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SUMMARY This paper investigates the parameter tying structures of
a mixture of factor analyzers (MFA) and discriminative training of MFA
for speaker identification. The parameters of factor loading matrices or di-
agonal matrices are shared in different mixtures of MFA. Then, minimum
classification error (MCE) training is applied to the MFA parameters to en-
hance the discrimination ability. The result of a text-independent speaker
identification experiment shows that MFA outperforms the conventional
Gaussian mixture model (GMM) with diagonal or full covariance matrices
and achieves the best performance when sharing the diagonal matrices, re-
sulting in a relative gain of 26% over the GMM with diagonal covariance
matrices. The improvement is more significant especially in sparse training
data condition. The recognition performance is further improved by MCE
training with an additional gain of 3% error reduction.
key words: speaker identification, GMM, mixture of factor analyzers, pa-
rameter sharing, minimum classification error training

1. Introduction

Gaussian mixture model (GMM) is widely used for text-
independent speaker identification [1]. It is well known that
GMM with full covariance matrices needs sufficient train-
ing data to guarantee the reliability of the estimated model
parameters. Furthermore, GMM with diagonal covariance
matrices requires a relatively large number of Gaussians to
provide high recognition performance. To cope with this
problem, a mixture of factor analyzers (MFA) [2] has been
proposed as a mixture model (or linear combination) of fac-
tor analysis (FA) models.

FA is a statistical method in which high dimensional
observation vectors are assumed to be generated from sev-
eral latent factors which can capture the correlation between
the feature vectors. In FA, a feature vector is defined as the
sum of a lower dimensional factor vector weighted by a fac-
tor loading matrix and a noise vector. A covariance matrix
of FA is modeled by the factor loading matrix and a diagonal
matrix which represents the covariance of the noise vectors.
To deal with data distributed intricately, FA model is often
extended to a mixture of factor analyzers (MFA). MFA al-
lows us to reduce the degree of freedom of the covariance
matrices maintaining the recognition performance. MFA
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has been successfully applied to feature modeling in several
areas such as speech and speaker recognition [3], [4].

Moreover, the reliability of the estimated parameters
of MFA can be improved by sharing parameters in differ-
ent mixture components. Some researchers used MFA with
several covariance structures. For example, Ghahramani, et
al. derived an expectation maximization (EM) algorithm of
MFA with shared diagonal covariance matrices [2]. On the
other hand, Ding, et al. adopted MFA sharing factor load-
ing matrices among different mixture components, or among
different models [4]. Saul and Rahim used FA-based hidden
Markov model (HMM) without parameter tying in a speech
recognition task [3]. They also evaluated minimum classifi-
cation error (MCE) training of FA-HMM in the same task.
However, there are no reports comparing these possible co-
variance structures of MFA in previous papers.

In this paper, parameter sharing structures of MFA are
investigated for speaker identification [5]. Factor loading
matrices or diagonal matrices of MFA-based speaker mod-
els are shared in different mixture components assuming that
all the mixture components have the same number of fac-
tors. We compare the following three kinds of MFAs with
different parameter sharing structures.

1) MFA without parameter sharing
2) MFA with shared diagonal matrices
3) MFA with shared factor loading matrices

In addition, MCE training is applied to MFA to improve the
speaker recognition performance. The effectiveness of the
MCE training for the parameter shared MFA is evaluated in
a text-independent speaker identification task.

This paper is organized as follows. Sections 2 and
3 describe the general formulation of MFA and parameter
sharing structures, respectively. Section 4 presents the MCE
training of MFA, and the experimental results are reported
in Sect. 5. Finally, conclusions and future works are given
in Sect. 6.

2. Mixture of Factor Analyzers

2.1 Factor Analysis

Factor analysis (FA) is a statistical method for modeling
the covariance structure of high dimensional data using a
small number of latent variables [6]. In FA, a d-dimensional

Copyright c© 2005 The Institute of Electronics, Information and Communication Engineers
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speech feature vector x = (x1, x2, . . . , xd)T is modeled us-
ing a q-dimensional vector z = (z1, z2, . . . , zq)T and a d-
dimensional observation noise n = (n1, n2, . . . , nd)T :

x = µ +
q∑

i=1

ziwi + n

= µ +Wz + n, (1)

where µ denotes a mean vector, and W = (w1,w2, . . . ,wq),
wi = (wi1,wi2, . . . ,wid)T is a d × q matrix known as a fac-
tor loading matrix. Vector z is a latent variable assumed to
be distributed according to a Gaussian density N(0, I), i.e.,
zero-mean independent normals with unit variance. Each
element of z is referred to as “factor”. The noise vector n
is distributed according to N(0,Ψ), where Ψ is a diagonal
matrix.

The likelihood of an observation x is given by

p(x | z) = N(µ +Wz,Ψ) (2)

because when z is given, the product Wz is a constant vector
added to the observation noise vector n. Therefore, distribu-
tion for x is obtained by integrating out the latent variable
z:

p(x) =
∫

p(x | z)p(z)dz

= N(µ,WWT +Ψ). (3)

2.2 Extension of FA to MFA

The FA model works well for correlated data with Gaus-
sian distribution provided the number of factors is appropri-
ately selected. In reality, the data, such as speech feature
vectors, are not always Gaussian distributed. To deal with
such data, FA model is often extended to a mixture of fac-
tor analyzers (MFA). MFA is defined as a mixture of M
factor analyzers (Fig. 1). The likelihood of T independent
feature vectors X = (x1, x2, . . . , xT ) for the M-component
MFA θ = {cm, µm,Wm,Ψm | m = 1, . . . ,M} is given by

Fig. 1 Mixture of factor analyzers.

p(X | θ) =
T∏

t=1

M∑
m=1

∫
pm(xt | z)pm(z)cmdz (4)

=

T∏
t=1

M∑
m=1

cmN(µ,Σm), (5)

where cm denotes the weight of the m-th mixture component
and Σm =WmWT

m +Ψm.

3. Parameter Sharing

Covariance matrices Σm of MFA consist of Wm andΨm. The
reliability of the MFA can be improved by sharing these pa-
rameters of the covariance matrices. In this section, some
variations of parameter sharing structures are presented.

Some researches have been conducted to evaluate the
effectiveness of MFA with several covariance structures [2]–
[4]. However, detailed comparison of these possible param-
eter sharing structures has not given yet in previous papers.

In this paper, we compare the following three kinds of
MFAs with different parameter sharing structures shown in
Fig. 2, assuming that all the mixture components have the
same number of factors:

1) Non-shared MFA: MFA without parameter sharing [3].
2) Ψ-shared MFA: MFA with shared diagonal covariance

matrices, where Ψ1 = Ψ2 = · · · = Ψ and n is assumed
to be a sensor noise [2].

3) W-shared MFA: MFA with shared factor loading matri-
ces, where W1 = W2 = · · · = W, i.e., the weights of
each factor in different mixtures are the same [4].

Fig. 2 The structures of covariance matrices.
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The maximum likelihood (ML) solution better suits the lin-
ear Gaussian model framework since the expectation maxi-
mization (EM) algorithm can be used. The EM steps for the
MFA parameters θ are summarized as follows.

3.1 E-Step

The E-step calculates the expectation of latent vector z and
the posterior of the m-th mixture component:

〈ztm〉 = E[z|xt,m] = βm(xt − µm), (6)

〈zztm〉 = E[zzT |xt,m]

= I − βmWm + 〈ztm〉〈ztm〉T , (7)

htm =
cmN(xt | µm,Σm)∑
m cmN(xt | µm,Σm)

, (8)

where βm =WT
mΣ
−1
m and Σm =WmWT

m +Ψm.

3.2 M-Step

The M-step is also very straightforward. The new model
parameters µ′, W′, Ψ′, and c′m for the three kinds of MFA
mentioned above can be obtained by the following re-
estimation formulae.

1) Non-shared MFA

The re-estimation formulae require some manipulation to
obtain the new MFA parameters using the following con-
venient matrix operations.

W̃m = (Wm µm) (9)

z̃tm =

(
z
1

)
(10)

The re-estimates of W̃
′
m and Ψm are obtained by

W̃
′
m =


∑

t

htmxt〈 z̃tm〉T
 ·


∑

l

hlm〈 z̃ z̃lm〉

−1

, (11)

Ψ′m =
1∑

t htm
diag


∑

t

htm

(
xt − W̃

′
m〈 z̃tm〉

)
xT

t

 , (12)

where

〈 z̃tm〉 =
( 〈ztm〉

1

)
, (13)

〈 z̃ z̃tm〉 =
( 〈zztm〉 〈ztm〉
〈ztm〉 1

)
, (14)

and diag(·) denotes setting the elements outside the main
diagonal to zeros. The mixture weight cm is re-estimated as
follows.

c′m =
1
T

T∑
t=1

htm (15)

2) Ψ-shared MFA

The re-estimation formulae forΨ-shared MFA are the same
as those for Non-shared MFA except for the diagonal co-
variance matrix:

Ψ′ =
1
T

diag


∑
t,m

htm

(
xt − W̃

′
m〈 z̃tm〉

)
xT

t

 . (16)

3) W-shared MFA

The new model parameters of W-shared MFA is re-
estimated as follows. The new factor loading matrix W′ is
given by

W′(k) =


∑
t,m

htmΨ
−1
m(k)(xt − µm)(k)〈ztm〉T



·

∑
t,m

htmΨ
−1
m(k)〈zztm〉


−1

(17)

where W(k) is k-th row vector in the factor loading matrix
W. In the followings, the individual component parameters
µ′m and Ψ′m can be re-estimated:

µ′m =
∑

t htm(xt −W′〈ztm〉)∑
t htm

, (18)

Ψ′m =
1∑

t htm
diag

∑
t

{
htm(xt − µ′m)(xt − µ′m)T

− htmW′ (2〈ztm〉(xt − µ′m)T − 〈zztm〉W′T )}
. (19)

4. MCE Training for MFA Speaker Model

To enhance the discrimination abilities of MFA-based
speaker models, MCE training based on the generalized
probabilistic descent (GPD) method [7] is applied to the pa-
rameters of MFA [3].

4.1 Definition of Loss Function

For the MCE training, the misclassification measure of
training data X = (x1, x2, . . . , xT ) for speaker s is defined
as

ds(X;Θ) = −gs(X;Θ)

+ log

 1
S − 1

∑
y�s

exp
{
gy(X;Θ)η

}
1
η

(20)

where Θ = {θ1, θ2, . . . , θS } denotes the speaker model pa-
rameter set of MFA, and gs( · ; · ) is defined by the log like-
lihood of X for speaker model θs. When assuming η = ∞,
we have

ds(X;Θ) = −gs(X;Θ) +max
y�s

gy(X;Θ). (21)
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Equation (21) is the approximation of the log likelihood ra-
tio between the competing models and the correct one. The
loss function is defined as a differentiable sigmoid function
approximating the 0-1 step loss function:

ls(X; θ) =
(
1 + exp(−γ · ds + α)

)−1
, (22)

where γ denotes the gradient of the sigmoid function and α
represents the offset of the sigmoid function. In this experi-
ment, α is set to zero. The goal of the discriminative training
is to minimize the loss function based on the probabilistic
descent method.

4.2 Parameter Adjustment of MFA

During the parameter adaptation in the MCE training, the
constraints of the MFA parameters, e.g., cm > 0, should be
satisfied. Hence, the MFA parameter set Θ is transformed
into a new model parameter set Θ̃.

Θ̃={θ̃1, θ̃2, . . . , θ̃S }, (23)

θ̃={c̃m, µ̃m,Wm, Ψ̃m | m = 1, 2, . . . ,M}, (24)

where c̃m = log cm, µ̃mi =
µmi

Σmii
, Ψ̃mii = logΨmii. Θ̃ is updated

at each iteration r as

Θ̃(r + 1) = Θ̃(r) − εr∇ls(X; θ̃), (25)

where εr is a monotonically decreasing learning step size at
the r-th iteration. In this paper, Θ̃ is sequentially adjusted
every time a training sample X is given (i.e., sample-by-
sample mode).

The gradient of (25) is obtained as follows.

∇θ̃y
ls(X; θ̃) =

∂ls

∂ds

∂ds

∂gy
· ∇θ̃y

gy(X; θ̃), (26)

where ∂ls

∂ds
, ∂ds

∂gy
, ∇θ̃y

gy(X; θ̃) are given by

∂ls

∂ds
= γls(1 − ls),

∂ds

∂gy
=

{ −1, y = s
1, y � s

, (27)

∇θ̃y
gy(X; θ̃) =

1
T

T∑
t=1

1
by(xt)

∇θ̃y
by(xt). (28)

For the three kinds of MFA, the gradient of by(xt) with re-
spect to each element in θ̃y is obtained by the following for-
mulae, where the subscript y is dropped for the simplicity of
notation.

1) Non-shared MFA

For the Non-shared MFA, the gradients are obtained as fol-
lows.

∂b(xt)
∂c̃m

= fm,
∂b(xt)
∂µ̃mi

= fmδmiΣmii, (29)

∂b(xt)
∂Wmi j

= − fm
{
(Σ−1

m Wm)i j − δmi[δ
T
mWm] j

}
, (30)

∂b(xt)

∂Ψ̃mii
= −1

2
fm

{
Σ−1

mii − δ2
mi

}
Ψmii, (31)

where fm = cmN(xt | µm, Σm), δm = Σ
−1
m (xt − µm), and [·]i

denotes the i-th vector element.

2) Ψ-shared MFA

In the case of Ψ-shared MFA, the gradients with respect to
mixture weights, mean vectors and factor loading matrices
are also obtained as in (29) and (30), respectively. Only (31)
for diagonal covariance matrices is changed as follows:

∂b(xt)

∂Ψ̃ii
=

M∑
m=1

∂b(xt)

∂Ψ̃mii
. (32)

3) W-shared MFA

The gradients in (29) and (31) apply to the W-shared MFA
case, and (30) is changed as follows.

∂b(xt)
∂Wi j

=

M∑
m=1

∂b(xt)
∂Wmi j

(33)

5. Experimental Evaluation

5.1 Database and Experimental Conditions

Text-independent speaker identification experiments were
conducted using the ATR Japanese speech database and the
NTT database [8].

We used word data spoken by 80 speakers (40
males and 40 females) in “c-set” of the ATR database.
Phonetically-balanced 216 words are used for training each
speaker model, and 520 common words are used for testing.
The number of tests was 41600 in total. The NTT database
consists of sentence data uttered at three speeds (normal,
fast and slow) by 35 Japanese speakers (22 males and 13 fe-
males) on five sessions over ten months (Aug., Sept., Dec.
1990, Mar., June 1991), among which, the normal-speed
data set was used. In each session, 15 sentences were
recorded for each speaker. Ten sentences are common to
all speakers and all sessions (A-set), and five sentences are
different for each speaker and each session (B-set). The du-
ration of each sentence is approximately four second. We
used 15 sentences (A-set + B-set from the first session) per
speaker for training, and 20 sentences (B-set from the other
four sessions) per speaker for testing. The number of tests
was 700 in total.

The speech data was down-sampled from 20 kHz to
10 kHz, windowed at a 10-ms frame rate using a 25.6-
ms Blackman window, and parameterized into 12 mel-
cepstral coefficients excluding zero-th coefficients with a
mel-cepstral analysis technique. Session-dependent utter-
ance variation was normalized for the multi-session NTT
database using cepstrum mean subtraction (CMS) method,
which is a well-known technique for canceling the effect of
channels and utterance variation in speaker recognition [9].

GMM parameters were initialized using an LBG code-
book. Mixture weights and mean vectors of MFA were also
initialized using the LBG codebook, and factor loading ma-
trices were initialized with random values considering full
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covariance. Diagonal covariance matrices were initialized
using diagonal elements of full covariance matrices Σ [2].
The number of mixture components was changed from 4 to
64 for MFA and GMM with full covariance matrices, and
from 4 to 256 for GMM with diagonal covariance matrices.
The number of factors was changed from 2 to 10.

5.2 Results

Figures 3–5 compare the identification error rates among
the three kinds of MFAs and the conventional GMMs with
full or diagonal covariance matrices (full-GMM and diag-
GMM). All speaker models in Figs. 3–5 were trained with
216 words based on ML-estimation and the number of fac-
tors q is changed as 2, 4, 6, 8 and 10. The horizontal axis
corresponds to the number of model parameters in a loga-
rithmic scale. MFA model parameters include cm, µm, Wm

and Ψm, where cm is a scalar, µm is a D-dimensional vector,
Wm is a D × q matrix, and Ψm is a D-dimensional diagonal
vector. The total numbers of model parameters (N) of GMM
and MFA are calculated as follows.

• Diag-GMM

N = (2D + 1)M, (34)

• Full-GMM

N =
M
2

(D + 1)(D + 2), (35)

• Non-shared MFA

N = {(q + 2)D + 1}M, (36)

• Ψ-shared MFA

N = {(q + 1)D + 1}M + D, (37)

• W-shared MFA

N = (2D + 1)M + Dq. (38)

Figure 3 compares the results of Non-shared MFA with
the conventional GMMs. We can see that the 6-factor Non-
shared MFA, which had almost the same number of pa-
rameters as the full-GMM with the same number of Gaus-
sians, gave the same or better performance than the full-
GMM. Non-shared MFA gave better results than the diag-
GMM with smaller numbers of factors, while the perfor-
mance got worse than the full-GMM as the number of fac-
tors increased. The 64-mixture MFA with 2 factors achieved
an error reduction rate of 6% over the diag-GMM. Fig-
ure 4 shows the results of Ψ-shared MFA. Ψ-shared MFA
achieved a significant improvement over the conventional
GMMs with larger number of mixtures. In the case of 64-
mixture models, error reductions of 19% (q = 2) and 26%
(q = 6) over diag-GMM were obtained. Figure 5 shows the
results of W-shared MFA. The performance of W-shared
MFA is almost equivalent to that of diag-GMM, because the
model structure of W-shared MFA is similar to that of diag-
GMM, and has the lowest flexibility among the three kinds

Fig. 3 Comparison among non-shared MFA and conventional GMMs
with diagonal or full covariance matrices (q = 2, . . . , 10).

Fig. 4 Comparison amongΨ-shared MFA and conventional GMMs with
diagonal or full covariance matrices (q = 2, . . . , 10).

Fig. 5 Comparison among W-shared MFA and conventional GMMs with
diagonal or full covariance matrices (q = 2, . . . , 10).

of sharing structures.
Figure 6 shows the results of the three kinds of MFAs

with the number of factors q = 2 and diag-GMM, where
the amount of training data was changed as 27, 54, and 216
words, i.e., one eighth, a quarter and all of the 216 words, re-
spectively. In the first two cases, one of every eight and four
words were selected for training. We can see that the MFA-
based speaker models achieved relatively high performance
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Fig. 6 Comparison among diag-GMM and three kinds MFAs (q = 2)
with increasing the number of mixtures, using 27 words (upper), 54 words
(middle), 216 words (lower) for training. Error rates of 4–64 mixture mod-
els are connected with a line.

Fig. 7 Comparison among three kinds of MFAs and conventional GMMs
with diagonal or full covariance matrices using the NTT database (q = 2).
Error rates of 4–64 mixture models are connected with a line.

with such a small number of factors, and all the MFA-based
speaker models outperformed the conventional GMM with
any amount of training data, and improvement was more
significant especially under sparse training data conditions.
In the case of 32-mixture Ψ-shared MFA, error reduction
rates compared to diag-GMM were 18%, 13%, and 8% for
27 words, 54 words, and 216 words, respectively. Ψ-shared
MFA achieved the best performance among the three kinds
of MFA and a significant difference is found with smaller
amounts of training data.

Figure 7 shows the results of the three kinds of MFAs
with the conventional GMMs using the NTT database. We
can see that MFA-based speaker models also gave better
results than the conventional GMMs in the multi-session
speaker identification task and Ψ-shared MFA achieved a
significant improvement over the conventional GMMs. In
the case of 64-mixture models with 2-factors, relative gains
of 10%, 47% and 17% over diag-GMM were obtained by
Non-shared MFA, Ψ-shared MFA and W-shared MFA, re-
spectively.

Finally, MCE training was applied to the MFA-based
speaker models. Figure 8 compares the performance of Ψ-

Fig. 8 Comparison of Ψ-shared MFA before and after MCE training
(q = 2).

shared MFA with two factors before and after the MCE
training for the ATR database. We can see that the per-
formance was further improved by the MCE training and
the 2.98% error rate was reduced to 2.85% with a 3% error
reduction. The performances of the MFAs with other struc-
tures of covariance matrices as well as conventional GMMs
were also improved after MCE training. However, MFAs
still outperformed the conventional GMMs, and Ψ-shared
MFA gave the best result.

In this paper, factor loading matrices or diagonal co-
variance matrices were shared in all the mixture compo-
nents. We believe that more effective parameter tying strate-
gies will be available with clustering techniques. In [4], two
clustering methods for factor loading matrices were evalu-
ated: a target driven method and a hierarchical cluster tree
method. In the hierarchical cluster tree method, the ty-
ing structure is determined based on Gaussian distributions
composed of FA models of mixture components. However,
the structure obtained from the Gaussians is not always ap-
propriate for sharing MFA model parameters. On the other
hand, although the target driven method takes account of
the model structure of MFA, it is difficult to apply it to Ψ-
shared MFAs. Accordingly a further investigation is needed
to find an appropriate clustering criterion for the different
types sharing structures, though it is beyond the scope of
this paper.

6. Conclusions

This paper has investigated the parameter tying structures of
MFA for speaker identification and MCE training has been
applied to the parameter shared MFA. Sharing diagonal co-
variance matrices provided the best performance leading to
a relative gain of 26% over the GMM with diagonal covari-
ance matrices. The MCE training has further improved the
recognition performance.

Our future works include the application of other vari-
ations of MFA to speaker identification [10], and automatic
determination of the optimal number of mixture components
and factors using the variational Bayesian approach [11].
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More flexible parameter tying structure will be obtained by
clustering MFA model parameters.
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