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The crystal structure of La2SiO5 was refined from laboratory X-ray powder diffraction data
�CuK�1� using the Rietveld method. The crystal structure is monoclinic �space group P21/c ,Z
=4� with lattice dimensions a=0.93320�2� nm, b=0.75088�1� nm, c=0.70332�1� nm, �
=108.679�1�°, and V=0.46687�1� nm3. The final reliability indices were Rwp=7.14%, RP=5.52%,
and RB=3.83%. There are two La sites in the structural model, La1 and La2. La1 is ninefold
coordinated to oxygen, forming a tricapped trigonal prism with a mean La1-O distance of 0.263 nm.
The La2O7 coordination polyhedron is a distorted capped octahedron with a mean La2-O distance
of 0.251 nm. The La1O9 polyhedra share faces and the La2O7 polyhedra share edges, forming two
sets of sheets that alternate parallel to the �100� plane. These sheets are linked through SiO4

tetrahedra and non-silicon-bonded oxygen atoms to form a three-dimensional structure. This
compound is isomorphous with the low-temperature �X1� phases of R2SiO5 �R=Y and Gd�. The
volumes of RO9 polyhedra steadily increase with increasing ionic radius of R, from Y3+ to Gd3+ to
La3+, which causes substantial volumetric expansion of the crystals. © 2006 International Centre
for Diffraction Data. �DOI: 10.1154/1.2383066�
Key words: lanthanum oxyorthosilicate, crystal structure, powder diffraction, Rietveld refinement
I. INTRODUCTION

Rare earth �R� oxyorthosilicate of the type R2SiO5 have
two polymorphs, both of which are monoclinic, with space
group P21/c for the low-temperature �termed X1� phase and
I2/a for the high-temperature �X2� phase �Felsche, 1973;
Wang et al., 2001; Smolin and Tkachev, 1969; Leonyuk
et al., 1999; Maksimov et al., 1970; 1968�. The crystal struc-
ture of the X2 phase consists of RO6 octahedra and SiO4
tetrahedra. For the X1 phase, there are two types of R sites;
one is coordinated by nine oxygen atoms, while the other is
coordinated by seven oxygen atoms. The atomic arrange-
ments in the two structures are quite different from each
other; hence, a phase transition from one to the other would
be of the reconstructive type. The X1 phase has been ob-
tained at ambient temperature with the large-radius rare
earths: R=Yb to La, Y, and Gd �Felsche, 1973; Wang et al.,
2001�. Structural parameters have been refined for the two
compounds Y2SiO5 �Wang et al., 2001� and Gd2SiO5
�Smolin and Tkachev, 1969�. The X2 phase is metastably
obtained at ambient temperature with the smaller rare earths
of R=Lu to Tb and Y �Felsche, 1973; Maksimov et al.,
1970�. With an increase of the R ionic radius, the unit-cell
volumes of both phases steadily increase. A close relation-
ship has been demonstrated between the lattice deformations
induced by thermal expansion and those by cationic substi-
tutions �Fukuda and Matsubara, 2003�.

In the present study, we prepared the X1 phase with the
largest ionic radius rare earth, La �La2SiO5�, to refine the
crystal structure from powder diffraction data using the
Rietveld method. The volumetric expansion induced by cat-
ionic substitutions is discussed in relation to the difference in
expansion behavior between the coordination polyhedra RO9

and RO7.
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II. EXPERIMENTAL

A specimen of La2SiO5 was prepared from stoichio-
metric amounts of reagent-grade chemicals La2O3 and SiO2.
Well-mixed chemicals were pressed into pellets �12 mm di-
ameter and 3 mm thick�, heated at 1773 K for 24 h, followed
by quenching in air. Experimental X-ray powder diffraction
intensities were collected at 298 K on a PANalytical X’Pert
PRO Alpha-1 diffractometer equipped with a high-speed de-
tector �X’Celerator� in the Bragg-Brentano geometry using
monochromatized CuK�1 radiation �45 kV, 40 mA�. Other
experimental conditions were continuous scan, 2� range
from 14.0042° to 148.4965°, total of 16 097 datapoints, and
total experimental time of 21.46 h. The divergence slit of
0.25° was employed to collect the quantitative profile inten-
sities over the whole 2� range. The crystal-structure models
were visualized with the software package VENUS �Izumi
and Dilanian, 2002�.

III. RESULTS AND DISCUSSION
A. Indexing and structure refinement

Peak positions of the experimental diffraction pattern
were first determined using the computer program PowderX
�Dong, 1999�. The 2� values of 40 observed peak positions
were then used as input data to the automatic indexing pro-
gram TREOR90 �Werner et al., 1985�. One monoclinic cell
was found with satisfactory figures of merit M20/F20
=76/104�0.004483,43�, M30/F30=56/88�0.004173,104�,
and M40/F40=39/75�0.004402,122� �de Wolff, 1968; Smith

and Snyder, 1979�. The derived unit-cell parameters of a
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=0.93329�5� nm, b=0.75087�3� nm, c=0.70337�4� nm, and
�=108.675�6�° could index all the observed reflections in
the experimental diffraction pattern.

The integrated intensities were refined by the whole
powder-pattern decomposition method, based on the Pawley
algorithm �Pawley, 1981�, using program WPPF �Toraya,
1986� from the diffraction data up to 60° 2�. The observed
diffraction peaks were examined to determine the presence
or absence of reflections. Systematic absences l�2n for h0l
and k�2n for 0k0 reflections were found, which implied that
a possible space group was P21/c. The derived unit-cell pa-
rameters and the possible space group were in accord with
those of the X1 phases of R2SiO5 �R=Gd and Y�. Structural
parameters were refined by the Rietveld method using the
program RIETAN-2000 �Izumi and Ikeda, 2000� and the ex-
perimental powder diffraction data shown in Figure 1. A Leg-
endre polynomial was fitted to background intensities with
12 adjustable parameters. The pseudo-Voigt function
�Toraya, 1990� was used to fit the experimental peak profiles.
All of the isotropic atomic displacement parameters �B� of
oxygen atoms were constrained to have the same value. The
final reliability indices were Rwp=7.14% �S=2.01�, Rp

=5.52%, and RB=3.83% �Young, 1993�. Crystal data are
given in Table I, and the final positional and B parameters of
atoms are given in Table II.

TABLE I. Crystal data for La2SiO5.

Chemical composition La2SiO5

Space group P21/c
a /nm 0.93320�2�
b /nm 0.75088�1�
c /nm 0.70332�1�
� / ° 108.679�1�
V /nm3 0.46687�1�
Z 4
Dx /Mgm−3 5.49
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B. Structure description and discussion

Figure 2 shows sections of the crystal structure of
La2SiO5. Selected interatomic distances and bond angles, to-
gether with their standard deviations, are listed in Table III.
The mean Si–O bond length of 0.163 nm in the SiO4 tetra-
hedra is in good agreement with that expected from the bond
valence sum �0.162 nm�. The mean value of the O–Si–O
angles is 109°. These values are in good agreement with
those found in other silicates �Baur, 1971�.

There are two La sites in the structural model, La1 and
La2. The La1 atom is coordinated to nine oxygen atoms,
forming a tricapped trigonal prism with bond lengths ranging
from 0.237 to 0.305 nm �mean=0.263 nm�. A similar geom-
etry around the La atom has been described in sodium lan-
thanum diphosphate NaLaP2O4 �mean=0.260 nm� �Ferid
and Horchani-Naifer, 2004�. The La2 atom is sevenfold co-
ordinated with a mean La2-O distance of 0.251 nm, which is
comparable to those of the two types of LaO7 polyhedra in
lanthanum aurate, La4Au2O9 �mean=0.250 nm� �Ralle and
Jansen, 1994�. The ratio of the volume of the circumscribed
sphere to that of the polyhedron �VS /VP� for La2O7 is 2.94.
Because the VS /VP values of the ideal pentagonal bipyramid
and the ideal capped octahedron are 2.643 and 3.049, respec-
tively �Makovicky and Balic-Zunic, 1998�, the present
La2O7 polyhedron can be described as a distorted capped

Figure 1. Comparison of the experi-
mental diffraction pattern of lantha-
num oxyorthosilicate �symbol: ��
with the corresponding calculated pat-
tern �upper solid line�. The difference
curve is shown in the lower part of the
diagram. Vertical bars indicate the po-
sitions of possible Bragg reflections.

TABLE II. Atomic and thermal parameters for La2SiO5.

Atom Site x y z 100�B �nm2�

La1 4e 0.1117�1� 0.1541�1� 0.4055�1� 0.79�2�
La2 4e 0.5116�1� 0.6238�1� 0.2352�1� 0.75�2�
Si 4e 0.2008�4� 0.5775�5� 0.4579�6� 0.19�9�
O1 4e 0.191�1� 0.4422�8� 0.634�1� 0.23�8�
O2 4e 0.1372�9� 0.4703�9� 0.247�1� 0.23
O3 4e 0.3771�8� 0.636�1� 0.503�1� 0.23
O4 4e 0.0942�9� 0.7502�9� 0.445�1� 0.23
O5 4e 0.3932�8� 0.373�1� 0.060�1� 0.23
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octahedron. The bond valence sums calculated on the basis
of bond-strength analysis �La1:2.86, La2:3.00, Si:3.98� are in
good agreement with expected formal oxidation states of
La3+ and Si4+ ions �Brown and Altermatt, 1985; Brese and
O’Keeffe, 1991�.

The ionic radius of La3+ in ninefold coordination
�r�La3+�9��=0.1216 nm and r�O2− �8��=0.142 nm� and that
of La3+ in sevenfold coordination �r�La3+�7��=0.110 nm and
r�O2− �6��=0.140 nm� predict interatomic distances of 0.264
and 0.250 nm for La1-O and La2-O, respectively �Shannon,
1976�. These predicted values are in good agreement with
the corresponding mean interatomic distances ��La1-O�
=0.263 nm and �La2-O�=0.251 nm�. The mean interatomic

Figure 2. Projection of part of the structure viewed along the a* axis. Atom
faces to form a chain running parallel to �001�. �b� The La1O9 polyhedral c
a sheet parallel to �100� at x�0.5.

TABLE III. Selected interatomic distances �nm� and

Lal-O1 0.2654�7� La2-O1f

Lal-O1a 0.237�1� La2-O3
Lal-O2 0.2666�8� La2-O3f

Lal-O2b 0.2618�8� La2-O3g

Lal-O2c 0.2516�9� La2-O5
Lal-O4d 0.3055�7� La2-O5h

Lal-O4e 0.257�1� La2-O5i

Lal-O4b 0.2695�7�
Lal-O5c 0.2509�8�

Symmetry transformations used to generate equivale
ax, 1 /2−y, −1/2+z.
b−x, −1/2+y, 1 /2−z.
cx, 1 /2−y, 1 /2+z.
dx, −1+y, z.
e−x, 1−y, 1−z.
f1−x, 1−y, 1−z.
gx, 3 /2−y, −1/2+z.
h1−x, 1−y, −z.
i
1−x, 1 /2+y, 1 /2−z.
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distances are also in agreement with those expected from the
bond valence sum �0.258 nm for La1-O and 0.249 nm for
La2-O�.

The crystal structure of La2SiO5 consists of the three
types of polyhedra: La1O9, La2O7, and SiO4. The La1O9

polyhedra share faces to form infinite chains running parallel
to �001� �Figure 2�a��. Individual chains are further linked
via O4-O2-O4-O2 faces of the La1O9 polyhedra �Figure
2�b��. The La2O7 polyhedra share edges, resulting in a for-
mation of sheets parallel also to the �100� plane at x�0.5
�Figure 2�c��. These two types of polyhedral groups are al-
ternately stacked parallel to �100�, and they are intercon-

ering corresponds to that given in Table II. �a� The La1O9 polyhedra share
are linked via 04-02-04-02 faces. �c� Edge-sharing La2O7 polyhedra form

s �°�.

0.2676�9� Si-O1 0.163�1�
0.2575�9� Si-O2 0.1624�9�
0.2656�8� Si-O3 0.1634�9�
0.2489�8� Si-O4 0.1619�9�
0.2324�8� O1-Si-O2 107.0�5�
0.2506�9� O1-Si-O3 108.7�5�
0.2358�8� O1-Si-O4 111.0�5�

O2-Si-O3 111.0�5�
O2-Si-O4 108.0�5�
O3-Si-O4 111.0�5�

ms:
numb
hains
angle

nt ato
302Fukuda, Iwata, and Champion



nected via SiO4 groups and non-silicon-bonded oxygen at-
oms �O5� to form a three-dimensional structure �Figure 3�.

La2SiO5 has been found to be isostructural with the
X1-phases of Y2SiO5 and Gd2SiO5. The volumes of RO9
polyhedra �R=Y, Gd, and La� steadily increase with increas-
ing ionic radius of R �rR� �Figure 4�. The polyhedral volume
for LaO9 is about 1.3 times larger than that of YO9. For the
RO7 polyhedra, the volumes also tend to increase with in-
creasing rR, however the increases are much smaller than
those of RO9. The unit-cell volumes also increase steadily
with increasing rR �Felsche, 1973; Wang et al., 2001�, and
the cell volume of La2SiO5�=0.4669 nm3� is about 1.2 times
as large as that of Y2SiO5�=0.3974 nm3�. Accordingly, the
increase in the cell volume that is induced by the cationic
substitution is mainly attributable to the volumetric expan-
sion of the RO9 polyhedra.

IV. CONCLUSION

We refined the crystal structure of La2SiO5, which has a
monoclinic unit cell with space group P21/c. This compound

Figure 3. Crystal structure of lanthanum oxyorthosilicate viewed along the b
axis.

Figure 4. Changes in polyhedral volumes with effective ionic radius of the
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is isomorphous with the X1-phases of R2SiO5 �R=Y and
Gd�. The crystal structure consists of three types of polyhe-
dra: LaO9, LaO7, and SiO4. The unit-cell volumes increase
steadily with increasing ionic radius of R, from Y3+ to Gd3+

to La3+. The increase in the unit-cell volume is mainly attrib-
utable to the volumetric expansion of the RO9 polyhedra.
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