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SUMMARY This paper presents an analysis of the applicability of
Sparse Kernel Principal Component Analysis (SKPCA) for feature extrac-
tion in speech recognition, as well as, a proposed approach to make the
SKPCA technique realizable for a large amount of training data, which
is an usual context in speech recognition systems. Although the KPCA
(Kernel Principal Component Analysis) has proved to be an efficient tech-
nique for being applied to speech recognition, it has the disadvantage of re-
quiring training data reduction, when its amount is excessively large. This
data reduction is important to avoid computational unfeasibility and/or an
extremely high computational burden related to the feature representation
step of the training and the test data evaluations. The standard approach to
perform this data reduction is to randomly choose frames from the original
data set, which does not necessarily provide a good statistical representa-
tion of the original data set. In order to solve this problem a likelihood
related re-estimation procedure was applied to the KPCA framework, thus
creating the SKPCA, which nevertheless is not realizable for large training
databases. The proposed approach consists in clustering the training data
and applying to these clusters a SKPCA like data reduction technique gen-
erating the reduced data clusters. These reduced data clusters are merged
and reduced in a recursive procedure until just one cluster is obtained, mak-
ing the SKPCA approach realizable for a large amount of training data.
The experimental results show the efficiency of SKPCA technique with the
proposed approach over the KPCA with the standard sparse solution using
randomly chosen frames and the standard feature extraction techniques.
key words: kernel, sparsity, principal component analysis, feature extrac-
tion, speech recognition

1. Introduction

Nowadays speech recognition systems have reached a high
effectiveness condition, which can be confirmed by the nu-
merous commercial products with recognition applicability
available not only for corporate, but also for personal use.
The feature extraction is one of the factors that contributed
to this effectiveness.

The most commonly used feature extraction tech-
niques are mel frequency cepstral coefficients (MFCC) [1],
linear prediction coefficients-cepstral (LPC-cepstral) coef-
ficients [1] and perceptual linear prediction (PLP) coeffi-
cients [2]. They have already been very well analyzed and
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their efficiency widely proved. However the development
of a kernel-based approach to “manipulate” data in a fea-
ture space (a non-linear higher dimensional space) came up
with new concepts, in which the main idea is to express the
speech data in a feature space to generate what would pos-
sibly be more discriminative speech features.

This approach was firstly applied to Support Vec-
tor Machines (SVMs) [3], [4]. Some other examples of
kernel-based learning machines are Kernel Discriminant
Analysis (KDA) [5], Kernel Principal Component Analysis
(KPCA) [6]–[12] and Sparse KPCA [13]. The KPCA is a
non-linear approach to PCA. It depends on the training data
to evaluate the high dimensional principal components and
also to represent a certain input data in the feature space.
Depending on the training data amount these evaluations
could be unfeasible and/or cause a huge computational bur-
den. Considering this, the training data reduction is fun-
damental to the KPCA realization. The standard frame re-
duction is performed by choosing frames randomly, how-
ever these choices do not guarantee that the reduced data
well represent the original data set. The SKPCA was devel-
oped to solve this problem by generating the reduced data
set through a likelihood maximization criterion.

As it is shown in Fig. 1, the SKPCA technique can be
separated in two blocks, the reduction of training data and
the KPCA block. The covariance matrix used in SKPCA
approach is modeled as the weighted outer-product of the
training speech feature vectors plus an isotropic noise com-
ponent, and these weights are updated by the SKPCA re-
estimation procedure. These weights generate the sparse
solution for the KPCA, because they represent a measure
of how well a specific training vector contribute to the like-
lihood maximization. Once obtained the reduced data, the
common KPCA technique is applied and the representation
of a feature test vector t is given by Tskpca. In this paper the
mel-cepstral coefficients are used in the feature vector repre-
sentation. Figure 1 also shows where the SKPCA is located
in the speech recognition system as a whole.

Although the SKPCA generates a reduced training
data, it requires the full original training data to evaluate the
maximization step, which could be computationally unfeasi-
ble, depending on the training data amount. In order to solve
it, an approach is proposed, where the original training data
is clustered and the SKPCA is applied to these clusters. De-
spite this approach does not guarantee that the overall data
maximum is reached, it will be shown by experimental re-
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Fig. 1 A simplified representation of the recognition system with the
SKPCA block.

sults that SKPCA could surpass the performance of KPCA
and standard feature extraction techniques.

The paper is structured as follows. In Sect. 2, a de-
tailed evaluation of PCA, KPCA and SKPCA techniques are
described concluding the section with the SKPCA weights
re-estimation and feature space representation. In Sect. 3,
the proposed approach is explained considering the training
data reduction using a SKPCA like approach. In Sect. 4, ex-
periments are presented assuring the efficiency of SKPCA.
Finally, Sect. 5 presents the conclusions of this work and
ideas for future work, as well.

2. Feature Extraction Using Kernel PCA

2.1 PCA

PCA is a well-established technique for dimensionality re-
duction. It represents a linear transformation where the data
is expressed in a new coordinate basis that corresponds to
the maximum variance “direction.”

Assuming that the data set consists of M centered ob-
servations xk ∈ Rn, k = 1, . . . ,M, and

∑M
k=1 xk = 0, the

sample covariance matrix corresponding to this data set is
given by

S =
1
M

M∑
j=1

x jxT
j = M−1XXT , (1)

where X = [x1, . . . , xM] represents the matrix of data.
The principal components are obtained by solving the

following eigenvalue system of equations, SV = VΩ, where
Ω is the diagonal matrix with the eigenvalues and V is an
orthogonal matrix of column eigenvectors of S. It is well-
known that the eigenvectors V can be obtained from the
eigenvectors of the matrix XT X of inner-products.

Table 1 Some examples of kernel functions.

Kernel function Equation
Polynomial function k(x, y) = (x · y + 1)p

Gaussian RBF (GRBF) k(x, y) = e− ||x−y||2
2σ2

Sigmoid function k(x, y) = tanh(κx · y − δ)

Having U as the orthogonal matrix of column eigen-
vectors and Λ as the diagonal matrix of eigenvalues
of M−1XT X, the following expression can be obtained,
M−1XT XU = UΛ. Multiplying it by X on both sides,
M−1XXT (XU) = (XU)Λ, is obtained and can be noticed
that XU are proportional to the eigenvectors of M−1XXT =

S, i.e., XU ∝ V and Λ are the corresponding eigenvalues.
The previous statement was observed because the column
vectors of XU are not normalized, which is clearly noticed
by, UT XT XU = Λ. Hence the normalized eigenvectors of
M−1XXT are given by

V = XUΛ−
1
2 . (2)

This approach is generally used when n � M, i.e., when
the dimensionality of x is greater than the number of train-
ing samples. However this is also essential to the KPCA
development.

2.2 Kernel Functions

These functions are widely used to solve the problem of
nonlinear mapping (φ) to a higher dimensional space, with-
out using explicit mapping, which would be computation-
ally unfeasible.

If the function k(xi, x j) = φ(xi) · φ(x j) is a symmet-
ric positive function that obeys the Mercer’s condition [4],
then it can be shown that this function represents the dot
product of the variables xi and x j in the feature space.
Thus the nonlinear mapping can be performed by using ker-
nel functions as the dot product of the mapped variables:
φ : x · y → φ(x) · φ(y) = k(x, y). The kernel matrix K is de-
fined as the matrix whose indices are (K)i j = k(xi, x j). Some
examples of kernel functions are shown in Table 1.

2.3 KPCA

The Kernel PCA is the technique which applies the kernel
function to the PCA technique, in order to obtain the repre-
sentation of PCA in a higher dimensional space [7].

Defining φ(xi) = φi, it can be said that φT
i φ j = k(xi, x j),

and the mapping of the full data matrix X can be defined by
a (D×M) matrixΦ =

[
φ1 . . . φi . . . φM

]
, where φi represents

the mapping of xi in a higher dimension D.
Analogous to equation (1), the covariance matrix in a

feature space is given by

SF =
1
M

M∑
j=1

φ jφ
T
j = M−1ΦΦT , (3)

and consequently the representation of the eigenvectors V in



LIMA et al.: APPLYING SPARSE KPCA FOR FEATURE EXTRACTION IN SPEECH RECOGNITION
403

the feature space is

VF = ΦUKΛ
− 1

2
K , (4)

where UK and ΛK contain the eigenvectors and eigenvalues
of the kernel matrix K.

Finally, the KPCA representation of a test vector t
is given by the projection of the mapped vector φ(t) onto
the eigenvectors VF . It is mathematically expressed as
Tkpca = VT

F φ(t), where Tkpca is a D dimensional column
vector, which gives the KPCA representation of φ(t). Even
without obtaining VF ,Φ and φ(t) explicitly, the final KPCA
representation can be achieved by computing the dot prod-
uct of the “implicit” variables through the application of a
kernel function, which is shown as follows:

VT
F φ(t) =

(
Λ
− 1

2
K

)T
UT

KΦ
Tφ(t) = Λ

− 1
2

K UT
Kkt

T , (5)

where kt represents a M dimensional column vector formed
by k(t, xi), for i = 1, . . . ,M.

All the steps evaluated in this section are better visu-
alized in Fig. 2. It shows the φ mapping of the training and
test data (t1, t2 and t3), as well as, the principal components
(dashed line) obtained from the training data, and finally
the KPCA representation of the test data (Tkpca

1 , Tkpca
2 and

Tkpca
3 ). In practice, the individual mapping of the data does

not occur, the mapping is performed implicitly based on the
dot products of the data, however this way of presenting the
KPCA technique makes the procedure easier to be under-
stood.

Although the KPCA is a powerful technique, it has the
disadvantage of requiring the full training data to calculate
the kernel matrix K and kt in (5). The calculation of K is
constrained by computational resources due to the fact that
it is desired to use as much data as possible in the training
step to generate a good estimation of the data space, and K
is a M×M matrix, where M is the number of samples of the
training data. In practice, the amount of training data can
not be excessively large, otherwise the eigenvectors of K in
the KPCA will be computationally unfeasible, and even if
the amount of data is not excessively large for the eigenvec-
tors calculation, it could be big enough to cause a certain
computational burden for kt calculation in the final KPCA
representation.

A common solution to the problem mentioned before
is to reduce the number of frames (full training data) to
N frames, which are randomly picked up from the train-
ing data, as it was cited in [14]. Although this approach
has shown an efficient performance in a speech recognition
task [12], it does not use the overall information provided by
the training data, i.e., when frames are randomly picked up,
the training data is reduced without necessarily keeping any
statistics of the original data set.

2.4 SKPCA

In order to provide a solution for the previous mentioned

Fig. 2 Visualization of KPCA procedure.

disadvantage of the KPCA technique, an approach where
the frame reduction obeys the output probability maximiza-
tion criterion was developed, and it is called SKPCA. It con-
sists in estimating the feature space sample covariance for a
noise component and the sum of the weighted outer prod-
ucts of the original feature vectors, which generate a sparse
solution to KPCA. This is obtained by maximizing the like-
lihood of the feature vectors under a Gaussian density model
φ ∼ N(0,CF ), where the covariance CF is defined by

CF = σ2I +
M∑

i=1

wiφiφ
T
i = σ

2I +ΦWΦT , (6)

where W is a diagonal matrix composed by the adjustable
weights w1, . . . ,wM , andσ2 is an isotropic noise component,
N(0, σ2I), common to all dimensions of feature space. It
was observed that fixing σ2, and maximizing the likelihood
under the weighting factors wi, the estimates of several wi

are zero, thus realizing a reduced (sparse) representation of
the covariance matrix. This approach was based on the prob-
abilistic PCA (PPCA) formulation [15].

The log-likelihood under the Gaussian model with co-
variance CF , given by (6), is denoted by

L = −M
2

[
D log(2π) + log |CF | + tr(C−1

F SF )
]
, (7)

ignoring the terms independent of the weights, it is ex-
pressed by

L = −1
2

[
M log |CF | + tr(C−1

F ΦΦ
T )
]
. (8)

Differentiating (8) under the weights wi and making it
equal to zero, means to maximize the log-likelihood with re-
spect to wi. However, in order to reach better mathematical
representation, (8) should be decomposed. The first term of
(8), M log |CF | can be decomposed in
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M log |CF | = M
(
log |σ2I +ΦWΦT |

)

= M
(
D logσ2 + log |W| + log |W−1 + σ−2ΦTΦ|

)

= M
(
D logσ2 + log |W| + log |W−1 + σ−2K|

)
, (9)

and the second term, tr(C−1
F ΦΦ

T ) is rewritten as:

tr(C−1
F ΦΦ

T ) =
M∑

i=1

φT
i

(
C−1
F
)
φi

=

M∑
i=1

φT
i

(
σ2I +ΦT WΦ

)−1
φi

=

M∑
i=1

φT
i

[
σ−2I − σ−4Φ

(
W−1 + σ−2ΦTΦ

)−1
ΦT
]
φi

=

M∑
i=1

σ−2kii − σ−4kT
i

(
W−1 + σ−2K

)−1
ki, (10)

where kii = k(xi, xi) and ki is a column vector, which corre-
sponds to the i-th column of the matrix K.

Now evaluating ∂L
∂wi

by differentiating the terms ob-
tained in (9) and (10) with respect to wi, the following ex-
pression is obtained,

∂L
∂wi
= −1

2

M
(
w−1

i − w−2
i Σii

)
− w−2

i

M∑
j=1

µ2
ji



=
1

2w2
i

MΣii − Mwi +

M∑
j=1

µ2
ji

 , (11)

where Σii and µ ji are respectively the diagonal components
of the matrix Σ = (W−1 + σ−2K)−1 and the elements of the
column vector µ j = σ

−2Σk j. Setting (11) to zero, which
means to find the maximum of the function represented by
the equation, generates the re-estimation update functions
for the weights,

wnew
i = M−1

M∑
j=1

µ2
ji + Σii. (12)

According to [13], an equation for re-estimation update that
converges faster than (12), can be obtained by rewriting (11)
equal to zero such as

wnew
i =

∑M
j=1 µ

2
ji

M (1 + Σii/wi)
. (13)

Equivalently to the KPCA representation, the projec-
tion of a test vector φ(t) onto the principal axes VF is calcu-
lated by

Tskpca = VT
F φ(t) = Λ̃

− 1
2

K ŨT
K k̂T

t , (14)

where ŨK and Λ̃K are defined, respectively, as the eigenvec-
tors and eigenvalues of W

1
2 KW

1
2 , and k̂t represents the vec-

tor calculated by k(t, xi), where xi corresponds to the non-
zero weighted vectors represented in X.

3. Proposed Approach

The proposed approach consists in making the SKPCA tech-
nique computationally feasible for a data set with a great
number of samples, which is an usual situation in speech
recognition.

Generally, in speech recognition the amount of training
data tends to be large, for example, in this work the training
data comprises about 1,200,000 frames, and with this num-
ber of frames the SKPCA re-estimation in equation (13) is
computationally unfeasible, once it depends on the kernel
matrix K to calculateΣ. In order to overcome this limitation,
it is proposed to divide the full training data into clusters of
L frames, then merge the clusters forming new clusters of
2L frames, which are reduced to L frames by using SKPCA.
The process is repeated successively until obtaining just one
cluster of L frames, which is the final number of frames de-
sired to represent the full training data, as shown in Fig. 3.

The following explanation describes how the frame re-
duction from 2L to L using SKPCA is performed. Firstly,
the σ2 is chosen to be equal to the L-th eigenvalue ob-
tained from the cluster of 2L frames, then the re-estimation
(13) is performed generating the weights wi for the cluster
of 2L frames. In practice, the weights describe the order
of the most representative vectors that maximize the like-
lihood considering σ2. Hence, the L highest values of wi

are selected in order to reduce the cluster size, and conse-
quently the feature vectors corresponding to these weights
are saved to the following step, which could be the cluster
merging step to continue the full training data reduction or
the SKPCA (KPCA block) representation step. The weights
are used to select the most representative feature vectors,
however they are not included in the following frame reduc-
tion step and neither in the SKPCA feature representation

Fig. 3 Proposed approach.
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procedure.
The total number of steps necessary to reduce the l

clusters of L frames to one cluster, is given by step = log2l,
where step is the number of steps. The “ideal” approach
is to perform the re-estimation in (13) over the full training
database, however it is not realizable due to the computa-
tional reasons mentioned before. Considering this, the pro-
posed approach does not guarantee to reach the overall data
maximization, just individual cluster maximization. How-
ever as it will be shown in Sect. 4, its performance over-
comes the standard randomly chosen frames approach used
in KPCA.

4. Experimental Work

In order to evaluate the efficiency of this technique, a
speaker-independent isolated word recognition experiment
was conducted. The experiment consisted in using a larger
database, a 520 Japanese words vocabulary with 80 speak-
ers (40 males and 40 females) extracted from the C set of the
ATR Japanese database. The training data was composed of
10400 utterances and the remaining 31200 utterances were
used as test data.

4.1 Settings

The speech signals were obtained with 10 KHz of sam-
pling rate, and 13 mel-cepstral coefficients (12th order mel-
cepstral analysis plus the zero-th mel-cepstral term) were
extracted from each frame by using 25.6 ms Hamming win-
dows with 10 ms shifts.

The reduced number of training frames N applied to
KPCA experiment were 256, 512 and 1024 frames ran-
domly chosen, which is the standard technique to solve
the sparsity problem of KPCA [11]. The same numbers of
reduced frames (256, 512 and 1024) were applied to the
SKPCA with the proposed approach. Beside the two men-
tioned experiments, it was evaluated the full training data
PCA to be compared with the KPCA with first degree poly-
nomial kernel.

All the experiments were based on input vectors
formed by the 13 mel-cepstral coefficients plus their ∆ and
∆∆ features. Each word was modeled by using a 12 state
HMM (hidden Markov model) with single mixture of diag-
onal covariance and the numbers of frames N (256, 512 and
1024) were chosen to reduce the computational burden.

The baseline features were obtained by applying 13
mel-cepstral plus their ∆ and ∆∆ coefficients to the previ-
ously mentioned recognition system. Its performance was
8.36% of error rate.

4.2 PCA Performance

Experiments using PCA extracted features were evaluated
in order to make a comparative analysis against KPCA and
SKPCA performances.

The results shown in Table 2 agree with the conclusion

Table 2 Error rate (%) of the system using PCA features as the input
of the classification block. The PCA output dimensionality is given by the
PCA feature vectors only and the PCA feature vectors plus their ∆ and
∆∆ coefficients, which are represented by the columns w/DA (without dy-
namic and acceleration features) and wDA (with dynamic and acceleration
features), respectively.

PCA

dim w/DA wDA
8 23.33 8.76

13 22.69 7.70
16 17.29 7.77
32 10.05 10.84
39 11.12 12.68

stated in [11], that the dynamic and acceleration features
applied to the output of the feature extraction block are es-
sential to reach higher recognition performance. Although
this conclusion was based on KPCA experiments, the PCA
results show a similar characteristic. The best PCA perfor-
mance, 7.70% of error rate was obtained by using dimen-
sionality 13 and wDA (with dynamic and acceleration char-
acteristics). It represents higher recognition accuracy than
the best performance without dynamic and acceleration fea-
tures, 10.05% of error rate (32 dimensions and w/DA col-
umn), and the baseline performance (8.36% of error rate).
The columns w/DA (without dynamic and acceleration char-
acteristics) and wDA represent the use PCA feature vectors
and the PCA feature vectors plus their∆ and∆∆ coefficients,
respectively.

4.3 KPCA Performance

The KPCA experiment is required due to comparison mat-
ters against PCA and SKPCA, because there is no way of
evaluating the efficiency of the SKPCA technique, except
comparing it with other related approaches.

Table 3 presents the results due to the use of KPCA
with first degree polynomial kernel function and N equal
to 256, 512 and 1024 frames. The KPCA with first degree
polynomial kernel function represents the use of PCA for
the reduced training data N. Analyzing the results, it is
clearly noticed that the columns wDA show better perfor-
mances than the columns w/DA, which again shown the im-
portance of applying the dynamic and acceleration features.
Also in accordance with the conclusions presented in [12],
as the number of frames N increases, the recognition accu-
racy tends to be better. The best performances for N equal
to 256, 512 and 1024 are 7.99%, 8.07% and 7.45% of error
rate, respectively, with dimensionality 13 and wDA. All of
them overcome the baseline result.

Comparing the results of Table 3 to the ones of Ta-
ble 2, it is observed that the best PCA performances of both
columns w/DA and wDA reached lower error percentages
than the best KPCA performances of Table 3, except for
the KPCA case with N=1024, 13 dimensions and column
wDA. Observing each cell individually and comparing them
to the PCA corresponding ones, it is noticed that the KPCA
& p=1 overcome the PCA results in 37% of the cases. As
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Table 3 Error rate (%) of the system using KPCA with a 1st degree
polynomial kernel function and N equal to 256, 512 and 1024. The columns
w/DA and wDA represent respectively the feature vectors not using and
using ∆ and ∆∆.

KPCA & p=1
N=256 N=512 N=1024

dim w/DA wDA w/DA wDA w/DA wDA
8 22.16 8.61 22.61 8.43 24.01 8.83

13 22.96 7.99 23.19 8.07 23.50 7.45
16 19.79 8.72 21.09 8.32 17.77 8.19
32 11.81 9.94 11.48 10.06 10.16 10.38
39 12.88 11.77 13.28 12.29 11.26 10.26

Table 4 Error rate (%) of the system using KPCA with a 2nd degree
polynomial kernel function and N=256, 512 and 1024. The columns w/DA
and wDA represent respectively the feature vectors not using and using ∆
and ∆∆.

KPCA & p=2
N=256 N=512 N=1024

dim w/DA wDA w/DA wDA w/DA wDA
8 25.91 7.92 24.60 7.88 22.30 7.64

13 25.62 7.48 24.54 7.35 21.72 6.70
16 25.13 7.70 23.44 7.59 19.46 6.85
32 18.44 7.43 17.61 7.29 14.34 6.53
39 18.22 7.77 17.62 7.85 11.26 6.79
64 20.44 9.45 22.01 9.95 17.42 8.96
128 28.60 14.92 31.93 17.66 26.17 16.44

it was expected, the PCA results using the full training data
tend to reach higher accuracy than the PCA representatives
for the reduced data (KPCA & p=1), because the reduced
data does not necessarily hold enough statistic information
to well represent the training data set.

Table 4 presents the results due to the use of KPCA
with second degree polynomial kernel function and N equal
to 256, 512 and 1024 frames. It is noticed that the lowest
error rates presented in column wDA are 7.43%, 7.29% and
6.53% for 256, 512 and 1024 randomly chosen frames, re-
spectively, and dimensionality 32. These results overcome
the best performances presented in the columns wDA of Ta-
ble 3 and Table 2, besides the baseline. These results were
expected because the KPCA with second degree polynomial
kernel function represents the real use of KPCA, and the
KPCA with first degree polynomial kernel function is a re-
duced data representation of PCA. It is clearly observed by
comparing the best performances of PCA (Table 2), KPCA
with p=1 (Table 3) and baseline against the best perfor-
mances of KPCA with p=2 (Table 4), that effectively the ap-
plication of KPCA technique caused a certain improvement
in the system accuracy. In addition to the previous analysis,
it is expected that the lowest error rates obtained with KPCA
with p=2 are not beaten by the KPCA with p=1, the PCA
nor the baseline error rates. It also suggests that the follow-
ing analyses for SKPCA should be focused on the second
degree polynomial kernel function.

4.4 SKPCA Performance

The SKPCA is performed by re-estimating wnew
1 in (13),

Fig. 4 Proposed approach focusing on the number of frames N.

Table 5 Error rate (%) of the system using SKPCA with a 2nd degree
polynomial kernel function and N=256, 512 and 1024. The columns w/DA
and wDA represent respectively the feature vectors not using and using ∆
and ∆∆.

SKPCA & p=2
N=256 N=512 N=1024

dim w/DA wDA w/DA wDA w/DA wDA
8 25.21 8.36 22.55 7.51 22.96 7.23
13 22.05 6.37 21.31 6.30 22.71 6.44
16 21.73 6.42 19.12 6.39 19.90 6.53
32 17.04 7.15 14.00 6.97 14.28 6.59
39 16.68 7.42 13.88 7.05 13.90 7.08
64 19.62 9.02 17.72 8.74 17.21 8.85

128 25.04 13.15 23.98 13.90 25.45 15.91

while Σ and µ j are updated. The number of re-estimations
are constrained to the maximum permitted number of itera-
tions. Then, this process is evaluated successively for all i in
wnew

i . This re-estimation was motivated by noticing that sev-
eral wnew

i tend to converge to one single value, what could
be used to reduce the computational cost associated to the
usual SKPCA re-estimation.

The proposed approach in Sect. 3 was applied using
L=256. The reduced number of frames N was obtained ac-
cording to L, i.e., the training data set obtained by using
L=256 was used in N=256, and the training data sets for
N equal to 512 and 1024 were obtained by merging the fi-
nal clusters achieved in (step − 1) and (step − 2) steps. In
other words, the data set when N=256 is a subset of the data
set when N=512 and both are subsets of the data set when
N=1024, as it is shown in Fig. 4, which is a simplified ver-
sion of Fig. 3 focusing on the number of frames N.

Table 5 shows the results related to the use of SKPCA
with the proposed approach and second degree polynomial
kernel function for N equal to 256, 512 and 1024 frames.
The best performances were 6.37%, 6.30% and 6.44% of
error rate for dimensionality 13 and N equal to 256, 512 and
1024, respectively. The best result when N=1024 was worse
than the best results when N was equal to 512 and 256. This
could be explained by considering the data set with 1024
frames having redundant data information, the performance
degradation from N=512 to N=256 could be explained by
the elimination of important data information from the data
set with 512 frames. The previous explanation is corrobo-
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rated by knowing that in the proposed approach a reduced
data set with a certain number of frames is a subset of a re-
duced data set with a greater number of frames. The best
performances were significantly superior when compared to
the ones presented in Tables 2, 3 and 4, and also when com-
pared to the baseline result. Comparing individually the re-
sults of the cells from both columns in the KPCA & p=2 and
SKPCA & p=2 cases, it is noticed that the SKPCA over-
come the KPCA performances in 81% of the cases.

Considering the computational time, the experiments
were performed on an Intel Xeon, 2.8 GHz with 1024 MB of
RAM and using Linux operating system and all the routines
were implemented in C. The proposed approach can not be
compared to the original SKPCA with full training data due
to the fact that the SKPCA is not realizable using a large
amount of training data, which in this work corresponds to
1,200,000 frames, approximately. However a comparison
of the computational cost for the proposed approach using L
equal to 256, 512 and 1024 could show the impact of using
the clustered training data approach. The mean computa-
tional times for 10 clusters considering exclusively the train-
ing data reduction routine were approximately 5 min, 70 min
and 400 min for L equal to 256, 512 and 1024, respectively.
Although the cluster size reduction causes an increase in the
number of clusters, the computational time reduction due to
this cluster size reduction is more significant than the time
increase related to the increment in the number of clusters,
which consequently results in an overall computational time
reduction, thus showing the advantage of the proposed ap-
proach in reducing the computational cost.

4.5 Cross-Validation Experiments

The cross-validation experiment consisted in dividing the
test database of the previous experiments into two different
data sets, estimation data and test data. The estimation data
was used to establish the best features, which are related to
the highest recognition performance, and the test data was
used to confirm the reliability of these best features.

The previous results show that the best performances
depend on the appropriate choices of the dimensionality
(with or without dynamic and acceleration characteristics)
and the N number of frames concerning the SKPCA with
the proposed approach. This experiment is intended to show
that these appropriate choices can be obtained by analyzing
a certain amount of data (estimation data) and then applying
the features of the best performances obtained from the es-
timation data to the unseen new data (test data). In order to
carry out these experiments, the original test database of 60
speakers (31200 utterances) was divided into two data sets
of 20 (10400 utterances) and 40 (20800 utterances) speak-
ers, which represent the estimation and the test data, respec-
tively. The results are composed by the average of three
different divisions.

The three divisions mentioned above, in fact, mean
three different cross-validation like experiments. One ex-
periment consists in using the estimation data of one specific

division and observe all the possibilities of N (1024, 512 and
256), all dimensions (8, 13, 16, 32, 39, 64 and 128), search-
ing for the overall higher performance. The features (N and
dimensionality) for the best result will be the optimal fea-
tures obtained by using the estimation data. Applying these
same features to the test data, it is obtained the test data re-
sult according to the optimal features from the estimation
data. This procedure is carried out for the three divisions
(three experiments) and the obtained recognition error rates
are averaged, in order to add more reliability to the final re-
sult.

Considering the estimation data for all the three di-
visions, the best performances were obtained by using di-
mensionality 13 and wDA. However two divisions had their
best results associated to N=512 frames and one division to
N=256 frames.

Concerning the test data, the overall best results were
associated to N=512 frames, p=2 and dimensionality 13, for
all three divisions. It means that using N=256 for one of the
test data sets according to one of the estimation data opti-
mal features does not correspond to the test data best perfor-
mance, thus this estimation data result could not determine
the optimal features for the test data. The average of the test
data performances using the optimal features obtained from
the estimation data was 6.36% of error rate, and the aver-
age of the test data performances using the optimal features
obtained from the test data itself was 6.30% of error rate,
which is equal to the SKPCA experiment overall best per-
formance, because the division average comprises the full
60 speakers data. A comparison of the average of the test
data results obtained from the estimation data optimal fea-
tures and from optimal features for the test data itself against
the baseline, the best PCA result and the best KPCA result,
which are shown in Sects. 4.1, 4.2 and 4.3, is presented in
Fig. 5. Although in one of the experiments the estimation
data could not select the best features for the test data, its
performance was quite similar to the best test data perfor-
mance, which can be confirmed by the slight difference in

Fig. 5 Summary of the best performances for the cross-validation exper-
iment. The error rates (upper and lower numbers) characterizing the “Pro-
posed” experiment performances are the test data results with the features
selected by the optimal features for the estimation data and the test data
itself, respectively.
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accuracy of the results shown in Fig. 5, column “Proposed.”

5. Conclusions

Kernel based techniques applied to a 520 Japanese words
recognition task were presented in this paper, and accord-
ing to the experimental results (Sects. 4.2, 4.3 and 4.4) the
effectiveness of SKPCA has been confirmed over the others
techniques presented in this work.

Results showed in Sect. 4.2 and Sect. 4.3 (Table 3) have
confirmed the superiority of the PCA using full training
data over the reduced data PCA representation obtained
from KPCA & p=1. On the other hand, Sect. 4.3 (Table 4)
and Sect. 4.4 have demonstrated the importance of using
SKPCA technique to improve the recognition accuracy of
the system. Also the proposed approach has shown its effi-
ciency through the experimental results.

The error reduction of the overall best performance
6.30% (SKPCA) against the best performances of the oth-
ers techniques were 3.52%, 15.43%, 18.18% and 24.64%,
respectively to the KPCA & p=2 (6.53%), KPCA & p=1
(7.45%), PCA (7.70%) and baseline (8.36%). It is also noted
that this work was based on empirical analyses, once there
is no theory that supports the superiority of one method over
the others.

Despite the technique presented in this paper has con-
siderably improved the recognition performance of the ana-
lyzed task, it is required further research in order to observe
the effects of using different techniques to cluster the full
training data to make the SKPCA re-estimation realizable.
Besides the previous mentioned topic, further study on other
kernel-based sparse approaches and different kernel-based
learning machines are the natural future steps of this work.
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