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SUMMARY ∆-Timed Atomic Broadcast is the broadcast ensuring that
all correct processes deliver the same messages in the same order, and that
delivery latency of any message broadcast by any correct process is some
predetermined time ∆ or less. In this paper, we propose a ∆-timed atomic
broadcast algorithm in a synchronous system where communication delay
is bounded by a known constant d and processes suffer both crash faults
and timing faults. The proposed algorithm can tolerate fc crash faults and
ft timing faults as long as at least ft + 1 processes are correct, and its max-
imum delivery latency ∆ is (2 f ′ + 7)d where f ′ is the actual number of
(crash or timing) faulty processes. That is, the algorithm attains the early-
delivery in the sense that its delivery latency depends on the actual number
of faults rather than the maximum number of faults that the algorithm can
tolerate. Moreover, the algorithm has a distinct advantage of guaranteeing
that timing-faulty processes also deliver the same messages in the same
order as the correct processes (Uniformity). We also investigate the max-
imum number of faulty processes that can be tolerated. We show that no
∆-timed atomic broadcast algorithm can tolerate ft timing faults, if at most
ft processes are correct. The impossibility result implies that the proposed
algorithm achieves the maximum fault-resilience with respect to the num-
ber of faulty processes.
key words: timed atomic broadcast, fault tolerance, timing fault, crash
fault

1. Introduction

Atomic broadcast [3], [8] is a fundamental and effective
communication primitive for designing fault-tolerant dis-
tributed systems. It ensures that all correct processes deliver
the same messages in the same order. The atomic broad-
cast is widely used for preserving consistency of replicated
data in many applications: distributed databases [12], shared
objects [1], [9], [10], and so on. As corollary of the impos-
sibility result on the consensus problem [6], it is proved that
no deterministic algorithm can realize the atomic broadcast
in an asynchronous message-passing system subject to only
a single crash fault [4], [6]. Thus, several atomic broadcast
algorithms have been proposed on the assumption of some
synchrony [3], [7] or unreliable failure detection [2].

Synchrony is one of the most commonly used assump-
tions for designing atomic broadcast algorithms [5]. It as-
sumes that communication delay between any pair of pro-
cesses is bounded by some constant. The assumption of
synchrony also arouses an interest in the possibility of timed
atomic broadcast, where delivery latency of any broadcast
message is bounded by some predetermined time ∆ (∆-
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timeliness). The ∆-timed atomic broadcast is not only par-
ticularly important for real-time systems, but also desirable
for non-real-time systems because message delivery latency
strongly affects the overall performance of distributed sys-
tems.

In real distributed systems, however, because of the
inherent unpredictability of distributed systems, the syn-
chrony assumption is occasionally violated, by overload of
processes, message congestion, and so on. Such viola-
tion brings the timing-fault into synchronous systems. The
timing-faults may prevent algorithms designed in the syn-
chronous model from working correctly in real distributed
systems. Even when the algorithms work regardless of the
timing-faults, timing-faults may cause a significant slow-
down of the entire system and the timeliness of the ∆-timed
atomic broadcast may be violated. Therefore, robustness
for timing-faults is strongly desired in the ∆-timed atomic
broadcast. Moreover, robustness for timing-faults has an-
other key advantage in real distributed systems. Many dis-
tributed systems have design parameters relevant to the up-
per bound of communication delay. For example, time-
out detection is based on the parameter, and the parameter
value is usually overestimated to avoid unnecessary time-
out. However such overestimation sometimes degenerates
the overall performance of distributed systems. Robustness
for timing-faults allows to estimate the upper bound more
tightly, it can actively improve the performance.

In this paper, we consider process timing faults that
cause overdelay on messages sent or received by the faulty
processes , and investigate the possibility of the ∆-timed
atomic broadcast. The system suffers both timing-faults
and crashes. A crash fault can be regarded as a special
case of timing-faults such that all the messages sent by
timing-faulty processes experience infinite communication
delay. However, this paper definitely distinguishes crash
faults from timing faults because the unification of those two
fault models hides the essential difference between them:
processes “eventually” receive messages from timing-faulty
processes (once those messages are sent), whereas they
never receive messages from crashed processes. In other
words, there may be a case that fc crash faults and ft timing-
faults can be tolerated, but ft + fc timing-faults cannot be
tolerated. Actually, this paper succeeds in showing the dif-
ference.

This paper presents a novel timed atomic broadcast al-
gorithm in the synchronous model with crash and timing
faults. The algorithm can tolerate fc crash faults and ft tim-
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ing faults as long as at least ft + 1 processes are correct, and
its maximum delivery latency ∆ is (2 f ′+7)d where f ′ is the
actual number of (crash or timing) faulty processes. This
implies that the algorithm attains the early-delivery, that is,
the delivery latency does not depend on the maximum num-
ber of faulty processes that the algorithm can tolerate, but
depends only on the actual number of faulty processes. In
real operation of distributed systems, the actual number of
faults is much smaller than the maximum number of faults
that can be tolerated. Hence, the early-delivery property ef-
fectively affects the performance of the algorithm. More-
over, the algorithm has a distinct advantage of guarantee-
ing that timing-faulty processes also deliver the same mes-
sages in the same order as the correct processes (Unifor-
mity). Since the overdelay of messages are often caused by
transient overload of processes or the network, the timing
fault should be considered as a transient fault. This implies
that the timing-faulty processes recover from the faults and
rejoin the application (possibly without detecting the faults).
To ensure consistent recovery from the timing faults, it is
strongly desired to guarantee Uniformity. The timing-fault
tolerance of the atomic broadcast is first introduced in [3].
However, it does not consider the uniformity. To the best
of our knowledge, this is the first paper that considers both
uniformity and ∆-timeliness in presense of timing-faults.

We also consider the upper bound on the number of
faulty processes that timed atomic broadcast algorithms can
tolerate. We show that no algorithm can tolerate ft timing
faults if the number of correct processes is ft or less. The
impossibility result implies that our timed atomic broadcast
algorithm achieves the maximum fault-resilience with re-
spect to the numbers of both crash faulty and timing faulty
processes.

At the end of this section, it is worth while to touch
upon the relation between this work and our previous work.
In our previous work [11], as a closely related result, we pro-
posed a timed uniform consensus algorithm tolerating crash
and timing-faults. It is well known that a uniform atomic
broadcast algorithm can be constructed from a uniform con-
sensus algorithm in asynchronous systems (and thus in syn-
chronous systems) [2]. However, it is not the case for the
timed uniform atomic broadcast that can tolerate timing-
faults. Actually, our construction of a timed uniform atomic
broadcast algorithm requires a uniform consensus algorithm
that satisfies a stronger validity condition than our previous
uniform consensus algorithm. Thus, we cannot construct a
timed uniform atomic broadcast algorithm from the uniform
consensus algorithm proposed in [2]. We will discuss more
details at the end of Sect. 3.

The paper is organized as follows. After introducing
the model and definition of the timed atomic broadcast in
Sect. 2, we propose the timed atomic broadcast algorithm in
Sect. 3. We show the impossibility result in Sect. 4. Finally,
we conclude this paper in Sect. 5.

2. Preliminaries

2.1 Distributed System

We consider a synchronous distributed message-passing
system consisting of n processes P = {p0, p1, p2, . . ., pn−1},
in which any pair of processes can communicate each other
by directly exchanging messages. All channels are reliable:
each channel correctly transfers messages without loss or
duplication. Processes can crash and can become timing-
faulty. The system is synchronous in the sense that all the
messages transmitted between non-timing-faulty processes
have communication delays within d. We assume every pro-
cess knows the constant d a priori. In addition, we assume
that each process has a timer and can set the timer to raise an
alarm after the preset time interval. In the following subsec-
tions, we describe the behavior of the system in more detail.

2.1.1 Processes

A process is modeled as a state machine, and changes its
own state when an event occurs. Local processing time is
negligible, that is, state transition occurs in an instant. Pro-
cesses are subject to crash and timing faults. These faults
are modeled as particular states of processes. Actually, a
state of a process is defined as the pair of (s, f ), where s is
the system state and f is the fault state. The fault state can
be “correct”, “crashed”, or “timing-faulty”. According to its
fault state, each process works as follows.

• When the fault state is “correct” or “timing-faulty”, the
process works correctly according to its state transi-
tion function. However, a correct process and a timing-
faulty process has difference in communication delay:
the delay of message transfer from or to a timing-faulty
process may exceed the upper bound d. The difference
is formally specified later. The fault state can change to
“crashed” on the occurrence of a crash event (this im-
plies the process crashes). The crash event can occur at
any time.

• When the fault state is “crashed”, the process makes
no operation. Once the fault state becomes “crashed”,
it remains “crashed” forever.

Without loss of generality, we can assume that the fault
state never changes from “correct” to “timing-faulty”. In
other words, we regard the process that suffers from the
timing-fault as being “timing-faulty” from the beginning.
Notice that we introduce the faulty state only to represent
the system configuration, and we assume processes are un-
aware of their fault states: the same state transition can oc-
cur, whether its fault state is “correct” or “timing-faulty”.
Afterward, to clarify, we say that the process pi is correct
when pi is not timing-faulty and never crash, say that the
process pi is non-timing-faulty when pi is not timing-faulty
but may possibly crash in the future, and say that the process
pi is non-crashed when pi never crashes (even in the future).
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There are upper bounds fc on the number of processes
that can crash and ft on the number of processes that can be
timing-faulty: at most fc processes can experience the state
“crashed”, and at most ft processes can experience the state
“timing-faulty.” We assume that every process knows the
values of fc and ft a priori. We also denote f ′c (≤ fc) and
f ′t (≤ ft) to be the actual number of crash or timing-faulty
processes respectively. No process can know the value of f ′c
and f ′t . Notice that a process is counted as both a timing-
faulty process and a crashed process when the process is
initially timing-faulty and then crashes. For short, we denote
the constant f to be min{ ft + fc, n − 1} and f ′ to be f ′t + f ′c .

For the number of faulty processes, we assume as fol-
lows:

Assumption 1 At least ft + 1 processes are correct.

Remark: Since the atomic broadcast algorithm proposed
in this paper attains the early-delivery, its performance de-
pends on f ′ rather than f . This implies that overestimation
of ft and fc does not cause performance degradation. Thus,
practically, users have only to set the parameters ft and fc of
the algorithm to be maximal under the restriction that As-
sumption 1 holds.

2.1.2 Timer

Each process has a timer. The timer can be set by a primitive
operation Timerset∗(time, id) to raise an event Alarm∗(id)
identified by id after the interval time. The timer of each
non-timing-faulty process raises the alarm event at the ex-
act time, unless the process crashes. However, the timer of
each timing-faulty process can raise up the alarm at wrong
time (but it necessarily raises up the alarm event unless it
crashes).

2.1.3 Communication

Processes can communicate each other by exchanging mes-
sages. A message can be sent by a primitive operation Send
and received by a primitive operation Receive. We assume
that the message passing is reliable as follows:

Nonfaulty-Liveness: If a non-timing-faulty process pi sends
a message m to a non-timing-faulty process pk at t and
both of them does not crash by t + d, then pk receives
m at t + d or earlier.

Faulty-Liveness: If a process pi sends a message m to a pro-
cess pk and does not crash, then pk eventually receives
m or eventually crashes.

Uniform Integrity: A message m can be received at most
once, only if it is previously sent by some process.

As we mentioned in the previous subsection, this spec-
ification also defines the essential difference between a non-
timing-faulty process and a timing-faulty process. Notice
that we do not assume messages are received in FIFO order.

2.1.4 Configuration and Execution

A system configuration is represented by all processes’
states, messages under transmission, and a set of alarms
which have been set but have not gone off. An execution
of a distributed system is an alternative sequence of config-
urations and events E = c0, e1, c1, e2, c2 · · · such that occur-
rence of event ei changes the configuration from ci−1 to ci.
Since we assume synchrony, we deal with a timed execution
E = c0, (e1, t1), c1, (e2, t2), · · · , ck, (ek+1, tk+1), · · · where each
event ei is associated with global time ti when the event oc-
curs. The timed execution we consider satisfies the follow-
ing conditions:

1. The times assigned to events are non-decreasing, that
is tk−1 ≤ tk holds for any k.

2. If (e, t) is an event sending a message m from a non-
timing-faulty process pi to a non-timing-faulty process
p j, then there exists an event (e′, t′) such that t ≤ t′ ≤
t + d holds and (a) e′ is p j’s event receiving m, (b) pi’s
crash event, or (c) p j’s crash event.

3. If (e, t) is an event sending a message m from a process
pi to a process p j, there exists event (e′, t′) such that
t ≤ t′ holds and (a) e′ is p j’s event receiving m, (b) pi’s
crash event, or (c) p j’s crash event.

4. If (e, t) is an event setting a timer for an interval τ at a
non-timing-faulty process pi, then there exists the event
(e′, t′) such that (a) e′ is pi’s alarm event and t′ = t + τ
holds, or (b) e′ is pi’s crash event and t ≤ t′ ≤ t + τ
holds.

5. If (e, t) is an event setting a timer for an interval τ at a
process pi, then there exists the event (e′, t′) such that
(a) e′ is pi’s alarm event and t ≤ t′ holds, or (b) e′ is
pi’s crash event and t ≤ t′ holds.

6. If (e, t) is an internal or send event at a process pi, then
there exists a preceding event (e′, t′) at pi such that t =
t′ holds.

Conditions 2 and 3 imply that all messages are even-
tually received unless their sender or receiver crash. Con-
dition 2 also implies that any message exchanged between
non-timing-faulty processes experiences delay of at most d.
Conditions 4 and 5 respectively imply that the timer of each
non-timing-faulty process works correctly, and the timer of
each timing-faulty process can raises up the alarm event at
any time. Condition 6 implies that processing time of local
computation is negligible, that is, several internal and send
events can be executed in an instant.

2.2 ∆-Timed Uniform Atomic Broadcast

Uniform Atomic broadcast is the broadcast ensuring that
all non-crashed processes deliver the same set of messages
in the same order. The set of messages includes all mes-
sages broadcast by processes and no spurious messages.
The ∆-timed uniform atomic broadcast is defined to be the
atomic broadcast with an additional property, ∆-timeliness.
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Fig. 1 Architecture of the uniform atomic broadcast.

The ∆-timeliness guarantees that delivery latency between
two non-timing-faulty processes is bounded by some con-
stant ∆. The atomic broadcast algorithm provides two in-
terfaces, TABcasti(m) and TADeliveri(m), to an upper ap-
plication layer. The event TABcasti(m) is invoked by the
upper application to broadcast a message m by the ∆-timed
uniform atomic broadcast, and TADeliveri(m) is invoked by
the ∆-timed uniform atomic broadcast algorithm to deliver
a message m. The algorithm is implemented by using Send
and Receive primitives that are defined previously, and de-
ployed, as a module, to each process. Figure 1 illustrates
the architecture of the uniform timed atomic broadcast. For-
mally, the ∆-timed uniform atomic broadcast is the broad-
cast satisfying the following specifications:

Validity: If a process pi broadcasts a message m and does
not crash, then the process pi eventually delivers m, or
become crashed eventually.

Uniform Integrity: For any message m, every process deliv-
ers m at most once, only if some process broadcasts m.

Uniform Agreement: If a process delivers a message m, then
each process eventually delivers m, or becomes crashed
eventually.

Uniform Total Order: Let processes pi and p j both deliver
messages m and m′. Then, pi delivers m before m′ if
and only if p j delivers m before m′.

Nonfaulty ∆-Validity: If a non-timing-faulty process pi

broadcasts a message m at t and does not crash by t+∆,
then the process pi delivers m at t + ∆ or earlier.

∆-Agreement: If a non-timing-faulty process broadcasts a
message m at t and a process delivers m, then each non-
timing-faulty process delivers m at t+∆ or earlier, or is
crashed at t + ∆.

We call the messages to be broadcast by the ∆-timed
uniform atomic broadcast algorithm “ABcast message” to
distinguish them from the messages sent by S end primitive.

3. ∆-Timed Uniform Atomic Broadcast Algorithm

3.1 Overview

In general, there are three problems in implementing the ∆-
timed uniform atomic broadcast: reliable delivery (all pro-
cesses deliver the same set of ABcast messages unless they
crash), totally-ordered delivery (all processes deliver the
messages in the same order) and ∆-timeliness. Informally,

the algorithm resolves these three problems as follows: The
algorithm divides its execution into synchronous rounds.
Each process assigns each received ABcast messages to a
round. All ABcast messages are delivered in order of the as-
signed rounds. Two ABcast messages assigned to the same
round are delivered in ascending order of their broadcaster’s
ID. If the two messages have the same broadcaster’s IDs,
the one broadcast earlier is delivered first. Clearly, if all
processes assign a same set of ABcast messages to a com-
mon round, reliable delivery and totally-ordered delivery is
guaranteed.

In order to assign an ABcast message to a common
round, the algorithm uses the consensus. At the end of each
round, each process executes the consensus algorithm to
agree on the set of messages assigned to the round. How-
ever, to ensure the ∆-timeliness, the consensus algorithm
must complete its execution within constant time, regardless
of presence of faulty processes. Moreover, to ensure timing-
faulty processes also deliver ABcast messages in the same
order as correct processes, the timing-faulty processes have
to participate in the consensus. Therefore, we cannot use
existing consensus algorithms. To resolve these problems,
we propose a novel consensus algorithm, ∆-timed consen-
sus. The ∆-timed consensus algorithm has the following two
properties distinct from existing consensus algorithms: (1)
When a non-timing-faulty process proposes a value at t, it
decides a value at t + ∆ or earlier unless it crashes by t + ∆.
That is, completion of the algorithm by non-timing-faulty
processes is not delayed by timing-faulty processes. (2) Af-
ter execution of the algorithm, all non-crashed processes,
including the timing-faulty processes, have a common deci-
sion.

The ∆-timed uniform atomic broadcast algorithm con-
sists of three parts, the round synchronization algorithm
Sync, ∆-timed consensus Tconsensus and the main algo-
rithm TABcast. The algorithm Sync divides an execution
into synchronous rounds. Since the algorithms Tconsen-
sus and TABcast are based on the synchronous rounds, we
first introduce the round synchronization algorithm Sync in
the next subsection, and later introduce the other two algo-
rithms.

3.2 Round Synchronization Algorithm Sync

3.2.1 Specification

The objective of the round synchronization algorithm is that
each process synchronously repeats invocation of the end-
of-round events. The algorithm provides two primitives,
StartSynci and EORi(r). The event StartSynci and EORi(r)
are respectively invoked by process pi to initiate the round
synchronization and to report the end of the rth round. For-
mally, the round synchronization algorithm satisfies the fol-
lowing specifications:

Timed Initiation: If a non-timing-faulty process pi invokes
the StartSynci at t and does not crash by t + d, there
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is some constant δ such that every non-timing-faulty
process pk invokes EORk(0) or becomes crashed by t +
δ.

Eventual Initiation: If a timing-faulty process pi invokes
the StartSynci at t and does not crash, every non-
timing-faulty process pk invokes EORk(0) or becomes
crashed eventually.

Liveness: If a non-timing-faulty process pi invokes EORi(r)
at t, it invokes EORi(r + 1) or crashes after t.

Integrity: For any positive integer r, every process pi in-
vokes EORi(r) at most once only if EORi(r − 1) has
already occurred.

Agreement: If a non-timing-faulty process pi invokes
EORi(0), then each non-timing-faulty process pk in-
vokes EORk(0) or becomes crashed eventually.

Synchrony: If a non-timing-faulty process pi invokes
EORi(r) at ti and a non-timing-faulty process pk in-
vokes EORk(r + 1) at tk, then tk − ti ≥ d holds.

The synchrony property implies that the length of each
round is sufficiently long so that if a non-timing-faulty pro-
cess sends a message to another non-timing-faulty process
at the beginning of a round, the message can be received by
the end of the round.

3.2.2 Algorithm

The key of the round synchronization algorithm Sync is to
synchronize the occurrence of EOR∗(0) at all non-timing-
faulty processes. If EOR∗(r) are invoked synchronously, it
is easy to invoke EOR∗(r + 1) synchronously: On occur-
rence of EORi(r), each process pi sets a timer for some pre-
defined time (2d in the proposed algorithm), and it invokes
EORi(r + 1) when the alarm raises. Then, each non-timing-
faulty process invokes EORi(r + 1) with the same difference
on timing as that of the EORi(r). Thus, in what follows, we
only describe how to synchronize EORi(0).

In our algorithm, the process pi invoking StartSynci

broadcasts an invocation message. When a process receives
the invocation message first, it broadcasts the invocation
message and invokes EOR∗(0) after d. Figure 2 presents the
program code of Sync in event driven style: Each transition
is represented by a triggering event followed by its handler.
If two triggering events occur at the same time, the transition
preceding in the description is executed first.

3.2.3 Correctness

Theorem 1 The algorithm Sync realizes the round syn-
chronization,

Proof (1) Liveness and Integrity: These clearly hold.
(2) Timed Initiation: If a non-timing-faulty process pi

broadcasts the invocation messages at t (that is, pi invokes
S tartS ynci at t) and does not crash by t + d, every non-
timing-faulty process p j receives the invocation message
by t + d and invokes Timerset(d, next) (line 13). This im-
plies that p j invokes EOR j(0) by t + 2d unless it crashes

1: variable
2: activatedi : init FALSE
3: roundi : init 0

4: transition function of process pi

5: upon S tartS ynci do :
6: if activatedi = FALSE then
7: sendi(invocation) to all processes (including pi)
8: endif

9: upon receivei(invocation) do :
10: if activatedi = FALSE then
11: activatedi ← TRUE
12: sendi(invocation) to all processes
13: Timerseti(d, next)
14: endif

15: upon Alarmi(next) do :
16: EORi(roundi)
17: roundi ← roundi + 1
18: Timerseti(2d, next)

Fig. 2 Algorithm Sync.

(line 16). Therefore Timed Initiation clearly holds. (3)
Eventual Initiation: If a timing-faulty process pi broad-
casts the invocation message and does not crash, every
non-timing-faulty process eventually receives the invocation
message and invokes EOR∗(0). Thus, the eventual initia-
tion holds. (4) Agreement and Synchrony: Let pi be the
non-timing-faulty process that invokes EORi(0) earliest, and
t be the time when pi invokes EORi(0) (line 16). Then,
since Alarmi(next) occurs at t (line 15), pi invokes Timer-
seti(d, next) at t − d. This implies that pi broadcasts the in-
vocation message at t − d (line 12). Since pi does not crash
by t, each non-timing-faulty process receives the invocation
message by t and invokes EOR∗(0) at t+d or earlier (Agree-
ment). Thus the difference of timings when each process
invokes EOR∗(0) is at most d. This also holds for EOR∗(r)
of any r. Since EORk(r + 1) occurs exactly 2d later after
EORk(r) at each process pk (line 15–18), Synchrony prop-
erty holds. �

Concerning the length of each round, the following
corollary obviously holds.

Corollary 1 (1) If a non-timing-faulty process pi invokes
StartSynci at t, then EORk(0) is invoked at t+2d or earlier at
any non-timing-faulty process pk. (2) When a non-timing-
faulty process pi invokes EORi(r) (r ≥ 0) at t, then EORi(r+
1) is invoked at t + 2d unless it crashes by t + 2d.

3.3 ∆-Timed Consensus Algorithm Tconsensus

3.3.1 Specification

The ∆-timed consensus is the consensus algorithm such
that each non-timing-faulty process completes its execution
within constant ∆ time even in presence of faulty processes.
Moreover, every timing-faulty process reaches the same de-
cision as correct processes. The ∆-timed consensus algo-
rithm provides two primitives, proposei(V) and decidei(V).
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The events proposei(V) and decidei(V) are respectively in-
voked by process pi to propose the value V and to return the
decision value V . Notice that V is a set (of ABcast messages
in our ∆-timed atomic broadcast algorithm). We define the
∆-timed consensus algorithm to be the algorithm satisfying
the following specification:

∆-Timed Termination: If a non-timing-faulty process pi in-
vokes proposei(V) at t, pi invokes decidei(∗) or be-
comes crashed by t + ∆.

Eventual Termination: If a process pi invokes proposei(V)
at t, pi invokes decidei(∗) or becomes crashed eventu-
ally.

Uniform Agreement: If decidei(Vi) and decide j(V j) occur,
Vi = V j holds.

Validity: If a non-timing-faulty process pi invokes proposei

(Vi) and decidei(V ′i ), then Vi ⊆ V ′i holds.

Since our algorithm works on synchronized rounds re-
alized by Sync, we assume that a process (or the subset
of processes in the system) invokes StartSync∗ in advance.
Moreover, the algorithm requires the following assumption:

Assumption 2 All non-crashed processes invoke propose
∗(∗) at the beginning of a common round r(r � 0).

In the following discussion, we assume that the all non-
crashed processes invoke propose∗(∗) at the beginning of
round 1.

3.3.2 Algorithm

In this subsection, we briefly describe the idea of the ∆-
timed consensus algorithm Tconsensus (Fig. 3). The al-
gorithm consists of two phases. The objective of the first
phase is that all non-timing-faulty processes estimate a com-
mon decision value. In the first phase, each process tries
to gather the proposed values from all processes and de-
termines the union (set) of the gathered values to be the
estimation. The algorithm guarantees that all non-timing-
faulty processes gather the same set of proposed values, and
thus they estimate the common decision value. However, at
the end of the first phase, a timing-faulty process does not
necessarily have the same estimation as non-timing-faulty
processes. In the second phase, the algorithm guarantees
that timing-faulty processes decide the same value as non-
timing-faulty processes.

The algorithmic scheme of the first phase derives from
the existing early-deciding consensus algorithm tolerating
send/receive omission faults [13], [14]: The algorithm treats
overdelayed messages as lost messages, and neglects them.
The sender pi attaches its current round number r to each
message m, and receiver pk stores m to its local variable
msgsk[r]. At the end of pk’s round r, pk processes the mes-
sages in msgsk[r]. If m is received after the end of pk’s round
r, pk ignores m.

The first phase consists of at most f ′ + 1 consecutive
rounds. Each process pi maintains the two variables valsi

1: variable
2: ri : init 1
3: gatdi : init FALSE
4: valsi, senti : init ∅
5: deci : multiset init ∅
6: rcvdi[1.. f + 1],msgsi[1.. f + 1] : init (∅, ∅, · · · , ∅)
7: susi : init ∅

8: transition function of process pi

9: upon proposei(V) do :
10: valsi ← valsi ∪ V
11: sendi(valsi , ri) to all processes

12: upon receivei(vals, r) from pk do :
13: msgsi[r]← msgsi[r] ∪ {(vals, pk)}
14: rcvdi[r]← rcvdi[r] ∪ {pk}

15: upon EORi(∗) do :
16: if gatdi = FALSE then
17: foreach (vals, pk) ∈ msgsi[ri] do
18: if pk � susi then
19: valsi ← valsi ∪ vals /∗ gathering values ∗/
20: endif
21: endfor
22: susi ← susi ∪ (P − rcvd[ri])
23: ri ← ri + 1 /∗ the beginning of next round ∗/
24: if |susi| + 1 < ri then
25: gatdi = TRUE /∗ the end of first phase ∗/
26: sendi(valsi ,EST) to all processes
27: else
28: sendi(valsi − senti, ri) to all processes
29: senti ← valsi
30: endif
31: endif

32: upon receivei(est,EST) do :
33: deci ← deci ∪ {est}
34: if est appears ft + 1 times in deci then
35: decidei(est)
36: endif

Fig. 3 Algorithm Tconsensus.

and senti, which respectively stand for the set of values that
pi has already gathered and the set of values that pi has
already sent. In each round, each process sends the value
valsi − senti, which represents the values newly gathered in
the immediately previous round, to all processes (line 28).
At the first round, each process sends its own proposal. In
addition to this gathering scheme, each process also suspects
faulty processes. When a process pi does not receive the
message from pk, then the process pi suspects pk to be faulty
and subsequently ignores all messages that pi receives from
pk (line 22). This suspicion may be faulty if pi is timing-
faulty. However, it is guaranteed that a non-timing-faulty
process never suspects any other non-timing-faulty process.
The set of suspected processes is maintained in the local
variable susi. Notice that the variable susi is accumulative,
that is, once a process pk is added to susi, it is never re-
moved.

Each process pi terminates the first phase when it be-
gins the round r such that r > |susi| + 1 (line 24). Actually,
pi can gather no additional value in the last round (|susi|+1).
However, to broadcast the values pi gathered in round |susi|,
pi executes the extra round. When process pi terminates the
first phase, it changes the value of gatdi to TRUE (line 25).

In the second phase, each process sends the union of
the all gathered values, as its estimation, to all processes.
When each process receives the same estimation value V



78
IEICE TRANS. INF. & SYST., VOL.E88–D, NO.1 JANUARY 2005

ft + 1 times, it invokes decidei(V) (line 32–36). As we men-
tioned, at the end of the first phase, all non-timing-faulty
processes reach the same estimation, but timing-faulty pro-
cesses can have different estimations. Therefore, if a process
receives the same estimation value V ft + 1 times, then V is
the value estimated by non-timing-faulty processes because
at most ft processes have different estimations.

3.3.3 Correctness

In this subsection, we prove the correctness of the algorithm
Tconsensus. For the proof, we define the following nota-
tions and terms: Let valsi(r) and susi(r) respectively be the
values of valsi and susi at the beginning of round r, and rd

i
be the value of ri when the value of gatdi changes to TRUE.
If gatdi never changes to TRUE, the value of rd

i is undefined.
We call a non-timing-faulty process pi a correct estimator if
rd

i is defined. For a message m = (V, ∗), we say “message
m contains v” if v ∈ V holds. Moreover, we say “process pi

gathers the value v in the round r” (1) when v � valsi(r) and
v ∈ valsi(r + 1) holds for r ≥ 1, or (2) when r = 0 holds and
pi proposes the value that contains v.

Lemma 1 If a process pi gathers a value v in round r(≥ 1),
there exists a process pk that gathers the value v in round
r − 1.

Proof (Case1) For r = 1: The lemma clearly holds (the
process that proposes V containing v is pk). (Case2) When
r > 1 holds: Since pi gathers v in round r by executing line
19, pi receives a message m containing v from some process
p j � susi(r). In what follows, we prove that p j gathers the
value v at round r − 1. Suppose for contradiction that p j

gathers the value v at round r′ (r′ < r − 1). Then, since
the process p j executes the first phase at round r (thus, also
at round r′ + 1), it sends a message m′ containing v to pi by
executing line 28 at the beginning of round r′+1. Moreover,
it follows from p j � susi(r) that p j � susi(r′ + 1) holds.
These imply that pi gathers v at round r′ + 1 < r because
v ∈ valsi when pi execute the line 17-21 in round r′ + 1.
That is a contradiction. �

Lemma 2 If a process pi gathers a value v at round r(≥ 1),
then, at the beginning of round r′(1 ≤ r′ ≤ r), at least r′
processes have already gathered the value v.

Proof By applying Lemma 1 recursively, if pi gathers v in
round r, there exists a sequence of distinct processes S =
p′0, p

′
1, · · · , p′r−1 such that p′j gathers v at round j. Thus, at

least r′ processes have already gathered v at the beginning
of round r′. �

Lemma 3 Any process pi gathers no value at round rd
i − 1.

Proof Assume for contradiction that a process pi gathers
a value v in round rd

i − 1. We consider the same sequence
S = p′0, p

′
1, · · · , p′

rd
i −2

as proof of Lemma 2. Then, for any

k (0 ≤ k ≤ rd
i − 3), p′k sends a message m containing v

to all processes (by executing line 28) at the beginning of
round k + 1. On the other hand, pi never gathers the value
v by round rd

i − 2(≥ k + 1). This implies that pi does not
receive m at round k + 1 and adds p′k to susi at round k + 1.
Thus, rd

i − 2 ≤ |susi(rd
i − 1)| holds, that is, ri ≤ |susi(ri)| + 1

holds when pi executes line 23 at the round rd
i − 1. This

contradicts the fact that the value of gatdi changes to TRUE
in round rd

i − 1. �

Lemma 4 Let pi and pk be correct estimators. If v ∈
valsi(rd

i ) holds, v ∈ valsk(rd
k ) holds.

Proof Let r be the round when pi gathers a value v. We
consider the following two cases. (Case1) When r < rd

k − 1
holds: From Lemma 3, r < rd

i − 1 holds. This implies that
pi does not crash in round r + 1 or earlier, and thus, at the
beginning of round r + 1(≤ rd

k − 1), pi sends the message
m containing v to pk. Since the processes pk and pi are not
timing-faulty, pk never suspects pi in round r + 1 or earlier.
Hence, pk receives m in round r + 1. This implies that v ∈
valsk(r + 2) ⊆ valsk(rd

k ) holds. (Case2) When r ≥ rd
k −

1 holds: In each round, the process pk receives messages
from all processes except for at most rd

k − 2 processes in
round rd

k − 1 because |susk(rd
k )| < rd

k − 1 holds. On the other
hand, from Lemma 2, at least rd

k − 1 processes have already
gathered the value v at the beginning of round rd

k − 1, and
send the messages containing v in the round rd

k −1 or earlier.
This implies that pk receives at least one message containing
v by round rd

k − 1. Then, v ∈ valsk(rd
k ) holds. �

From this lemma, the following corollary clearly holds:

Corollary 2 If non-timing-faulty processes p1 and p2 re-
spectively send a message (est1,EST) and (est2, EST), then
est1 = est2 holds.

Theorem 2 The algorithm Tconsensus realizes the 2d( f ′+
2)-timed consensus.

Proof (1) ∆-Timed Termination and Eventual Termina-
tion: Let pi be a non-timing-faulty process. Since the car-
dinality of susi(∗) is at most f ′, at the beginning of round
f ′ + 2 or earlier, |susi| + 1 < ri holds. Thus, the process
pi terminates its first phase within f ′ + 1 rounds and sends
the EST message to all processes. Then, from Corollary 2
and Assumption 1, at least ft + 1 correct processes neces-
sarily send the same EST message at the beginning of the
round f ′ + 2 or earlier (line 26). Therefore, all non-timing-
faulty processes receive the same estimation value at least
ft + 1 times by the end of the round f ′ + 2. Since it takes 2d
that a non-timing-faulty process executes each round from
Corollary 1 and Assumption 2, 2d( f ′ + 2)-Timed Termina-
tion holds. Moreover, all timing-faulty (and non-crashed)
processes also receive the same estimation value at least
ft + 1 times eventually. Therefore, Eventual termination
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holds. (2) Uniform Agreement: Let vi and vk be the de-
cision values of pi and pk respectively. Then, pi receives
ft + 1 EST messages (vi,EST) and pk receives ft + 1 EST
messages (vk,EST) (line 33–35). Thus pi and pk receive at
least one message from a non-timing-faulty process. From
Corollary 2, all the EST messages sent by non-timing-faulty
processes contain a common estimation value. This implies
that vi = vk holds. (3) Validity: If a non-timing-faulty pro-
cess pi proposes a value V , then all the estimations by non-
timing-faulty processes include V because pi is never sus-
pected by non-timing-faulty processes and thus V is gath-
ered by all non-timing-faulty processes. Since the decision
value is the estimation by non-timing-faulty processes, Va-
lidity clearly holds. �

3.4 ∆-Timed Uniform Atomic Broadcast TABcast

3.4.1 Algorithm

Using Tconsensus and Sync, we realize the ∆-timed uni-
form atomic broadcast algorithm TABcast. In the previous
section, we have briefly showed the idea of TABcast. We de-
scribe the detailed behavior of the algorithm in this subsec-
tion. The algorithm TABcast executes the algorithm Sync
in advance: At the first time when a process pi broadcasts
an ABcast message by the ∆-timed uniform atomic broad-
cast, pi invokes the StartSynci to start Sync if pi has not
yet recognized that Sync has already been started (line 7).
Each process maintains the local variable synced to repre-
sent whether Sync is running or not. The variable synced is
initially FALSE, and changes to TRUE when StartSync∗ or
EOR∗(0) occur.

In our algorithm, every ABcast message has a distinct
identifier. An identifier is a pair of broadcaster’s ID and a
serial number in the broadcaster. Each process maintains its
own serial number in a local variable sn. When TABcasti(m)
occurs, the process broadcasts M = (m, pi, sn). When a pro-
cess receives the message M, it records M to a local variable
Received. When the process delivers the ABcast message m,
it appends M to a local variable Delivered.

At the end of each round r, the algorithm executes
Tconsensus. Since the execution of Tconsensus takes
several rounds, two or more Tconsensus algorithm may
be concurrently executed. Then, each execution is distin-
guished from each other by its round number, and is exe-
cuted independently. In Fig. 4, proposer

i (V) and decider
i (D)

respectively denote pi’s propose and decide events of Tcon-
sensus initiated at the end of round r. The value a pro-
cess pi proposes in round r is the set of ABcast mes-
sages that are received by pi but not yet delivered (that is
Received − Delivered) at the end of round r − 1 (line 23).
When decider

i (D) occurs and pi terminates all Tconsensus
executions corresponding to the rounds smaller than r, the
process pi removes the messages that have already deliv-
ered by pi from D and delivers the remaining messages in
order of their broadcaster’s ID. If two or more messages

1: variable
2: sni, decdi : init 0
3: syncedi : init FALSE
4: DeliverListi ,Receivedi,Deliveredi : init ∅

5: transition function s of process pi

6: upon TABcasti(m) do :
7: if syncedi = FALSE then StartSynci endif
8: sendi(m, pi , sni) to all processes
9: sni ← sni + 1

10: upon Receivei(m, pj , sn) from pk do :
11: Receivedi ← Receivedi ∪ {(m, pj , sn)}

12: upon decider
i (D) do :

13: wait until decdi = r holds
14: DeliverListi ← D − Deliveredi

15: TADeliver all messages in DeliverListi
16: in some deterministic order
17: (It is ordered firstly by Broadcaster’s ID,
18: and secondary by sn.)
19: Deliveredi ← Deliveredi ∪ DeliverListi
20: decdi ← decdi + 1

21: upon EORi(r) do :
22: if synced = FALSE then synced = TRUE
23: proposer

i (Receivedi − Delveredi)

Fig. 4 Algorithm TABcast.

have the same broadcaster’s ID, they are ordered by their
serial numbers (line 12–20).

3.4.2 Correctness

We denote Vr
i to be pi’s decision value for the execution of

TConsensus corresponding to the round r (If pi does not
invoke decider

i (∗), Vr
i is undefined). For a ABcast message

m, we say “pi assigns m to round r” if Vr′
i is defined for any

r′ ≤ r, m ∈ Vr
i holds, and m � Vr′

i holds for any r′ < r.

Lemma 5 If a process pi assigns m to a round r and another
process p j assigns m to a round r′, then r = r′ holds.

Proof From the uniform agreement property, m ∈ Vr
j holds

and m � Vk
j holds for any k < r. This implies that r = r′

holds. �

Theorem 3 The algorithm TABcast realizes the (2 f ′ + 7)d-
timed atomic broadcast.

Proof (1) Validity: Suppose for contradiction that pi

broadcasts m but does not deliver it. Since the process
pi does not crash, for any r, decider

i (∗) eventually occurs.
Therefore, if pi does not deliver m, it assigns m to no round.
On the other hand, pi eventually receives m. Letting r′ be
the round where pi receives m, from the validity property
of ∆-timed consensus, the message m is assigned to a round
r′ + 1 or an earlier round. This is contradiction. (2) Uni-
form Integrity: Clearly, each process never delivers AB-
cast message m that is not broadcast. Moreover, once a pro-
cess pi delivers m, it stores m in the variable Deliveredi (line
19). Since the messages in Delivered are never delivered
again, Uniform Integrity holds. (3) Uniform Agreement:
From Lemma 5, this property clearly holds. (4) Uniform
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Total Order: From Lemma 5, pi and p j assigns m1 to a
common round (and also assigned m2 to a common round).
Since messages assigned same round are delivered in order
of their broadcaster’s IDs and serial numbers (line 15–18),
then pi and p j clearly deliver m1 and m2 in same order.
(5) Nonfaulty ∆-Validity and ∆-Agreement: Let a non-
timing-faulty process pi invoke T ABcasti(m) at t. All cor-
rect processes receive m at t + d or earlier. Thus, at t + 3d
or earlier, each correct process p j invokes proposer

j(V j) such
that V j contains m. Then, because of the validity property
of the ∆-timed consensus, m ∈ Vr

j holds for any p j. This
implies that m is assigned to the round r or an earlier round.
Since the executions of every Tconsensus initiated in round
r or earlier terminates within at most f ′+3 rounds from The-
orem 2, m is delivered at t + 3d + ( f ′ + 2)2d = t + (2 f ′ + 7)d
or earlier. �

3.5 Discussion

The algorithm TABcast is based on repeated execution of
the consensus algorithm Tconsensus that determines the
sets of messages to be delivered. Such consensus-based
atomic broadcast was first introduced in Chandra-Toueg’s
atomic broadcast algorithm [2]. On the other hand, as we
mentioned in the introduction, we already proposed a timed
uniform consensus algorithm resilient to crash and timing
faults [11]. However, the consensus algorithm in [11] cannot
be used as a building block of the ∆-timed uniform atomic
broadcast because it only guarantees a weaker validity con-
dition such that the decision value is one of proposals. The
following scenario clarifies the problem of the weaker valid-
ity condition in construction of the ∆-timed atomic broad-
cast algorithm: Consider a system consisting of three pro-
cesses p0, p1 and p2, where p0 and p1 are correct and p2

is timing-faulty. Consider an execution where p0 invokes
T ABcast0(m) at time 0, all messages received by p2 expe-
rience delay larger than ∆, and the decision value for every
execution of consensus is p2’s proposal. Since no message
containing m is delivered at p2 by time ∆, p2’s proposals
never contain m by time ∆. Thus, the ∆-agreement condi-
tion of the ∆-timed uniform atomic broadcast is violated.
This case actually occurs if the algorithm TABcast adopts
the algorithm in [11] as a consensus module. Therefore, we
had to newly design the ∆-timed consensus algorithm Tcon-
sensus as a building block of the ∆-timed uniform atomic
broadcast algorithm.

4. Impossibility Result

In this section, we prove that no ∆-timed uniform atomic
broadcast algorithm can tolerate ft timing-faults when the
number of correct processes is ft or less. This implies that
our algorithm attains maximum fault-resilience with respect
to the number of faulty processes.

For the proof, we define the execution E∆(P0, P1,
m0,m1), as the execution satisfying the following condi-

Fig. 5 Execution E0 and E1.

tions: (1) All processes in P0 and P1 are respectively al-
ways correct and timing-faulty (P0 and P1 are disjoint and
nonempty). Other processes (denoted by P2) are initially
crashed. (2) Communication delay between any pair pi and
p j is (2a) d if pi, p j ∈ Px for each x(= 0, 1, 2), otherwise (2b)
∆+ ε (ε > 0). (3) A process pi ∈ P0 invokes TABcasti(m0) at
time 0 and a process p j ∈ P1 invokes TABcast j(m1) at time
0.

Theorem 4 Let algorithm A be a ∆-timed uniform atomic
broadcast algorithm. If the algorithm A tolerates ft timing-
faulty processes when at least k processes are correct, then
ft < k holds.

Proof Suppose for contradiction ft ≥ k holds. When ft
processes are actually timing-faulty, 2k ≤ n clearly holds.
Thus, we can define two disjoint sets P0 and P1 such that
|P0| = ft, |P1| = k. For P0 and P1, we can define two ex-
ecutions E0 = E∆(P0, P1,m0,m1), E1 = E∆(P1, P0,m1,m0)
(Fig. 5). In E0 and E1, at least k processes are correct, and
at most ft processes are timing-faulty. Therefore, the algo-
rithm A solves the ∆-timed atomic broadcast. From Non-
faulty ∆-Validity property and ∆-Agreement property each
process in P0 invokes TADeliver∗(m0) in E0 at ∆ or ear-
lier, and each process in P1 invokes TADeliver∗(m1) in E1

at ∆ or earlier. In addition, no process in P1 invokes TADe-
liver∗(m0) in E1 by ∆+ ε because processes in P1 receive no
message from processes in P0 by ∆+ ε. By the same reason-
ing, no process in P0 invokes TADeliver∗(m1) in E0 by ∆+ε.
This implies that in the execution E0 each process in P0 first
invokes TADeliver∗(m0) and then invokes TADeliver∗(m1),
whereas each process in P1 first invokes TADeliver∗(m1) be-
cause no process in P1 can distinguish the execution E1 from
E0. Thus, the execution E0 violates Uniform Total Order
condition. That is contradiction. �.

5. Concluding Remarks

We considered the ∆-timed atomic broadcast in a syn-
chronous system where communication delay is bounded by
a known constant d and processes suffer both crash faults
and process timing faults. The proposed algorithm can tol-
erate fc crash faults and ft timing faults as long as at least
ft + 1 processes are correct, and its delivery latency ∆ is
(2 f ′ + 7)d. This is early-delivery algorithm. Moreover, the
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algorithm guarantees that timing-faulty processes also de-
livers the same messages in the same order as the correct
processes (Uniformity).

We also investigated the maximum number of faulty
processes that can be tolerated. We show that no ∆-timed
atomic broadcast algorithm can tolerate ft timing faults, if
at most ft processes are correct. The impossibility result
implies that the proposed algorithm achieves the maximum
resilience to the number of faulty processes.
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