) was calculated with: $P_{\text{out}} = (V_{\text{DS}} - V_{\text{knee}})(I_D/2)$ by fixing the $V_{\text{DS}} = 30 \text{ V.}^2$ Highest P_{out} was observed on Si₃N₄ passivated HEMTs. SiO2 passivated HEMTs exhibited lowest P_{out} . Bernat *et al.*¹⁵ were also observed similar behavior with SiO₂ passivation. The hysteresis (looping) effects were observed on both the passivated and unpassivated HEMTs. Relatively high P_{out} with low I_D collapse and hysteresis width (V_{hvs}) was observed on SiON passivated HEMTs when compared with unpassivated HEMTs. Maximum $V_{\rm hys}$ (2.27 V) was observed at $V_G = +1.5$ V for SiO₂ passivated HEMTs (see Table I) which indicates the existence of traps. The carrier trapping effects were confirmed using dark and white-light illuminated dc characteristics.² Figure 3 shows

TABLE I. Device dc parameters of SiO₂, Si₃N₄, and SiON passivated and unpassivated AlGaN/GaN HEMTs on sapphire substrate.

Parameters	I _{D max} (mA/mm)	g _{m max} (mS/mm)	$(I_{\rm dI} - I_{\rm dd})/I_{\rm dI}$ (%) @ $V_D = 4.45$ V and $V_G = -1.5$ V	V _{th} (V)	V _{th} Vari. (%)	V _{hys} (V) @30 V	I_{dAC} Reduc. (%) @ $V_G = +1.5$ V and $V_D = 30$ V	V _{knee} Vari. (%)	BV _{gd} (V)	P _{out} (W/mm)
Un-Pas.	766	189	7.00	-3.67	1.89	0.68	0.89	6.80	112	4.39
SiO ₂	949	205	8.33	-4.19	5.80	2.27	6.83	40.2	132	3.60
Si ₃ N ₄	943	201	6.91	-4.41	1.59	0.70	2.39	19.2	56	4.72
SiON	860	193	8.18	-4.07	3.00	0.08	1.51	20.4	108	4.36

Downloaded 02 Sep 2010 to 133.68.192.98. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions

FIG. 3. dc $I_{\rm DS}-V_{\rm DS}$ characteristics of Si₃N₄, SiO₂, SiON passivated and unpassivated AlGaN/GaN HEMTs measured at $V_G = -0.5$ V under dark and white-light illumination. Inset is $V_{\rm knee}/I_{D\rm max}$ vs drain sweep voltages ($V_{\rm DS}=0-8, 0-12, 0-15, 0-20, 0-25, \text{ and } 0-30$ V) measured from ac $I_{\rm DS}-V_{\rm DS}$ characteristics.

the dc $I_{\rm DS}-V_{\rm DS}$ characteristics of unpassivated and passivated HEMTs measured under dark and white-light illumination. The percentage of increase in I_D under illumination was high for SiO₂ and SiON passivated HEMTs when compared with the Si₃N₄ and unpassivated HEMTs (see Table I). The kink or current slump was high on passivated HEMTs. Similar behavior was observed on Si₃N₄ passivated AlGaN/GaN HEMTs by Ando *et al.*¹⁶ There is no kink observed on unpassivated HEMTs. Due to the occurrence of deep traps, large $V_{\rm th}$ variation with respect to applied $V_{\rm DS}$ was observed for SiO₂ (5.8%) and for SiON (3%) passivated HEMTs. Small $I_{\rm gLeak}$, small $V_{\rm hys}$, small $V_{\rm th}$ variation, small kink, small I_D collapse with high $P_{\rm out}$ was observed on Si₃N₄ and unpassivated HEMTs.

Figure 4 shows breakdown voltage (BV_{gd}) characteristics, which were measured on unpassivated and passivated HEMTs at subthreshold regime $(V_G = -5.5 \text{ V})$ with $L_{gd} = 5.0 \ \mu\text{m}$ and $W_g = 200 \ \mu\text{m}$. The SiO₂ passivated HEMTs exhibited high BV_{gd} (see Table I) when compared with the passivated (Si₃N₄ and SiON) and unpassivated HEMTs. The

FIG. 4. OFF-state ($V_G = -5.5$ V) breakdown voltage (BV_{gd}) characteristics of Si₃N₄, SiO₂, SiON passivated, and unpassivated AlGaN/GaN HEMTs.

observation of low BV_{gd} values on Si₃N₄ passivated HEMTs are due to the occurrence of lateral depletion by shallow traps between gate-drain regions. The observation of high $BV_{\rm sd}$ from SiO₂ passivated HEMTs are due to the formation of deep traps in the SiO₂/AlGaN interface ensure the capture of electrons injected from the gate during turnoff, which depletes the channel vertically instead of laterally.¹³ This helps to increase BV_{gd} . But the electrons emit from these deep traps too slowly during turn-on. The enhancement of $BV_{\rm gd}$ $(\sim 48\%)$ with low $V_{\rm hys}$ for SiON (80 mV) passivated HEMTs are probably due to the occurrence of both shallow and deep traps when compared with Si₃N₄ passivated HEMTs. The occurrence of very small V_{hys} on SiON passivated HEMTs are an indication to get high switching speed (see Table I). Reasonably good ac and dc characteristics with enhanced BV_{gd} was observed on SiON passivated HEMTs.

We have demonstrated the surface passivation effects on the performance of AlGaN/GaN HEMTs using PECVD grown SiO₂, Si₃N₄, and SiON. An increase of I_{Dmax} and $g_{\rm mmax}$ has been observed on the passivated (SiO₂, Si₃N₄ and SiON) HEMTs when compared with the unpassivated HEMTs. About an order of magnitude low I_{gLeak} and three orders of magnitude high I_{gLeak} was observed on Si₃N₄ and SiO₂ passivated HEMTs, respectively, when compared with the unpassivated HEMTs. Small increase of I_{gLeak} was observed on SiON passivated HEMTs. Low I_D collapse with low IgLeak was observed on Si3N4 passivated AlGaN/GaN HEMTs. The observation of high BV_{gd} on SiO₂ passivated HEMTs are due to the formation of deep traps instead of shallow traps. The SiON is a very promising candidate as a surface passivant for AlGaN/GaN HEMTs because it shows better BV_{gd} with small I_D collapse and V_{hys} than Si₃N₄ passivated HEMTs.

- ¹J. R. Shealy, V. Kaper, V. Tilak, T. Prunty, J. A. Smart, B. Green, and L. F. Eastman, J. Phys.: Condens. Matter **14**, 3499 (2002).
- ²S. Arulkumaran, T. Egawa, H. Ishikawa, and T. Jimbo, Appl. Phys. Lett. 81, 3073 (2002).
- ³S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, and M. Umeno, Appl. Phys. Lett. **73**, 809 (1998).
- ⁴B. M. Green, K. K. Chu, E. M. Chumbes, J. A. Smart, J. R. Shealy, and L. F. Eastman, IEEE Electron Device Lett. **21**, 268 (2000).
- ⁵W. Lu, V. Kumar, R. Schwindt, E. Piner, and I. Adesida, Solid-State Electron. **46**, 1441 (2002).
- ⁶A. V. Vertiachikh, L. F. Eastman, W. J. Schaff, and T. Prunty, Electron. Lett. **38**, 388 (2002).
- ⁷X. Z Dang, E. T. Yu, E. J. Piner, and B. T. McDermott, J. Appl. Phys. **90**, 1357 (2001).
- ⁸R. Ventury, N. Q. Zhang, S. Keller, and U. K. Mishra, IEEE Trans. Electron Devices 48, 560 (2001).
- ⁹M. Nagahara, T. Kikkawa, N. Adachi, Y. Tateno, S. Kato, M. Yokoyama, T. Kimura, Y. Yamaguchi, N. Hara, and K. Joshin, IEDM Tech. Dig., 693 (2003).
- ¹⁰T. Kikkawa, M. Nagahara, N. Okamoto, Y. Tateno, Y. Yamaaguchi, N. Hara, K. Joshin, and P. M. Asbeck, IEDM Tech. Dig., 585 (2001).
- ¹¹ W. S. Tan, P. A. Houston, P. J. Parbrook, G. Hill, and R. J. Airey, J. Phys. D 35, 595 (2002).
- ¹²B. J. Ansell, I. Harrison, and C. T. Foxon, Phys. Status Solidi A 188, 279 (2001).
- ¹³N.-Q. Zhang, B. Moran, S. P. DenBaars, U. K. Mishra, X. W. Wang, and T. P. Ma, IEDM Tech. Dig., 589 (2001).
- ¹⁴S. Arulkumaran, T. Egawa, H. Ishikawa, and T. Jimbo, Appl. Phys. Lett. 82, 3110 (2003).
- ¹⁵J. Bernat, P. Javorka, A. Fox, M. Marso, H. Luth, and P. Kpordos, Solid-State Electron. 47, 2097 (2003).
- ¹⁶Y. Ando, Y. Okamoto, H. Miyamoto, Y. Hayama, T. Nakayama, K. Kasahara, and M. Kuzuhara, IEDM Tech. Dig., 381 (2001).

Downloaded 02 Sep 2010 to 133.68.192.98. Redistribution subject to AIP license or copyright; see http://apl.aip.org/about/rights_and_permissions