
IEICE TRANS. COMMUN., VOL.E89–B, NO.2 FEBRUARY 2006
313

PAPER Special Section on Multimedia QoS Evaluation and Management Technologies

Group Synchronization for Haptic Media in a Networked
Real-Time Game

Yutaka ISHIBASHI†a), Member and Hiroyuki KANEOKA†, Student Member

SUMMARY This paper investigates the effects of group (or inter-
destination) synchronization control over haptic media in a networked
game where two players move objects competitively by manipulating hap-
tic interface devices. The group synchronization control adjusts the output
timing of haptic media among multiple players. By experiment, we demon-
strate the effectiveness of the control. We also discuss the fairness between
the two players quantitatively.
key words: networked game, haptic media, group synchronization, exper-
iment

1. Introduction

In networked 3-D virtual environments which are con-
structed by computer graphics, we can largely improve the
efficiency of collaborative work such as remote surgery sim-
ulation and remote design by using haptic interface devices
[1], [2]. However, the network delay in the Internet may
seriously degrade the efficiency of the work. The network
delay jitter also disturbs the temporal relations among mul-
tiple haptic media streams. To solve the problem, we need to
carry out media synchronization control [3] for haptic me-
dia.

Media synchronization control falls into three types:
intra-stream, inter-stream, and group (or inter-destination)
synchronization control. The intra-stream synchronization
control is necessary for the preservation of the timing rela-
tion between media units (MUs), each of which is the in-
formation unit for media synchronization, in a single media
stream. The inter-stream synchronization control is required
for keeping the temporal relation among MUs in multiple
media streams. Group synchronization control as well as
the first two types of control is needed in multicast commu-
nications [4], [5]. The purpose of the group synchronization
control is to output each MU of media streams simultane-
ously at different destinations for the fairness among the des-
tinations. This paper focuses on the group synchronization
control.

There are a few papers which address the group syn-
chronization issue for haptic media [6]. In [6], the authors
enhance the synchronization maestro scheme [4], which they
previously proposed for voice and video. In the scheme, the
synchronization maestro gathers the information about the

Manuscript received April 18, 2005.
Manuscript revised August 9, 2005.
†The authors are with the Department of Computer Science

and Engineering, Graduate School of Engineering, Nagoya Insti-
tute of Technology, Nagoya-shi, 466-8555 Japan.

a) E-mail: ishibasi@nitech.ac.jp
DOI: 10.1093/ietcom/e89–b.2.313

output timing of haptic MUs from each client, and it deter-
mines the reference output timing and transmits the infor-
mation about the reference output timing to all the clients.
Each client gradually adjusts its output timing to the refer-
ence output timing. In [6], by carrying out an experiment
in which two clients manipulate an object collaboratively
with haptic interface devices (PHANToM DESKTOP [7]),
the authors try to demonstrate the effectiveness of the group
synchronization control. They deal with two methods de-
pending on which client’s output timing is selected as the
reference output timing (Methods 1 and 2). Method 1 se-
lects the later output timing, and Method 2 the earlier. As
a result, they show that Method 2 is better than Method 1;
this result is different from the result shown in [5], where
Method 1 outperforms Method 2 for voice and video. This
is because haptic media have severer requirements for the
interactivity than voice and video; the maximum allowable
delay is about 30 to 60 ms for haptic media [8]. However,
which method is better than the other may depend on the
type of work. When we handle different kinds of work from
the cooperative work, Method 2 may not be desirable.

This paper deals with a network real-time game (i.e.,
competitive work) as such work. In this case, the difference
in the output timing among multiple players leads to unfair-
ness among them. Therefore, we can guess that Method 1 is
superior to Method 2 in the case of two players. However,
we cannot find any papers which address the fairness issue
for haptic media.

In this paper, we suppose that two players do a net-
worked real-time game in a 3-D virtual space by using hap-
tic interface devices. We also investigate the effects of the
group synchronization control in terms of the fairness.

The remainder of the paper is organized as follows.
Section 2 describes a system model for haptic media. Sec-
tion 3 explains the group synchronization control scheme.
Section 4 illustrates the experimental system, and the exper-
imental results are presented in Sect. 5. Section 6 concludes
the paper.

2. System Model

We suppose a situation in which N (N ≥ 2) clients move ob-
jects competitively by manipulating haptic interface devices
in a networked 3-D virtual space (see Fig. 1). Each client has
the PHANToM DESKTOP [7] as a haptic interface device.
Since the client performs haptic simulation by repeating the
servo loop at a rate of 1 kHz [9], it inputs/outputs a stream of

Copyright c© 2006 The Institute of Electronics, Information and Communication Engineers



314
IEICE TRANS. COMMUN., VOL.E89–B, NO.2 FEBRUARY 2006

Fig. 1 A system model.

haptic MUs at the rate; that is, an MU is input/output every
millisecond. Each MU contains the identification (ID) num-
ber of the client, the positional information of the cursor of
the PHANToM, and the sequence number of the servo loop,
which we use instead of the timestamp of the MU. MUs in-
put at each client are transmitted to a single server.

The server carries out causality (i.e., ordinal relation in
this paper) control [10] over received MUs. The causality
control is required to maintain the temporal order of manip-
ulation events†. For the control, each haptic MU has a time
limit which is equal to the generation time of the MU plus
∆ milliseconds. If the MU is received by the server before
the time limit, it is held in the buffer by the time limit, and
it arranges them according to their timestamps (i.e., the se-
quence numbers). Then, the server calculates the positions
of objects every millisecond by using the information about
the position of the cursor of the PHANToM included in the
MU. Otherwise, the MU is immediately used for the calcu-
lation††.

Since there are N clients, the server would always use
N MUs for the calculation every millisecond if there were
no network delay jitter. However, there exists network delay
jitter. Therefore, the server may have more or less than N
MUs to be used for the calculation every millisecond.

To obtain the position, the server judges whether the
PHANToM cursor touches each object. Then, the server cal-
culates the force against the object by using a spring-damper
model [9]. It multicasts the positional information as an MU
to all the clients. The MU also includes the positional infor-

mation of the cursors at all the clients.
When each client receives an MU, the client updates

the positions of objects after carrying out media synchro-
nization control and calculates the reaction force applied to
the player by using GHOST (General Haptic Open Software
Toolkit) [9]. The rendering rate of the haptic media is 1 kHz
(i.e., the force is calculated at a rate of 1 kHz) at the client.
Also, the redering rate of the virtual space is 30 Hz.

In order to adjust the output timing of haptic MUs
among all the clients, we enhance the virtual-time render-
ing (VTR) algorithm [11] which employs the synchroniza-
tion maestro scheme [6]. The scheme uses the synchro-
nization maestro as shown in Fig. 1. The synchronization
maestro gathers the information about the output timing of
haptic MUs from each client, and it determines the reference
output timing and multicasts the information about the ref-
erence output timing to all the clients. Each client gradually
adjusts its output timing to the reference output timing†††.

†How the causal relation is important depends on applications.
††This may lead to a disturbance of the causality. By exerting

the ∆-causality control [10], under which the MU is discarded if it
misses its time limit, we can preserve the causality. However, by
experiment, we have confirmed that the ∆-causality control causes
serious deterioration in the output quality of haptic media when
the network load is heavy. This is because a number of MUs are
discarded in this case.
†††For simplicity, we here assume that the timers of each client

and the server are globally synchronized with each other. We can
adjust the timers’ values to each other by using the Network Time
Protocol (NTP) or GPS.



ISHIBASHI and KANEOKA: GROUP SYNCHRONIZATION FOR HAPTIC MEDIA
315

Figure 1 also shows what kinds of functions the server
and clients have. As shown in this figure, the media synchro-
nization control is carried out at each client, and the server
performs the causality control.

3. Group Synchronization Control Scheme

For group synchronization, as described earlier, we en-
hance the VTR algorithm which employs the synchroniza-
tion maestro scheme [6]. The reason why we enhance the
algorithm is that we make use of the servo loop of 1 kHz
instead of the timer as described earlier. That is, the time
is discrete in milliseconds in this paper. Note that an MU
should be output every millisecond and the time resolution
is 1 ms here. Therefore, we cannot exert the shortening of
output duration or the virtual-time contraction [12], which
is employed in the VTR algorithm; the shortening of output
duration and the virtual-time contraction bring discarding
MUs.

In order to explain the group synchronization control,
let us focus on a client. We first define the ideal target out-
put time [13] xn of the n-th MU (n = 1, 2, · · ·) as the time
at which the MU should be output in the case where there
is no network delay jitter. Let Tn, An, and Dn denote the
generation time, arrival time, and output time, respectively,
of the n-th MU. It should be noted that the values of these
variables are integers represented in milliseconds.

The ideal target output time xn is calculated as follows:

x1 = T1 + δ, (1)

xn = x1 + (Tn − T1) (n ≥ 2), (2)

where δ denotes the target delay time [10], which is defined
as the time from the moment an MU is generated until the
instant the MU should be output, and δ ≤ ∆al. We employ
the maximum allowable delay ∆al [13] in order to preserve
the interactivity of haptic media.

We cannot always output each MU at its ideal target
output time since there exists network delay jitter. There-
fore, we next introduce the target output time [11] tn of the
n-th MU, which is calculated by adding some amount of
time (called the total slide time [13]) to the ideal target out-
put time.

Let us define the slide time [13] of the n-th MU, which
is denoted by ∆S n, as the difference between the modified
target output time [11] t∗n and the original target output time
tn. We also define the total slide time S n as follows:

S 0 = 0, (3)

S n = S n−1 + ∆S n (n ≥ 1), (4)

where ∆S 1 = 0. Then, tn and t∗n are expressed by

t1 = x1, (5)

tn = xn + S n−1 (n ≥ 2), (6)

t∗n = tn + ∆S n (n ≥ 1). (7)

When the client receives the first MU, it determines the

output time D1 of the MU as follows: D1 = max(t1, A1).
Then, it inquires of the synchronization maestro whether the
target output time should be modified or not, by sending
the information about the output timing to the maestro. The
purpose is to adjust the output timing of the succeeding MUs
among all the clients. In this paper, we represent the output
timing in terms of the total slide time. Therefore, the client
sends a recommended value of the total slide time, which is
referred to as the recommended total slide time [10] in this
paper, to the maestro.

After the beginning of the output, when the client re-
ceives a constant number of consecutive MUs each of which
has arrived earlier (or later) than its target output time, it no-
tifies the maestro of the recommended total slide time if it
has not transmitted any information to the maestro for those
MUs at all. The recommended total slide time is different
from the total slide time in that the latter is the accumulation
of the slide times, while the former is employed for inquiry
about the modification of the target output time in advance.
The amount by which the target output time should be mod-
ified is called the recommended slide time [10] here. Let us
denote the recommended total slide time and recommended
slide time for the n-th MU by sn and∆sn, respectively. These
times are given by

s1 = ∆s1 = D1 − x1, (8)

sn = S n−1 + ∆sn (n ≥ 2). (9)

We will explain how to obtain the value of ∆sn (n ≥ 2) later
in this section.

In addition, the client notifies the synchronization mae-
stro of the total slide time S n whenever the target output time
is modified [11] at the n-th MU (that is, in the case of the
virtual-time expansion [12])(n ≥ 2).

When the synchronization maestro receives the total
slide time or the recommended total slide time from each
client, it determines the reference value S of the total slide
time as the reference output timing; in this paper, we handle
Methods 1 and 2 to determine the reference value as de-
scribed in Sect. 1. Then, the maestro multicasts the infor-
mation about S to all the clients at regular intervals (every
5 seconds in our experiment in Sect. 4) [10].

The client gradually adjusts its own total slide time to
the reference one S when it receives the information about
S . Until the client receives the information about S for the
first time, it sets the initial value of S to S 1(= 0). For the
adjustment, it compares S n−1 with S at the n-th (n ≥ 2)
MU. The control in the case of S = S n−1 is the same as
that in [10], while we enhance the control in the other case
for haptic media. The reason why we enhance the control is
as follows. If we change the total slide time to be adjusted
to the reference one whenever the client receives an MU,
the output quality of haptic media may deteriorate seriously.
This is because the output duration of each MU is 1 ms and
we output only one MU every millisecond; therefore, the
increase and decrease of the total slide time (i.e., the virtual-
time expansion and contraction) bring pausing and skipping
MUs, respectively [14].



316
IEICE TRANS. COMMUN., VOL.E89–B, NO.2 FEBRUARY 2006

First, let us describe the control in the case of S = S n−1.
Next, we explain the control when S > S n−1 and then that
when S < S n−1.

(a) Case of S = S n−1

In this case, if tn ≥ An (n ≥ 2), the client sets the sched-
uled output time dn of the n-th MU as follows: dn = tn (in
this paper, since the server multicasts a single haptic me-
dia stream to each client, we do not need to perform inter-
stream synchronization control. Thus, the output time of the
n-th MU is set to Dn = dn). Otherwise, it sets dn = An. If
the MU arrives more than Th2 milliseconds later than its tar-
get output time (that is, if An − tn > Th2)†, we set the slide
time as follows: ∆S n = min(r1, Tn + ∆al − tn). In this equa-
tion, r1 (r1 ≥ 1 ms) is the maximum value of the slide time
in the case where the total slide time is increased under the
intra-stream synchronization control, and the smaller value
between the two is selected so that the modified target out-
put time does not exceed the generation time Tn of the MU
plus ∆al.

Also, let us assume that when the client receives the
n-th MU, it observes that Nc (Nc ≥ 1) consecutive MUs
each have arrived later than their target output times. We
further assume that for all the Nc MUs the client has sent
information about neither the total slide time nor the recom-
mended total slide time to the maestro. Then, the client sets
∆sn = min(r2, Tn + ∆al − tn) and notifies the maestro of the
recommended total slide time sn, where r2 (r2 ≥ 1 ms) is
the maximum value of the recommended slide time for in-
crement of the recommended total slide time. On the other
hand, when the client observes that Nd (Nd ≥ 1) succes-
sive MUs each have arrived earlier than their target output
times, it sets ∆sn = −min(r3, S n−1) so that the modified tar-
get output time does not become less than the ideal target
output time, where r3 (r3 ≥ 1 ms) is the maximum absolute
value of the recommended slide time for decrement of the
recommended total slide time. The client also transmits the
information about the value of sn to the maestro.

(b) Case of S > S n−1

When S > S n−1, the client sets ∆S n = min(r4, S −S n−1)
so as to adjust its total slide time to the reference one (i.e.,
the virtual-time expansion), where r4 (r4 ≥ 1 ms) is the max-
imum value of the slide time by which the total slide time
is increased under the group synchronization control [10].
However, as described earlier, if we change the total slide
time to be adjusted to the reference one whenever the client
receives an MU, the output quality of haptic media may de-
teriorate seriously. Therefore, we adjust the total slide time
every Ne MUs for each of which the total slide time is larger
than the reference one. In this case, if t∗n ≥ An, the client sets
dn = t∗n [13]; otherwise, it sets dn = An.

(c) Case of S < S n−1

When S < S n−1, the client sets ∆S n = −min(r5, S n−1 −
S ) every Nf MUs for each of which the total slide time
is smaller than the reference one as in case (b), where r5

(r5 ≥ 1 ms) is the maximum absolute value of the slide time
by which the total slide time is decreased for group synchro-
nization [10]; that is, the virtual-time contraction occurs.
The client determines dn in the same way as in case (b).

We have a possibility that dn ≤ Dm (m < n) in the
case of the virtual-time contraction, where m is the sequence
number of the last output MU. In this case, we skip the n-th
MU.

4. Experimental System

For simplicity, we set the number of players to two (i.e.,
N = 2) in the experiment. Each of the two players who
have almost the same skill lifts and moves his/her object (a
rigid cube) so that the object contains the target (a sphere)
in a 3-D virtual space (height: 89.7 mm, width: 129.7 mm,
depth: 89.7 mm) as shown in Fig. 2. Each side of the cube
is a quarter of the virtual space’s height, and the radius of
the sphere is half of the cube’s side. The mass of the object
is 0.5 kg, and the acceleration of gravity is 2.0 m/s2. The
objects and target do not collide with each other, and the
PHANToM cursors do not collide with the target.

When the target is contained by either of the two ob-
jects, it disappears and then appears at a randomly-selected
position in the space. The two players compete on the num-
ber of eliminated targets with each other.

The server judges which object contains the target. If
the distance between the center of the object and that of the
target is less than 4 mm, the server judges that the object
contains the target. Then, the server updates the position of
the target and transmits the information about the position
to the clients. Each client deletes the old target and displays
a new target at the position.

4.1 System Configuration

As shown in Fig. 3, the experimental system consists of
the server (CPU: Pentium4 processor at 2.26 GHz, OS:
FreeBSD 4.7), clients 1 and 2 (CPU: Pentium4 processor

Fig. 2 A displayed image of the virtual space.

†This means that the virtual-time expansion occurs. Note that
Th2 is a threshold value which we use so as to judge whether the
target output time should be delayed or not [11].



ISHIBASHI and KANEOKA: GROUP SYNCHRONIZATION FOR HAPTIC MEDIA
317

Fig. 3 Configuration of the experimental system.

at 2.80 GHz, OS: WindowsXP), and four PCs (PC1 through
PC4). They are connected to an Ethernet switching hub
and two Ethernet shared hubs (10BASE-T). For simplicity,
client 1 has a function of the synchronization maestro (for
the influence of the position of the synchronization maestro,
the reader is referred to [15]).

The size of an MU from the server to each client is
113 bytes, and that in the opposite direction is 33 bytes
(since the former MU includes the positional information of
the PHANToM cursors, the target, and the objects, the MU
size is larger than the latter MU size). MUs and the informa-
tion about the output timing/the reference output timing for
the group synchronization control are transmitted by UDP.
The size of the information from the maestro to each client
is 3 bytes, and that from each client to the maestro is 5 bytes
(the difference of 2 bytes corresponds to the number of bytes
representing the client’s ID).

In order to generate traffic flows of interference, PC1
(PC3) sends fixed-size data messages of 1472 bytes each to
PC2 (PC4) at exponentially distributed intervals (see Fig. 3).
For transmission of interference data, we also use the UDP
protocol. The switching hub is employed so that the traffic
flow of interference in one of the shared hubs does not affect
the other. In the experiment, we set the data load, which
is defined as the average number of interference data bits
transmitted in a second, to 3.0 Mbps at PC1, and we select
the data load at PC3 from among 2.0, 3.0, 3.5, and 4.0 Mbps.

This paper deals with No group-sync as well as Meth-
ods 1 and 2 . In No group-sync, each client exerts only
the intra-stream synchronization control, which is also car-
ried out in Methods 1 and 2. The server performs the same
causality control in the three schemes.

In the experiment, we set the maximum allowable delay
∆al, which is defined in the VTR algorithm [14], to 40 ms.
Other parameter values were set to the same as those in [6];
for example, δ = 10 ms, Th2 = 20 ms, r1 = 5 ms, r2 = r3 =

3 ms, r4 = r5 = 1 ms, Nc = Nd = 1000, and Ne = Nf = 20.

4.2 Performance Measures

As performance measures, we introduce the elimination rate
of the targets, the average number of eliminated targets, and
the average total number of eliminated targets. We also
adopt the mean square error of group synchronization [6].

The elimination rate of the targets is defined as the ratio
of the number of targets which are contained and eliminated
by each client to the total number of appeared targets. The
measure is related to the fairness. Since the two players have
almost the same skill, the elimination rate of approximately
0.5 implies the fairness between the two players. The av-
erage number of eliminated targets is the mean number of
targets which are contained and eliminated by each client at
the client. The average total number of eliminated targets
is the mean of the total number of targets which are elimi-
nated by either of the two clients. The mean square error of
group synchronization is the mean square of the difference
between the output time of each MU at client 1 and that of
the MU at client 2. As for group synchronization, how large
time difference between the two clients is allowable is not
clear; this is for further study [16].

The two players conducted the experiment 20 times at
each of data loads considered here in each scheme (in total,
240 experimental runs). The measurement of the perfor-
mance was carried out for 30 seconds from 5 seconds after
the beginning of each experimental run†. We plot the aver-
ages of the obtained results in the figures to be shown in the
next section. We also display the 95% confidence intervals.

5. Experimental Results

We show the elimination rate of the targets at client 1, the
average numbers of eliminated targets at clients 1 and 2, and

†We lifted and moved the cube from the floor to the target
within the 5 seconds.



318
IEICE TRANS. COMMUN., VOL.E89–B, NO.2 FEBRUARY 2006

Fig. 4 Elimination rate of the targets at client 1 versus data load.

Fig. 5 Average number of eliminated targets at client 1 versus data load.

Fig. 6 Average total number of eliminated targets versus data load.

the mean square error of group synchronization as a function
of the data load at PC3 in Figs. 4 through 7, respectively.

In Fig. 4, we see that the elimination rate of Method 1
is around 0.5 independently of the data load. Therefore,
Method 1 is superior to the others in terms of the fairness.
We also find in the figure that Method 2 is the second best,
and No group-sync is the worst. Furthermore, when the data
load is 3 Mbps, the elimination rates of the three schemes
are almost the same. This is because the data load at PC1 is
equal to that at PC3.

From Figs. 5 and 6, we confirm that in Method 1, the
average number of eliminated targets at client 1 is around
half of the average total number of eliminated targets in
the whole range of the data load. This is the reason why

Fig. 7 Mean square error of group synchronization versus data load.

Method 1 is the best in Fig. 4. In Fig. 6, we find that the
average total number of eliminated targets of Method 1 de-
creases as the data load becomes heavier. Those of No
group-sync and Method 2 do not decrease when the data
load increases from 3.5 Mbps to 4.0 Mbps. This is because
the numbers of eliminated targets of the two schemes at
client 2 did not decrease largely in this area.

Figure 7 reveals that the mean square errors of group
synchronization of Methods 1 and 2 are smaller than that
of No group-sync in the whole range of the data load con-
sidered here. This is the effect of the group synchroniza-
tion control. We also notice in the figure that Method 1 has
slightly smaller mean square errors than Method 2.

From the above considerations, we can say that
Method 1, which selects the later output timing as the refer-
ence output timing, is superior to the others in terms of the
fairness†.

6. Conclusions

This paper investigated the effects of group synchroniza-
tion control for haptic media in a networked real-time game.
We made a performance comparison among three schemes:
Methods 1 and 2, and No group-sync. As a result, we saw
that Method 1, which selects the later output timing as the
reference output timing, is superior to the others in terms of
the fairness.

As the next step of our research, we plan to handle the
case of more than two players. We also need to carry out
subjective assessment in order to clarify how large time dif-
ference among clients is allowable. Furthermore, we will
study some networked games which require mutual interac-
tion more strongly and other applications in which fairness
is important. We will investigate the effects of the mutual
interaction on group synchronization and fairness.

†We can use other output timings as the reference output tim-
ing. As an example, we used the mean of the output timing of the
two clients in the experiment (we here call this method Method 3).
As a result, we confirmed that the elimination rate of Method 3 is
between those of Methods 1 and 2. Therefore, Method 3 is infe-
rior to Method 1 and superior to Method 2 in terms of the fairness.
We also need to deal with other output timings. This is worthy of
further study.



ISHIBASHI and KANEOKA: GROUP SYNCHRONIZATION FOR HAPTIC MEDIA
319

Acknowledgment

The authors are grateful to Prof. Shuji Tasaka for his valu-
able discussions. This work was supported by the Grant-
In-Aid for Scientific Research (C) of Japan Society for the
Promotion of Science under Grant 16560331.

References

[1] M.A. Srinivasan and C. Basdogan, “Haptics in virtual environ-
ments: Taxonomy, research status, and challenges,” Comput.
Graph., vol.21, no.4, pp.1393–1404, April 1997.

[2] J.P. Wilson, R.J. Kline-Schoder, M.A. Kenton, and N. Hogan, “Algo-
rithms for network-based force feedback,” Proc. Fourth PHANToM
Users Group Workshop, Nov. 1999.

[3] G. Blakowski and R. Steinmetz, “A media synchronization survey:
Reference model, specification, and case studies,” IEEE J. Sel. Areas
Commun., vol.14, no.1, pp.5–35, Jan. 1996.

[4] Y. Ishibashi and S. Tasaka, “A group synchronization mechanism for
live media in multicast communications,” Conf. Rec. IEEE GLOBE-
COM’97, pp.746–752, Nov. 1997.

[5] Y. Ishibashi and S. Tasaka, “A distributed control scheme for group
synchronization in multicast communications,” Proc. ISCOM’99,
pp.317–323, Nov. 1999.

[6] Y. Ishibashi, T. Hasegawa, and S. Tasaka, “Group synchronization
control for haptic media in networked virtual environments,” Proc.
12th IEEE Symposium on Haptic Interfaces for Virtual Environment
and Teleoperator Systems (Haptics’04), pp.106–113, March 2004.

[7] J.K. Salisbury and M.A. Srinivasan, “Phantom-based haptic interac-
tion with virtual objects,” IEEE Comput. Graph. Appl., vol.17, no.5,
pp.6–10, Sept./Oct. 1997.

[8] S. Matsumoto, I. Fukuda, H. Morino, K. Hikichi, K. Sezaki, and
Y. Yasuda, “The influences of network issues on haptic collaboration
in shared virtual environments,” Proc. Fifth PHANToM Users Group
Workshop, Oct. 2000.

[9] SensAble Technologies, “GHOST SDK programmer’s guide,” Ver-
sion 3.0, 1999.

[10] Y. Ishibashi, S. Tasaka, and Y. Tachibana, “Adaptive causality and
media synchronization control for networked multimedia applica-
tions,” Conf. Rec. IEEE ICC’01, pp.952–958, June 2001.

[11] Y. Ishibashi and S. Tasaka, “A synchronization mechanism for con-
tinuous media in multimedia communications,” Proc. IEEE INFO-
COM’95, pp.1010–1019, April 1995.

[12] Y. Ishibashi and S. Tasaka, “A comparative survey of synchroniza-
tion algorithms for continuous media in network environments,”
Proc. IEEE LCN’00, pp.337–348, Nov. 2000.

[13] S. Tasaka, T. Nunome, and Y. Ishibashi, “Live media synchroniza-
tion quality of a retransmission-based error recovery scheme,” Conf.
Rec. IEEE ICC’00, pp.1535–1541, June 2000.

[14] Y. Ishibashi, S. Tasaka, and T. Hasegawa, “The virtual-time render-
ing algorithm for haptic media synchronization in networked virtual
environments,” Proc. 16th International Workshop on Communica-
tions Quality & Reliability (CQR’02), pp.213–217, May 2002.

[15] T. Nunome and S. Tasaka, “Inter-destination synchronization
schemes for continuous media multicasting: An application-level
QoS comparison in hierarchical networks,” IEICE Trans. Commun.,
vol.E87-B, no.10, pp.3057–3067, Oct. 2004.

[16] H. Kaneoka and Y. Ishibashi, “Subjective assessment of fairness
among players in networked game using haptic interface devices,”
IEICE Technical Report, CQ2005-30, July 2005.

Yutaka Ishibashi received the B.S., M.S.,
and Ph.D. degrees from Nagoya Institute of
Technology, Nagoya, Japan, in 1981, 1983, and
1990, respectively. From 1983 to 1993, he was
with NTT Laboratories. In 1993, as an Asso-
ciate Professor, he joined Nagoya Institute of
Technology, in which he is now a Professor in
the Department of Computer Science and Engi-
neering, Graduate School of Engineering. From
June 2000 to March 2001, he was a Visiting Pro-
fessor in the Department of Computer Science

and Engineering at the University of South Florida. His research interests
include networked multimedia applications, media synchronization algo-
rithms, and QoS control. Dr. Ishibashi is a member of the IEEE, ACM,
Information Processing Society of Japan, the Institute of Image Informa-
tion and Television Engineers, and the Virtual Reality Society of Japan.

Hiroyuki Kaneoka received the B.S. degree
from Nagoya Institute of Technology, Nagoya,
Japan, in 2004. He is now a graduate student
at the Department of Computer Science and En-
gineering, Graduate School of Engineering, Na-
goya Institute of Technology. He is engaged in
research on QoS control of haptic media in dis-
tributed virtual environments at Nagoya Institute
of Technology.


