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SUMMARY This paper investigates the effectiveness of the DAEM
(Deterministic Annealing EM) algorithm in acoustic modeling for speaker
and speech recognition. Although the EM algorithm has been widely used
to approximate the ML estimates, it has the problem of initialization de-
pendence. To relax this problem, the DAEM algorithm has been proposed
and confirmed the effectiveness in artificial small tasks. In this paper, we
applied the DAEM algorithm to practical speech recognition tasks: speaker
recognition based on GMMs and continuous speech recognition based on
HMMs. Experimental results show that the DAEM algorithm can improve
the recognition performance as compared to the standard EM algorithm
with conventional initialization algorithms, especially in the flat start train-
ing for continuous speech recognition.
key words: DAEM algorithm, acoustic modeling, EM algorithm, GMMs,
HMMs

1. Introduction

The EM (Expectation-Maximization) algorithm [1] is
widely used for parameter estimation of statistical models
with hidden variables. This algorithm provides a simple iter-
ative procedure to obtain approximate ML (maximum likeli-
hood) estimates. However, since the EM algorithm is a hill-
climbing approach, it suffers from the local maxima prob-
lem, equivalently the initialization dependence problem.

On the other hand, GMMs (Gaussian mixture mod-
els) [2] and HMMs (hidden Markov models) [3] have been
commonly used in acoustic modeling for speaker and speech
recognition, respectively. In conventional approaches, the
LBG algorithm for GMMs and the segmental k-means al-
gorithm for HMMs have been employed to obtain initial
model parameters before applying the EM algorithm. How-
ever, these initial values are not guaranteed to be near the
true maximum likelihood point, and the posterior density
becomes unreliable at an early stage of training. Especially
in continuous speech recognition, it is difficult to obtain ac-
curate phoneme boundaries for all training data. Hence, the
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embedded training has been used in which phoneme bound-
aries are also dealt as hidden variables, and estimated based
on the EM algorithm. Furthermore, in the worse case where
the boundary information is not available, a method called
the flat start training is often applied. In this method, initial
parameters of HMMs are given by making all states of all
models equal, and then carry out the embedded training. In
these situations, we do not have sufficient prior knowledge
to obtain a good initial values for the EM algorithm, and it
would converge to one of the local maxima or saddle points
of the likelihood surface caused by a number of possible
hidden state sequences.

To overcome the local maximum problem, several
modified version of EM have been proposed. The simplest
method is the EM algorithm starting from multiple initial
values and select the model parameters which achieve the
highest likelihood. However, it is difficult to determine how
to generate initial values, and a large number of perform-
ing the EM algorithm for each initial value is required to
avoid local maxima. To avoid this problem, the DAEM
(Deterministic Annealing EM) algorithm [4] has been pro-
posed. The algorithm is a variant of the EM algorithm based
on DA (Deterministic Annealing) approach. The DA was
first proposed for Vector Quantization (VQ) and clustering
problem [5], later extended for various pattern classifies [6].
In the DAEM algorithm, the problem of maximizing the
log-likelihood is reformulated as minimizing the thermody-
namic free energy defined by the principle of maximum en-
tropy and a statistic mechanics analogy. The posterior distri-
bution derived in the DAEM algorithm includes a ‘temper-
ature’ parameter which controls the influence of unreliable
model parameters, and this annealing process can reduce the
dependency on initial model parameters. The SMEM (Split
and Merge EM) algorithm [7] has been proposed as a tech-
nique that possibly overcomes the DAEM algorithm. How-
ever the SMEM focuses on mixture distribution models and
it cannot be easily applied to HMMs with temporal struc-
ture.

In this paper, the DAEM algorithm is applied to
acoustic modeling for GMM-based speaker recognition and
HMM-based continuous speech recognition. In GMM-
based acoustic modeling, even though the SMEM algorithm
should be compared with the DAEM algorithm, we focus
on the DAEM algorithm in this paper. In addition to the in-
applicability of the SMEM algorithm to HMMs, it is also a
reason to use the DAEM algorithm that the implementation
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for GMMs and HMMs is performed by some changes of ex-
isting programming code which are commonly used in the
speech recognition field.

In [6], the DA approach was applied to Minimum Clas-
sification Error (MCE) training for HMM-based speech rec-
ognizer and compared with ML and GPD training. How-
ever, the ML training was performed by the conventional
EM algorithm without annealing and they were evaluated in
a small spoken English letter recognition experiment. The
DA algorithm for HMM design based on the Baum-Welch
re-estimation was derived in [8]. However, the update of
covariance matrices in the EM algorithm does not included
in the annealing process. In this paper, the DAEM algo-
rithm is summarized for deriving the posterior distribution
of HMMs which has not been completely derived based on
the DAEM algorithm yet, and evaluated on practical tasks
of speech recognition.

This paper is organized as follows. In Sect. 2, we de-
scribe the DAEM algorithm, and apply it to the training of
GMMs and HMMs. The Sect. 3 presents experimental re-
sults in speaker recognition and continuous speech recog-
nition tasks. Concluding remarks and our plans for future
works are described in the final section.

2. Deterministic Annealing EM Algorithm

In this section, the DAEM algorithm is rederived by means
of the variational calculus similarly to “another interpreta-
tion of DAEM algorithm” in [4]. According to the deriva-
tion, we apply the algorithm to HMMs and show that the
expectations of the derived posterior distribution can be cal-
culated by the Forward-Backward algorithm as the standard
HMMs.

2.1 EM Algorithm

The objective of the EM algorithm is to estimate a set of
model parameters so as to maximize the incomplete log-
likelihood function:

L (Λ) = log
∫

p (O, q|Λ) dq (1)

where O = (o1, o2, . . . , oT ) and q = (q1, q2, . . . , qT ) are ob-
servation vectors and hidden variables, respectively, and Λ
denotes a set of model parameters. The procedure of the
EM algorithm consists of maximizing at each iteration the
auxiliary function so called Q-function:

Q(Λ,Λ′) =
∫

p(q|O,Λ′) log p(O, q|Λ)dq (2)

where p(q|O,Λ) is the posterior probability, and it can be
computed by the Bayes rule:

p(q|O,Λ) =
p(O, q|Λ)∫
p(O, q′|Λ)dq′

. (3)

The EM algorithm starts with an initial model parameters
Λ(0), and iterates between the following two steps:

(E step) : compute Q(Λ,Λ(k))
(M step) : Λ(k+1) = arg max

Λ
Q(Λ,Λ(k))

where k denotes the iteration number. This procedure is re-
peated until convergence of the likelihood.

2.2 Derivation of DAEM Algorithm

In the DAEM algorithm [4], the problem of maximizing the
log-likelihood function is reformulated as the problem of
minimizing a free energy function:

Fβ(Λ) = −1
β

log
∫

p(O, q|Λ)βdq (4)

where 1/β (0 ≤ β ≤ 1) called the “temperature”, and if
β = 1, the negative free energy −Fβ(Λ) becomes equal to the
log-likelihood function L (Λ). To solve this minimization
problem, we introduce a new posterior distribution by using
Jensen’s inequality:

Fβ(Λ) = −1
β

log
∫

f (q|O,Λ′) p(O, q|Λ)β

f (q|O,Λ′) dq

≤ −1
β

∫
f (q|O,Λ′) log

p(O, q|Λ)β

f (q|O,Λ′) dq

= Uβ(Λ,Λ′) − 1
β

S β(Λ′) (5)

where the term Uβ(Λ,Λ′) is the negative Q-function in
which the posterior distribution p(q,O|Λ) is replaced by the
new function f (q|O,Λ′), and the term S β(Λ′) is the entropy
of f , i.e.,

Uβ(Λ,Λ′) = −
∫

f (q|O,Λ′) log p(O, q|Λ)dq (6)

S β(Λ
′) = −

∫
f (q|O,Λ′) log f (q|O,Λ′)dq. (7)

It can be seen that the upper bound in Eq. (5) corresponds to
the Lagrangian in the principle of maximum entropy. In the
deterministic annealing approach, the new posterior distri-
bution f is derived so as to minimize the Lagrangian under
the constraint of

∫
f dq = 1. To solve this problem, we

can use elementary calculus of variations to take functional
derivatives of the upper bound with respect to f , and the
optimal distribution can be derived as

f (q|O,Λ) =
p(O, q|Λ)β∫

p(O, q′|Λ)βdq′.
(8)

Substituting the derived posterior into Eq. (5), the upper
bound agrees with the free energy, i.e.,

Fβ(Λ) = Uβ(Λ,Λ
′) − 1
β

S β(Λ
′). (9)

By inspection, it can be seen thatFβ(Λ) has the same form as
the free energy in statistical physics, and minimizing Fβ(Λ)
with a fixed temperature can be interpreted as the approach
to thermodynamic equilibrium.

In the algorithm, the temperature is gradually de-
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creased, and the posterior distribution is deterministically
optimized at each temperature. The procedure of the DAEM
algorithm is as follows:

1 Give an initial model, and set β = β(0)

2 Iterate EM-steps with β fixed until Fβ converged:
(E step) : compute Uβ(Λ,Λ(k))
(M step) : Λ(k+1) = arg min

Λ
Uβ(Λ,Λ

(k))

3 Increase β.
4 If β > 1, stop the procedure. Otherwise go to step 2.

where 1/β(0) is an initial temperature, and should be cho-
sen to a high enough value that the EM-steps can achieve
a single global minimum of Fβ. At the initial temperature,
the entropy S β(Λ′) is intended to be maximized rather than
Uβ(Λ,Λ′), therefore the posterior f takes a form nearly uni-
form distribution. While the temperature is decreasing, the
form of f changes from uniform to the original posterior,
and at the final temperature 1/β = 1 the DAEM algorithm
agrees with the original EM algorithm. Similarly to the EM
algorithm, the DAEM algorithm is also guaranteed to con-
verge at a fixed temperature by decreasing Fβ(Λ).

2.3 DAEM Algorithm for GMMs and HMMs

In the case of a GMM with M mixtures, the posterior prob-
ability of the m-th mixture for the DAEM algorithm is given
by

f (qt = m|ot,Λ) =
p(m|Λ)βp(ot|m,Λ)β

M∑
m′=1

{
p(m′|Λ)β p(ot |m′,Λ)β

} (10)

where p(m|Λ) is the mixture weight, and p(ot|m,Λ) =
N(ot|µm,Σm) denotes a Gaussian distribution with the mean
vector µm and covariance matrix Σm.

In the case of an HMM, the posterior distribution can
be calculated by the forward-backward algorithm. The pos-
terior function f of a state sequence q can be written by

f (q|O,Λ) =
p(q|Λ)βp(O|q,Λ)β∑

q′

{
p(q′|Λ)βp(O|q′,Λ)β

}

=

T∏
t=1

p(qt|qt−1,Λ)β
T∏

t=1

p(ot |qt,Λ)β

∑
q′


T∏

t=1

p(q′t |q′t−1,Λ)β
T∏

t=1

p(ot |q′t ,Λ)β


(11)

where p(qt|qt−1,Λ) and p(ot |qt,Λ) indicate transition proba-
bility and state output probability, respectively. Note that
initial state probability are denoted by p(q1|q0,Λ). The
expectations with respect to this distribution can also be
calculated by the forward-backward algorithm with using
p(qt|qt−1,Λ)β and p(ot|qt,Λ)β as the transition probability
and the observation probability respectively.

3. Experiments

To evaluate the performance of the DAEM algorithm, text-
independent speaker recognition and continuous speech
recognition experiments were conducted.

3.1 GMM-Based Speaker Recognition

For speaker recognition experiments, we used the ATR
Japanese speech database c-set composed of 80 speakers.
Each speaker consists of three sets of words: the first set of
216 words were used for training, and the second set of 260
words were used as development data for determining the
number of EM-steps at each temperature and the total num-
ber of updating temperature which is denoted by I, and the
third set of 260 words is testing set. The speech data was
down-sampled from 20 kHz to 10 kHz, and then windowed
at a 10-ms frame rate using a 25-ms Blackman window. The
12 mel-cepstral coefficients excluding zero-th coefficients
were used as the feature vectors. Each speaker was modeled
by one GMM with 4, 8, 16, 32 and 64 mixture components
with diagonal covariance matrices.

In this experiment, we compared the following three
initialization methods:

• “random-EM” : Mixture weights were set equal be-
tween all mixtures, and mean vectors of Gaussian com-
ponents were generated from a normal distribution with
mean = 0.0 and variance = 1.0. Diagonal elements
of covariance matrices were given by taking the abso-
lute of the generated values from the same distribution.
We generated 5 sets of initial values and the model pa-
rameters which achieved the highest likelihood was se-
lected.
• “LBG-EM” : The initial values of mixture compo-

nents were computed from each cluster obtained by the
LBG algorithm [9]. The mixture weights were given
by the proportional values as the number of training
data. The codewords were used as the mean vectors,
and the diagonal covariances were computed from a set
of training data belonging to each centroid.
• “DAEM” : The DAEM algorithm was applied. A

schedule of decreasing the temperature in the DAEM
algorithm should be proceed as slow as possible, par-
ticularly at early stage of training. From the result of
preliminary experiments, the way of updating temper-
ature parameter β was set to β(i) =

√
i/I, i = 1, 2, . . . , I

in this experiment, where β(i) is the value of β at i-th it-
eration, and I is the total number of the iterations. Fig-
ure 1 shows the update function of β.

To determine the number of updating β and the num-
ber of EM-steps at each temperature for “DAEM”, we con-
ducted preliminary experiments. Figure 2 shows the iden-
tification error rates while varying the number of update β
among I= 1, 5, 10, 15, 20 and 30. The number of EM-
steps at each temperature was fixed 20. From the figure,
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Fig. 1 Update function of β.

Fig. 2 Comparison of the number of updating temperature parameter.

Fig. 3 Comparison of the total number of EM-steps at each temperature.

the error rates became small when the temperature was de-
creased slowly. However, no significant difference of error
rate was found between 20 and 30 iterations. Figure 3 shows
the comparison of the total number of EM-step at each tem-
perature with I = 20. At each temperature parameter, EM-
step was repeated 1, 5, 10 and 20. It can be seen that 5
and 10 steps achieved good results. Although the temper-
ature parameter should be decreased as slowly as possible,
increasing the number of EM-steps at each temperature can
be correspond that the change of the temperature becomes
relatively large and this might lead to increasing the error
rate at 20 EM-steps. From these results, we decided that 20

Fig. 4 Results of GMM-based speaker recognition.

Fig. 5 Average log-likelihood of GMM-based speaker recognition.

iterations at updating β and 10 EM-steps at each temperature
were used for following experiments. In the both cases of
“LBG-EM” and “random-EM”, the number of iterations for
the EM algorithm was limited by 100 due to the computa-
tional cost. Although “DAEM” carried out 200 EM-steps in
total, “LBG-EM” and “random-EM” were almost converged
within 100 iterations, and a further improvement could not
be obtained by taking more than 100 iterations.

Figure 4 shows the results of the GMM-based speaker
recognition experiments. It can be seen that the error rates
of “random-EM” become higher than the other two cases,
and this means that the EM algorithm suffers from the local
maxima problem. However, in the case of “LBG-EM”, since
the initial Gaussian distributions were arranged according
to training data, a better final point was achieved, and the
error rates were reduced as compared with the results of
“random-EM”. Moreover, it was confirmed that further im-
provements were obtained by “DAEM” than “LBG-EM” in
the all mixture cases, and the error reduction of 5.3% was
obtained in the 8 mixture case. Figure 5 shows the average
log-likelihood of training data in the speaker recognition ex-
periment. “DAEM” achieved higher log-likelihood than that
of “LBG-EM” in all mixture cases. These results indicate
that the DAEM algorithm is effective to relax the problem of
initialization dependence for GMM-based speaker recogni-
tion. Furthermore, although the training of “LBG-EM” con-
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sists of two processes, i.e., the LBG and the EM algorithm,
the DAEM algorithm includes the initialization of model pa-
rameters.

3.2 HMM-Based Continuous Speech Recognition

To evaluate the performance of the DAEM algorithm for
the training of HMMs, speaker- dependent and independent
continuous phoneme recognition experiments were con-
ducted. For the speaker-dependent experiment, we used
phonetically balanced 503 sentences from the ATR Japanese
speech database b-set. 450 sentences from the data set were
used for training HMMs, and remaining 53 sentences were
used for testing. Speaker-dependent HMMs of four males
were constructed and the average results of each speaker ex-
periment were presented. For the speaker-independent ex-
periment, the ASJ-PB database (phonetically balanced) and
the ASJ-JNAS database (Japanese newspaper article sen-
tences speech corpus) were used. Gender-dependent mono-
phone and triphone HMMs [10] with 1, 2, 4, and 8 Gaussian
mixtures were trained using about 20,000 utterances spo-
ken by 130 speakers, and the IPA-98-Testset (100 sentences)
was used for testing.

In this experiment, we compared the following three
training procedures:

• “k-means” : Using phoneme boundary labels, the seg-
mental k-means algorithm, and the re-estimation based
on the EM-algorithm were used for each phoneme
HMM. Then, 10 iterations of the embedded training
were also conducted.
• “flat-start” : The flat start training was performed.

Initial parameters of monophone and triphone HMMs
are given by making all states of all models equal, and
then carry out the embedded training.
• “DAEM” : The DAEM algorithm was applied to the

embedded training. The value of βwas increased in the
same manner as GMM (with I = 10), and 5 iterations
of the EM-steps at each temperature, in total 50 EM-
steps were conducted.

The DAEM algorithm with β = 0 is equivalent to the ini-
tial values of the flat start training, i.e., the posterior prob-
abilities of the state sequences have an uniform distribu-
tion. However, even though the flat start training updates
the model parameters immediately at the first iteration based
on unreliable initial parameters (this corresponds the DAEM
with β = 0 at the 1st iteration and β = 1 at the 2nd itera-
tion), the DAEM algorithm gradually increase the parame-
ter β, and updates the model parameters slowly based on the
annealing process.

In practical situations, the performance of triphone
HMMs can be improved from “flat-start” by using mono-
phone HMMs as initial parameters. However, since the
DAEM algorithm itself is assumed not to have any prior in-
formation about hidden variables (this means that an initial
point of both “flat-start” and “DAEM” is equal), the exper-
iment of flat-start training is necessary to evaluate the per-

formance of the DAEM algorithm in the embedded training.
In preliminary experiments, the results of triphone HMMs
initialized by “flat-start” monophone HMMs are similar or
worse than “k-means”. Even if the triphone HMMs trained
from monophone HMMs achieves the similar performance
with “DAEM”, the DAEM algorithm still has an advantage
that the algorithm can be performed a simple procedure in-
cluding the model parameter initialization. Furthermore,
starting from non-zero β, the DAEM algorithm can also uti-
lize initial parameters obtained from monophone HMMs. In
this case, the degree of influence from an initial model is
determined by the temperature parameter at the first itera-
tion. However, we focus on the evaluation of the DAEM
algorithm on the simple condition that monophone HMMs
are not used as initial parameters for both “flat-start” and
“DAEM”.

Figures 6 and 7 show the results of monophone HMMs
in the speaker-dependent and speaker-independent experi-
ments, respectively. Comparing the results of “k-means”
and “flat-start”, it can be seen that the performance of “flat-
start” was worse than “k-means” in the both figures. This
is because “k-means” uses the phoneme boundary informa-
tion as prior knowledge, and “flat-start” could not estimate
the phoneme boundaries accurately due to the local max-
ima problem in the EM algorithm. Although the DAEM
algorithm also did not use the phoneme labels, “DAEM”

Fig. 6 Results of monophone HMMs (speaker-dependent).

Fig. 7 Results of monophone HMMs (speaker-independent).
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improved the recognition performance significantly than the
results of “flat-start” in all the cases. The error reduction of
20.3% (8-mixtures) in the speaker-dependent and 4.4% (8-
mixtures) in the speaker-independent experiment were ob-
tained. Furthermore, it was confirmed that almost the same
recognition rates as “k-means” were achieved by the DAEM
algorithm. These results indicate that the influence of initial
values was relaxed by the DAEM algorithm in continuous
speech recognition.

Figures 8 and 9 show the results of triphone HMMs
in the speaker- dependent and independent experiments, re-
spectively. The parameter sharing (state tying) was per-
formed by the decision tree based context clustering, and
the number of states was determined by the MDL crite-
rion [11]. Table 1 shows the total number of states in tri-
phone HMMs with single mixture after the context cluster-
ing. The number of states of “k-means” become almost half
of the other two methods. This means that “k-means” per-
forms an efficient modeling by using the phoneme labels.
On the contrary, since the triphone HMMs of “flat-start” and
“DAEM” were trained independently of each other without

Fig. 8 Results of triphone HMMs (speaker-dependent).

Fig. 9 Results of triphone HMMs (speaker-independent).

Table 1 Total number of distributions (triphone).

k-means flat-start DAEM
speaker-dependent 1425 3244 3283

speaker-independent 7784 16776 14788

labels, there is an inconsistency of temporal segmentations
of acoustic features between states to be shared in the clus-
tering. Even though the similar number of states was ob-
tained between “flat-start” and “DAEM”, in the Figure 8,
“DAEM” improves the performance than “flat-start” in all
cases, and the error reduction of 17.9% was obtained in the
speaker-dependent experiment of 2-mixtures. In the speaker
independent experiment, “DAEM” could not achieve the
same error rates as “k-means”, because variations in speaker
characteristics affect estimating the phoneme boundaries.
However, “DAEM” shows better results than “flat-start”, al-
though the both methods start from the same initial model
parameters. These results show that the DAEM algorithm
provides a simple procedure including the initialization even
though we need to determine a proper schedule of decreas-
ing the temperature, and it can improve the performance
of the flat start training in HMM-based continuous speech
recognition.

4. Conclusion

In this paper, we investigated the effectiveness of the DAEM
algorithm in speaker recognition and continuous speech
recognition. The DAEM algorithm is a reformulated version
of the EM algorithm derived by minimizing the thermody-
namic free energy, and can relax the problem of initializa-
tion dependence in the EM algorithm. The experimental re-
sults show that the DAEM algorithm is effective for acoustic
modeling based on GMMs and HMMs, especially in the flat
start training of HMM-based continuous speech recognition.

As a future work, we will also carry out the experi-
ments with various update schemes of temperature param-
eter in the DAEM algorithm. More practical experiments
are also future works, e.g., speaker recognition tasks with
interval changes and large vocabulary speech recognition.
Furthermore, we will investigate the relation among local
maxima, amount of training data and model complexity.
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