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SUMMARY This paper describes continuous speech recognition incor-
porating the additional complement information, e.g., voice characteris-
tics, speaking styles, linguistic information and noise environment, into
HMM-based acoustic modeling. In speech recognition systems, context-
dependent HMMs, i.e., triphone, and the tree-based context clustering have
commonly been used. Several attempts to utilize not only phonetic con-
texts, but additional complement information based on context (factor) de-
pendent HMMs have been made in recent years. However, when the addi-
tional factors for testing data are unobserved, methods for obtaining factor
labels is required before decoding. In this paper, we propose a model inte-
gration technique based on general factor dependent HMMs for decoding.
The integrated HMMs can be used by a conventional decoder as standard
triphone HMMs with Gaussian mixture densities. Moreover, by using the
results of context clustering, the proposed method can determine an optimal
number of mixture components for each state dependently of the degree of
influence from additional factors. Phoneme recognition experiments us-
ing voice characteristic labels show significant improvements with a small
number of model parameters, and a 19.3% error reduction was obtained in
noise environment experiments.
key words: continuous speech recognition, triphone HMMs, context clus-
tering, Bayesian networks, voice characteristic, noise environment

1. Introduction

In recent large vocabulary speech recognition systems,
context-dependent acoustic models, i.e., triphone HMMs,
are commonly used. Since triphone HMMs are trained in-
dividually depending on the phoneme contexts, the acoustic
features are modeled more accurately than the monophone
HMMs. However, in the use of context-dependent HMMs,
there is the problem that the number of training data be-
comes relatively small for each triphone HMM due to the
large number of triphones and the statistical reliability of
HMMs is reduced. To adjust the balance between the model
complexity and the number of training data, various param-
eter sharing techniques have been proposed [1]–[5]. Espe-
cially, the tree-based context clustering [5] is well employed
with triphone HMMs. It has two advantages over bottom-up
based approaches: first, by incorporating phonetic knowl-
edge into questions, it can assign unseen context-dependent
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HMMs to the leaf nodes of decision trees. Second, the split-
ting procedure of the decision tree provides a way of keeping
the balance of model complexity and robustness.

In recent years, several attempts to utilize not only
phonetic contexts but additional contexts (factors) which
vary the distribution of acoustic features have been made
in HMM-based acoustic modeling, e.g., phoneme position
in a word [6], speaker’s gender [7], and dialect, speaking
rate and SNR [8]. Although accurate modeling of acous-
tic feature can be performed by using explicit information
of factors, when the additional factors for testing data are
unobserved, methods for obtaining factor labels is required
independently of triphone HMMs. In [9], incorporating the
complemental features into the HMM-based acoustic mod-
eling have been described within a framework of Dynamic
Bayesian Networks (DBNs). In this method, the Gaussian
mixture density function is replaced with the Bayesian Net-
works (BNs) as a state output distribution, and the additional
factors can be included as a discrete probabilistic variables
into BNs. The derived equations from simple BN structure
is interpreted as that the likelihood of hybrid HMM/BN is
calculated by summing over the likelihoods of the factor de-
pendent HMMs. In the recognition phase, the unobserved
factors are dealt as hidden variables and marginalized over
the possible values of factors.

In this paper, we propose a model integration technique
for decoding speech based on the general factor dependent
HMMs. The integrated models over additional factors can
be regarded as factor invariant models based on the frame-
work of Bayesian networks. By ignoring the temporal de-
pendency between additional factors, the integrated mod-
els can be used by the conventional decoder as a standard
triphone HMM with Gaussian mixture density functions.
Although the proposed method is similar with the hybrid
HMM/BN, the proposed method uses the results of con-
text clustering based on the MDL (Minimum Description
Length) criterion [10], and the optimal number of mixture
components for each state can be determined dependently
of the degree of influence from additional factors.

The rest of the paper is organized as follows. In Sect. 2,
tree-based context clustering for additional factor depen-
dencies and a model integration technique for decoding is
described. Section 3 presents experimental results of the
proposed method in which voice characteristics and noise-
environment were adopted as the additional contexts. Fi-
nally, Sect. 4 notes conclusions and future topics.
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2. General Factor Dependent Acoustic Modeling

2.1 Tree-Based Context Clustering for General Factors

In this paper, we consider not only phonetic contexts but any
additional factors which vary the distributions of acoustic
features, in order to make context dependent HMMs more
accurate. In general factor dependent acoustic models, train-
ing data is divided by all the combination of triphone con-
texts and additional factors, then modeled individually. Al-
though accurate modeling of acoustic feature can be per-
formed by using explicit information of factors, the number
of training data for each HMM is decreased due to a number
of factor dependent HMMs. Thus, the reliability of factor
dependent HMMs is reduced. Furthermore there also exist
many triphones which are not observed in training data so-
called unseen triphones. However, similar to the standard
triphone HMMs, this problem can be avoided by applying
the tree-based context clustering technique.

In the tree-based context clustering, triphone HMMs
are grouped into “clusters,” and all HMMs belonging to one
cluster are assumed to have the same model parameters. A
binary tree is constructed based on the maximum likelihood
criterion by applying a question of “Yes” or “No” to each
node and splitting the cluster into two child clusters itera-
tively. By limiting the number of possible splitting using
prior knowledge, linguistic and articulatory information can
be reflected in the clustering results. The procedure of the
tree-based context clustering is as follows:

Step 1: Create a root node which includes all triphone
HMMs and compute its likelihood.

Step 2: The likelihood when a question would be applied is
calculated for all questions in each leaf node.

Step 3: Select the pair of node and question which gives the
maximum likelihood, and split it into two by applying
the question.

Step 4: If the change of the likelihood after splitting is be-
low a threshold, stop the procedure. Otherwise, go to
Step 2.

After the procedure, the clusters represented by leaf nodes
are used as the sharing structure, and any triphone HMM
including unseen triphones are assigned to one of clusters.
A cluster to which a target triphone HMMs belongs can be
found by descending the constructed tree from the root to
the leaf node while answering the questions at each node
based on the target label.

We can simply apply the tree based clustering tech-
nique to the general factor dependent HMMs by preparing
the questions about additional factors. Figure 1 shows an ex-
ample of binary decision tree for general factor-dependent
HMMs. In the figure, the white and gray nodes represent
the nodes with questions about a phonetic context and an
additional factor, respectively. This simultaneous clustering
of phonetic contexts and additional factors enables effective

Fig. 1 A decision tree considering additional contexts.

sharing parameters of acoustic models. In this paper, we as-
sumed that the clustering is performed at each state-position,
and each cluster is modeled as a single Gaussian distribu-
tion. Instead of the maximum likelihood criterion, the Min-
imum Description Length (MDL) criterion is adopted, in
which the optimal number of clusters is determined auto-
matically without setting a threshold. The description length
can be calculated as follows:

DL =
1
2

M∑

m=1

Γm(K + K log(2π) + log |Σm|)

+cKM logΓ0 + const (1)

where Γm and Σm are the total state occupancy count and the
covariance matrix of the leaf node m = 1, . . . ,M, respec-
tively. The total number of data is denoted by Γ0 =

∑M
m=1 Γm

and K is the dimensionality of the feature vectors. Although
in [10], a weight coefficient c is adjusted to control the size
of decision trees, we simply use c = 1.0 in our experiments.

2.2 Model Integration Technique for Decoding

When input speech is decoded by standard triphone HMMs,
the adjacent phonetic contexts can be given by the phonetic
connections in search of a network. However, some addi-
tional factors, such as voice characteristics, speaking rate,
and SNR, etc., cannot be determined without an estimation
technique which is independent of the acoustic modeling. If
we have a reliable method for obtaining the explicit values
of additional factors, it would be able to improve the recog-
nition performance by using factors as observed variables.
However, there is no such method necessarily for additional
factors; the factors should be dealt as hidden variables, and
integrated out based on the framework of the Bayesian net-
works. That is, the likelihood function for an HMM Λ with
hidden factor variables c can be written as:

P(O|Λ) =
∑

q

∑

c

P(q|Λ)P(O, c|q,Λ)

=
∑

q

P(q|Λ)


∑

c

P(O, c|q,Λ)

 (2)

where O = (o1, . . . , oT ) and q = (q1, . . . , qT ) are the ob-
served data and the state sequence of an HMM, respectively.
The notation c = (c1, . . . , cT ) means the additional factors.
By ignoring the temporal dependency between additional
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factors, the output probability of each time can be calculated
individually as a Gaussian mixture density:
∑

c

P(O, c|q,Λ) =
∑

c

P(c|q,Λ)P(O|c, q,Λ)

�
∑

c

T∏

t=1

P(ct|qt,Λ)P(ot|ct, qt,Λ)

=

T∏

t=1


∑

ct

P(ct|qt,Λ)P(ot|ct, qt,Λ)

 (3)

where P(ot|ct, qt,Λ) is the factor dependent Gaussian distri-
bution and P(ct|qt,Λ) is the weight of mixture components.
If the additional factors ct are unsupervised in the model
training, the integrated models is equivalent to the standard
HMMs with multi-mixture Gaussian density functions.

In the proposed technique, the leaf nodes of the deci-
sion tree which have the same phonetic contexts and differ-
ent additional factors are integrated as a mixture of Gaussian
distribution. The integration technique of the leaf nodes is
shown in Fig. 2 and the procedure is summarized as follows:

Step 1: If the question of a current node is about phonetic
contexts, either “Yes” or “No” node is chosen. Oth-
erwise, i.e., the question is about an additional factor,
both “Yes” and “No” nodes are chosen.

Fig. 2 Integration of acoustic models.

Step 2: By repeating Step 1 from the root node until reach-
ing all leaf nodes, a set of leaf nodes can be obtained,
which has the same triphone context but different addi-
tional factors.

Step 3: The single Gaussian distributions of the leaf nodes
P(ot |ct, qt,Λ) are integrated as a new mixture distribu-
tions. The mixture weights P(ct|qt,Λ) are determined
in proportion to the quantity of data γ (the accumulated
state occupancy count for the cluster).

Through the above procedure, the integrated models can be
obtained from the factor dependent HMMs. The integrated
model have the same structure as the standard HMMs ex-
cept that a Gaussian distribution in each state corresponds
to a cluster of the additional factors. Therefore, the inte-
grated models can be used by the conventional decoders of
triphone HMMs without dictionary conversion and/or de-
coder modification. Furthermore, the constructed HMMs
have an optimal number of mixtures in each state, which are
determined by the degree of influence from the additional
factors.

3. Experiments

To evaluate the performance of the proposed method, con-
tinuous speech recognition experiments were conducted us-
ing voice characteristics and noise environment as the addi-
tional factors.

3.1 Experimental Conditions

The ASJ-PB database (phonetically-balanced sentences)
and ASJ-JNAS database (Japanese newspaper article sen-
tences speech corpus) were used. About 20,000 sentences
spoken by about 130 speakers of each gender were used for
training. For testing, the IPA-98-TestSet was used, which
consists of a total of 100 sentences spoken by 23 speak-
ers for each gender. In the experiment using noise envi-
ronment, the Japan Electronic Industry Development Asso-
ciation (JEIDA) noise database was used, and dissimilar 6
kinds of noise data were chosen from the total 17 kinds of
noise data in the database. The training speech data was di-
vided into 17 sets, and one was used for clean speech, and
the other were used for noise environment. The noise data of
“inside of running car (car),”“crossing,”“babble,” and “fac-
tory” with SNR of 20, 15, 10, and 5 dB were superimposed
on the each set of clean speech data. For testing data, in ad-
dition to the four kinds of noise for training, noise data of
“in a station concourse (station)” and “air-conditioning ma-
chine (aircon)” were superimposed with SNR of 20, 10, and
0 dB.

The speech data was sampled to 16 kHz, windowed at
a 10-ms frame rate using a 25-ms Blackman window, and
parameterized into 12 mel-cepstral coefficients with a mel-
cepstral analysis technique [11]. The static coefficients ex-
cluding zero-th coefficients and their first derivatives includ-
ing zero-th coefficients were used as feature vectors. The
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CMS (cepstral mean subtraction) was applied to each ut-
terance. These acoustic features were modeled by 3 states
left-to-right HMMs of 43 Japanese phonemes. Continuous
phoneme recognition experiments were performed. A net-
work to limit the results to Japanese phoneme sequences was
used. In the tree-based context clustering, 146 phonological
context questions were prepared for conventional triphone
HMMs. In addition, 20 voice characteristic questions and
43 noise environment questions were prepared for the addi-
tional factors. For both the conventional and the proposed
method, the MDL criterion was used as the stopping rule for
the context clustering. In the proposed technique, the em-
bedded training was conducted before and after the model
integration.

3.2 Labeling Methods

To construct context-dependent HMMs which depend on the
additional factors, training data was labeled with regard to
voice characteristics and noise environments. To select the
kinds of labels for the proposed method, it is necessary to
consider two properties: the additional factors should have
strong dependency on the acoustic features, and should be
independent of each other with respect to acoustic features.
However, it is difficult to select the labels which satisfy the
above properties in practice, hence the voice characteristic
labels in this experiment were determined so as to be easily
scored in listening test. Table 1 shows the kinds of voice
characteristic labels used in this experiment. A total of 40
listeners scored voice characteristics of the training data.
Because of the large number of training data, we assumed
that speech data uttered by one speaker have the same char-
acteristics, so that the labels scored from one sentence (ran-
domly chosen) were used as those of all training data for
the corresponding speaker. Each characteristic was scored
on 5-levels by four listeners and the average of the four lis-
teners was rounded off and used as the labels. Before each
listening test, two voice samples that may have had the high-
est/lowest scores were presented to each listener so that the
score distributions would not be biased.

For noise environment, the noise kinds and SNR were
used as the labels. The values of SNR were quantized at
3 dB intervals. We also prepared two sets of labels: SNR
is calculated for each utterance (noise1) and each phoneme
(noise2).

3.3 Experimental Results

Table 2 presents the number of Gaussian distributions af-
ter the context clustering based on voice characteristic de-
pendent HMMs. Using the MDL criterion, the total num-
ber of distributions obtained by the proposed method be-
come larger than that of the conventional HMMs without
additional factors. To evenly compare the recognition per-
formance with a similar number of model parameters, the
number of Gaussian distributions was increased to 2, 4 and
8 mixtures for all states of the conventional triphone HMMs.

Table 1 Voice characteristic labels.

Label Explanation of label

Age Advanced /Low age
Cheerfulness Cheerful /Dark

Sternness Stern /Tender

Gender
Male Masculine /Not masculine

Female Feminine /Not feminine
Speaking rate Speedy / Slow

Table 2 Total number of distributions (voice characteristics).

techniques Male Female

Conventional 1-mix 7540 7677
2-mix 15080 15354
4-mix 30160 30708
8-mix 60320 61416

Proposed 1-char 8076 8522
2-char 12442 13399
3-char 19213 20665
4-char 26602 28116
5-char 32784 33558

Fig. 3 Recognition results with voice characteristics labels (male).

Fig. 4 Recognition results with voice characteristics labels (female).

The number of kinds of voice characteristics incorporated
into the triphone HMMs was also changed, and the aver-
age error rate of all combinations of the voice character-
istics was used as the results. Figures 3 and 4 show the
phoneme error rates of continuous speech recognition for
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males and females, respectively. In the case of “5-char,”
the proposed method achieved slightly better performance
than the conventional HMMs with 4-mixture which have al-
most the same number of parameters. However, the error
rate of “5-char” was higher than “4-char” in the female case,
and “5-char” could not outperform “8-mix” in both the male
and female case. This might be because of inaccuracy of the
voice characteristic labels obtained by the listening test. The
choice of label kinds is also a possible reason, that is, there
still exist other dominant factors with respect to acoustic fea-
tures. However, when using 1, 2, 3, and 4 voice characteris-
tics, a significant error reduction was achieved by the model
integration without using labels of voice characteristics for
testing data. In the recognition phase, calculating the pos-
terior probabilities of Gaussian mixtures corresponds to the
estimation of voice characteristics. According to the recog-
nition results, it can be considered that appropriate Gaus-
sian components would be selected probabilistically in the
integrated HMMs. Furthermore, the integrated HMMs have
an optimal number of Gaussians for each state dependently
of the degree of influence from voice characteristics, this
would lead to the improvement in the cases of small number
of model parameters.

In the experiments with noise superimposed data, the
total number of distributions obtained by the context clus-
tering are shown in Table 3. The number of distributions
given by the noise dependent HMMs was also larger than
the conventional HMMs with single Gaussian distributions.
This is because the Gaussian distributions were split by the
questions dependently of the noise kinds and SNR in the
context clustering. Table 4 shows the phoneme error rates
of clean test data, and Figs. 5 and 6 present the results of
noise superimposed test data with SNR of 0 dB, 10 dB and
20 dB. In the case of clean speech data, even though the
number of distributions is smaller than the 4-mixture case,
the proposed method outperformed the conventional HMMs
without using labels of noise kinds and its SNR for testing
data. Furthermore, for all kinds of noise with 20 dB, the
proposed method still achieved higher recognition rates than
the 4-mix of the conventional triphone HMMs, even though
the integrated HMMs have only half the number of model
parameters of the 4-mix models. An error reduction rate
of 19.3% was obtained by “noise2” of female, 20 dB and
crossing noise (21.8%) as compared with “2-mix” (27.0%)
which have the similar number of parameters. In the Figs. 5
and 6, the effectiveness of the proposed method was reduced
with decreasing SNR, and in the case of 0 dB, no signifi-
cant improvement was found by using the model integra-
tion method. However, the proposed method could obtain
slightly better performance as compared to 2-mix which has
similar number of distributions.

Note that the results with noises which did not appear
in the training data (“station” and “aircon”) are also superior
than the conventional method in the 20 dB case. The noise
kind and SNR of testing data are estimated as the posterior
probability distribution of the Gaussians corresponding to
the noise and SNR of the training data. Therefore it can be

Table 3 Total number of distributions (noise environments).

techniques Male Female

Conventional 1-mix 6457 6421
2-mix 12914 12842
4-mix 25828 25684

Proposed noise1 11670 12554
noise2 9228 9835

Table 4 Recognition results of clean speech data with noise environ-
ments labels.

techniques Male Female

Conventional 1-mix 33.7 31.1
2-mix 29.3 26.1
4-mix 26.8 23.6

Proposed noise1 25.9 23.0
noise2 25.8 21.7

Fig. 5 Recognition results with noise (male). “1-mix,” “2-mix” and “4-
mix” mean the conventional HMMs with increasing the number of Gaus-
sians. “noise1” and “noise2” are the integrated HMMs which were trained
with SNR labels of utterance-level and phoneme-level, respectively.
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Fig. 6 Recognition results with noise (female). “1-mix,” “2-mix” and “4-
mix” mean the conventional HMMs with increasing the number of Gaus-
sians. “noise1” and “noise2” are the integrated HMMs which were trained
with SNR labels of utterance-level and phoneme-level, respectively.

considered that the training data in this experiment has suffi-
cient variation to represent the acoustic features of the open
noise data. This result would also be caused by a smoothing
effect of the noise kinds and SNR, which was performed by
the embedded training after the context clustering. Although
the integrated HMMs after the embedded training are equiv-
alent to the standard HMMs with Gaussian mixture densi-
ties, because of the initialization dependence problem of the
EM algorithm, the different model parameters were obtained
by the proposed method; the factor dependent models give
a good initial point for the EM algorithm based on com-
plemental information of additional factors. Moreover, the
proposed method has the advantage that the optimal number
of Gaussians can be determined for each state by using the
results of tree-based context clustering.

From the results of the voice characteristics and noise
environment, it is confirmed that the proposed method can

model acoustic features efficiently based on the factor de-
pendent HMMs and the context clustering. Since the in-
tegrated HMMs can be used by the conventional decoder
without using the labels of additional factors, the proposed
method can simply be applied to the other kinds of addi-
tional factors which complement acoustic features.

4. Conclusion

This paper has described the framework of continuous
speech recognition using general factor dependent acoustic
models.

The proposed model integration technique constructs
a factor invariant models which can be used by the con-
ventional decoders without dictionary conversion and/or de-
coder modification. Since the integrated model ignores
the correlation between additional factors of consecutive
frames, the model structure is similar to the standard HMMs
with Gaussian mixture densities. However, the proposed
method has an advantage that the factor dependent models
give good initial parameters in the embedded training for the
integrated HMMs. Consequently the EM algorithm can es-
timate model parameters which well represent acoustic vari-
ations of training data by hidden variables corresponding
to the additional factors. Furthermore, by using the MDL
based context clustering, the proposed method can deter-
mine an optimal number of mixture components for each
state, dependently of the degree of influence from the addi-
tional factors. This efficient modeling improves recognition
performance especially when the total number of model pa-
rameters is relatively small.

The experiments using the voice characteristics labels
showed that the proposed model achieved similar perfor-
mance as conventional triphone HMMs with only less than
half number of model parameters. In the noise environment
experiments, a 19.3% error redocution was obtained in the
case of female, 20 dB and crossing noise. Moreover, be-
cause of the smoothing effect by the embedded training, the
results with open noise data are also superior than the con-
ventional method in the 20 dB case.

The authors plan to conduct experiments with decoding
approaches using temporary correlation of factors. Investi-
gation of different choices of voice characteristic labels and
effectiveness to other kind of noises are also future works.
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