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A Hidden Semi-Markov Model-Based Speech Synthesis System

Heiga ZEN†a), Nonmember, Keiichi TOKUDA†b), Takashi MASUKO††∗,
Takao KOBAYASIH††c), and Tadashi KITAMURA†d), Members

SUMMARY A statistical speech synthesis system based on the hidden
Markov model (HMM) was recently proposed. In this system, spectrum,
excitation, and duration of speech are modeled simultaneously by context-
dependent HMMs, and speech parameter vector sequences are generated
from the HMMs themselves. This system defines a speech synthesis prob-
lem in a generative model framework and solves it based on the maximum
likelihood (ML) criterion. However, there is an inconsistency: although
state duration probability density functions (PDFs) are explicitly used in
the synthesis part of the system, they have not been incorporated into its
training part. This inconsistency can make the synthesized speech sound
less natural. In this paper, we propose a statistical speech synthesis system
based on a hidden semi-Markov model (HSMM), which can be viewed as
an HMM with explicit state duration PDFs. The use of HSMMs can solve
the above inconsistency because we can incorporate the state duration PDFs
explicitly into both the synthesis and the training parts of the system. Sub-
jective listening test results show that use of HSMMs improves the reported
naturalness of synthesized speech.
key words: hidden Markov model, hidden semi-Markov model, HMM-
based speech synthesis

1. Introduction

A statistical speech synthesis system based on the hidden
Markov model (HMM) [1], [2] was recently developed. In
this system, spectrum, excitation and duration of speech are
modeled simultaneously by context-dependent HMMs, and
speech parameter vector sequences are generated from the
HMMs themselves [2]. It can synthesize speech with vari-
ous voice characteristics by transforming its model param-
eters. For example, either a speaker adaptation [3], [4], a
speaker interpolation [5], or an eigenvoice technique [6] was
applied to this system, and it was shown that the system
could modify its voice characteristics.

For any text-to-speech (TTS) synthesis system, con-
trolling timing of events in speech signals is one of the most
difficult problems, since there are many contextual factors
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that affect timing (e.g., phone identity, accent, stress, loca-
tion, and part-of-speech). Furthermore, a number of factors
that affect duration interact with each other. Thus, a variety
of approaches to controlling timing using statistical models
have been proposed [7]–[10].

In the HMM-based speech synthesis system, rhythm
and tempo of synthesized speech is controlled by decision
tree-clustered state duration models [11]–[13]. One of the
major limitations of the HMM is that it does not adequately
represent the temporal structure of speech. This is be-
cause state duration probability density functions (PDFs) of
HMMs are implicitly modeled by their state self-transition
probabilities. To overcome this limitation, the HMM-based
speech synthesis system represents state durations PDFs
explicitly by Gaussian distributions [11]. They are esti-
mated from statistical variables obtained in the last itera-
tion of the expectation-maximization (EM) algorithm [14],
and then clustered by phonetic decision trees [15]. They are
not re-estimated in the EM iteration. In the synthesis part,
a sentence HMM corresponding to a text arbitrarily chosen
to be synthesized is constructed by concatenating context-
dependent HMMs. Then the speech parameter generation
algorithm generates sequences of speech parameter vectors
for the given HMM [16]. The state duration PDFs are ex-
plicitly used in the speech parameter generation procedure.

This system defines a speech synthesis problem in a
generative model framework and solves it using the max-
imum likelihood (ML) criterion. However, there is an in-
consistency: although state duration PDFs are explicitly
used to generate speech parameter vector sequences from
the HMMs, they have not been incorporated into the ex-
pectation step of the EM algorithm. This inconsistency can
make the synthesized speech sound less natural. In this pa-
per, we propose a statistical speech synthesis system based
on a hidden semi-Markov model (HSMM), which can be
viewed as an HMM with explicit state duration PDFs. The
use of HSMMs can solve the above inconsistency because
we can incorporate the state duration PDFs explicitly into
both the synthesis and the training parts of the system.

The rest of this paper is organized as follows. Section 2
reviews the HMM-based speech synthesis system. Section 3
describes the generalized forward-backward algorithm, pa-
rameter reestimation formulae, decision tree-based context
clustering, and speech parameter generation algorithm for
the HSMM. Subjective listening test results are presented in
Sect. 4. Concluding remarks and future plans are presented

Copyright c© 2007 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 Example of a five-state, left-to-right, no-skip HMM.

in the final section.

2. HMM-Based Speech Synthesis System

2.1 Forward-Backward Algorithm

An N-state continuous HMM λ is specified by sets of ini-
tial state probabilities {πi}Ni=1, state transition probabilities
{ai j}Ni, j=1, and state output PDFs {bi (·)}Ni=1. Here, we as-
sume that the first and N-th states are beginning and end-
ing null states as illustrated in Fig. 1, respectively. Thus,
the initial state probabilities {πi}Ni=1 become π1 = 1 and
π2 =, . . . , πN = 0.

For the given λ, the output probability of an observa-
tion vector sequence o = {o1, o2, . . . , oT } of length T can
be computed efficiently using the forward-backward algo-
rithm [17]. Partial forward probability variables αt(·) and
partial backward probability variables βt(·) are defined as
follows:

α0( j) =

{
1 j = 1
0 otherwise , (1)

αt( j) = P (o1, . . . , ot, qt = j | λ) (2)

=

N∑
i=1

αt−1(i)ai jb j(ot)

(
t = 1, 2, . . . , T
1 ≤ j ≤ N

)
, (3)

βT+1(i) =

{
1 i = N
0 otherwise , (4)

βT (i) = aiNβT+1(N) (1 ≤ i ≤ N) , (5)

βt(i) = P (ot+1, . . . , oT | qt = i, λ) (6)

=

N∑
j=1

ai jb j(ot+1)βt+1( j)

(
t = T − 1, . . . , 1
1 ≤ i ≤ N

)
,

(7)

where a11 =, . . . ,= aN1 = 0, and aN2 =, . . . ,= aNN = 0,
qt = j denotes being the j-th state at time t, and we assume
that b1 (·) = bN (·) = 1. From Eqs. (3) and (7), P (o | λ) is
given by

P (o | λ) =
N∑

i=1

P (o, qt = i | λ) (8)

=

N∑
i=1

αt(i) · βt(i) (1 ≤ t ≤ T ) . (9)

Fig. 2 Overview of a typical HMM-based speech synthesis system.

Generally, computational complexity of the above recur-
sions is on the order of O(N2T ). However, if a simple left-
to-right structure illustrated in Fig. 1 is assumed, it reduces
to O(NT ).

2.2 Duration Handling in an HMM-Based Speech Synthe-
sis System

Figure 2 is an overview of a typical HMM-based speech
synthesis system [2]. It consists of training and synthesis
parts. In the training part, spectrum (e.g., mel-cepstral co-
efficients and their dynamic features) and excitation (e.g.,
log F0, and its dynamic features) parameters are extracted
from a speech database and modeled by context-dependent
HMMs. Although sequences of mel-cepstral coefficients
can be modeled by continuous HMMs, sequences of log F0

cannot be modeled using continuous or discrete HMMs
without heuristic assumptions since each log F0 observa-
tion can be viewed as consisting of a one-dimensional con-
tinuous log F0 value (voiced regions) or a discrete symbol,
which represents an unvoiced frame (unvoiced regions). To
model this kind of observation, HMMs based on multi-
space probability distributions (MSD-HMMs) have been
proposed [18]. An MSD-HMM includes both discrete and
continuous HMMs as its special cases and can model the
sequences of log F0 with no heuristic assumptions.

In the synthesis part, first a text to be synthesized is
converted to a context-dependent label sequence and then
the sentence HMM λ is constructed by concatenating the
context-dependent HMMs based on the label sequence. Sec-
ond, its state durations are determined so as to maximize
their probabilities

log P (d | λ) =
N∑

j=1

log p j(d j), (10)

where d = {d1, d2, . . . , dN} is a set of state durations, d j is
the state duration at the j-th state, N is the number of states
in the sentence HMM λ, and p j(·) denotes the state duration
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Fig. 3 Example of state duration probability of an HMM (akk = 0.6).

PDF of the j-th state. However, one of the major limita-
tions of the HMM is that it does not adequately represent
the temporal structure of speech. This is because state du-
ration PDFs of HMMs are implicitly modeled by their state
self-transition probabilities. This means that the probability
of d consecutive observations in the j-th state is given by
the probability of taking the self-loop at the j-th state for d
times as

p j (d) = ad−1
j j ·

(
1 − a j j

)
. (11)

The above equation shows that state duration probabilities
follow a geometric distribution. Figure 3 plots an example
of a state duration probability of an HMM. It can be seen
from the figure that state duration probability decreases ex-
ponentially with time. Accordingly, the state durations that
maximize Eq. (10) are determined as

d̄ = arg max
d

log P (d | λ) (12)

= arg max
d1,...,dN

N∑
j=1

{
(d j − 1) log a j j + log

(
1 − a j j

)}
(13)

= {1, . . . , 1} . (14)

The above equations show that all expected state durations
become 1. This is not useful for controlling the temporal
structure of speech. To avoid this problem, the HMM-based
speech synthesis system represents state durations PDFs ex-
plicitly by Gaussian distributions [11].† They are estimated
from statistical variables obtained in the last iteration of the
EM algorithm. The mean ξ j and the variance σ2

j of the state
duration at the j-th state are estimated as

p j (d) = N
(
d | ξ j, σ

2
j

)
, (15)

ξ j =

T∑
t0=1

T∑
t1=t0

χt0,t1 ( j) · (t1 − t0 + 1)

T∑
t0=1

T∑
t1=t0

χt0 ,t1( j)

, (16)

σ2
j =

T∑
t0=1

T∑
t1=t0

χt0,t1( j) · (t1 − t0 + 1)2

T∑
t0=1

T∑
t1=t0

χt0 ,t1( j)

− ξ2j , (17)

where χt0,t1 ( j) is the probability of occupying the j-th state
from time t0 to t1, which can be written as

χt0,t1( j) = P
(
qt0−1� j, qt0 = . . .= qt1 = j, qt1+1� j | o, λ)

=
1

P (o | λ)


N∑

i=1
i� j

αt0−1(i)ai j

 · a
t1−t0
j j

·
t1∏

s=t0

b j (os)


N∑

k=1
k� j

a jkbk
(
ot1+1

)
βt1+1(k)

 . (18)

Since each state duration PDF is represented by a Gaussian
distribution, the state durations that maximize Eq. (10) are
determined as

d̄ = arg max
d

log P (d | λl) (19)

= arg max
d1,...,dK

K∑
k=1

logN
(
dk | ξk, σ2

k

)
(20)

= {ξ1, . . . , ξK} . (21)

Third, the speech parameter generation algorithm [16]
generates the sequences of mel-cepstral coefficients and
log F0 values that maximize their output probabilities. The
state duration PDFs and the expected state durations d̄ are
used in the speech parameter generation procedure. Finally,
a speech waveform is synthesized directly from the gener-
ated speech parameter vectors by a speech synthesis filter.

This system defines a speech synthesis problem in a
generative model framework and solves it based on the ML
criterion. However, there is an inconsistency: although state
duration PDFs are explicitly used for generating speech pa-
rameter vector sequences from the HMMs, they have not
been incorporated into the expectation step of the EM algo-
rithm: model parameters are estimated without considering
the state duration PDFs. This inconsistency can make the
synthesized speech sound less natural.

3. HSMM-Based Speech Synthesis System

To resolve the inconsistency of the HMM-based speech syn-
thesis system, we introduce a hidden semi-Markov model

†Although the gamma and log Gaussian distributions have
been applied to state duration modeling in HMM-based speech
synthesis [12], [13], the Gaussian distribution is widely used be-
cause it is mathematically easy to use (e.g., easy to derive speaker
adaptation). It is obvious that modeling state durations by contin-
uous distributions is inappropriate in the sense of statistical mod-
eling because the state durations of HMMs are inherently discrete.
However, the use of continuous distributions provides better flexi-
bility to control the temporal structure of synthesized speech.
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Fig. 4 Example of a five-state, left-to-right, no skip HSMM.

(HSMM) [19]–[21]. This model can be viewed as an HMM
with explicit state duration PDFs. The use of HSMMs can
solve the above inconsistency because we can incorporate
the state duration PDFs explicitly into both the synthesis
and the training parts of the system. In this section, the
generalized forward-backward algorithm (expectation step),
parameter reestimation formulae (maximization step), deci-
sion tree-based context clustering technique, and speech pa-
rameter generation algorithms, which are required to build
an HSMM-based speech synthesis system, are described.

3.1 Generalized Forward-Backward Algorithm

An N-state continuous HSMM λ′ is specified by sets of
initial state probabilities {πi}Ni=1, state transition probabili-
ties {ai j}Ni, j=1, state output PDFs {bi (·)}Ni=1, and state dura-

tion PDFs {pi (·)}Ni=1. Here, we assume that the first and N-
th states are beginning and ending null states, respectively,
as illustrated in Fig. 4. Thus, the initial state probabilities
{πi}Ni=1 become π1 = 1 and π2 =, . . . , πN = 0.

For the given HSMM λ′, the output probability of an
observation vector sequence o = {o1, o2, . . . , oT } of length T
can be computed efficiently using the generalized forward-
backward algorithm [21]–[23]. Partial forward probability
variables α′t (·) and partial backward probability variables
β′t (·) are defined as follows:

α′0( j) =

{
1 j = 1
0 otherwise , (22)

α′t ( j) = P
(
o1, . . . , ot, qt = j | qt+1 � j, λ′

)
=

t∑
d=1

N∑
i=1,
i� j

α′t−d(i)ai j p j(d)
t∏

s=t−d+1

b j(os)

(
t = 1, 2, . . . , T
1 ≤ j ≤ N

)
, (23)

βT+1(i) =

{
1 i = N
0 otherwise

, (24)

β′T (i) = aiNβT+1(N) (1 ≤ i ≤ N) , (25)

β′t (i) = P
(
ot+1, . . . , oT , qt = i | qt+1 � i, λ′

)
=

T−t∑
d=1

N∑
j=1,
j�i

ai j p j(d)
t+d∏

s=t+1

b j(os)β′t+d( j)

(
t = T − 1, . . . , 1
1 ≤ i ≤ N

)
, (26)

where a11 =, . . . ,= aN1 = 0, aN2 =, . . . ,= aNN = 0, and we

assume that p1(·) = pN(·) = 0, and b1 (·) = bN (·) = 1. From
the above equations, P (o | λ′) is given by

P
(
o | λ′) = N∑

i=1

N∑
j=1,
j�i

t∑
d=1

α′t−d(i)ai j p j(d)

·
t∏

s=t−d+1

b j(os)β
′
t( j) (1 ≤ t ≤ T ) . (27)

The drawback of the HSMMs is that the above recursions
require on the order of O(N2T 2) calculations, as compared
with O(N2T ) of the HMM. If a simple left-to-right struc-
ture illustrated in Fig. 4 is assumed, it reduces to O(NT 2).
Furthermore, by limiting the maximum duration to D, it fur-
ther reduces to O(NDT ) [22]. Although the use of HSMMs
increases computational cost, it is still possible to perform
the above recursions using the currently available computa-
tional resources.

3.2 Parameter Reestimation Formulae

The ML criterion is used to estimate parameters of HSMMs.
In common with the HMM training, the EM algorithm may
be used. Let us assume that the state duration probability of
the j-th state of an HSMM λ′ is modeled by a Gaussian dis-
tribution† with mean ξ j and variance σ2

j . The reestimation

formulae of ξ j and σ2
j are derived as follows:

p j

(
d j

)
= N

(
d j | ξ j, σ

2
j

)
, (28)

ξ̄ j =

T∑
t0=1

T∑
t1=t0

χ′t0,t1 ( j) · (t1 − t0 + 1)

T∑
t0=1

T∑
t1=t0

χ′t0,t1( j)

, (29)

σ̄2
j =

T∑
t0=1

T∑
t1=t0

χ′t0,t1( j) · (t1 − t0 + 1)2

T∑
t0=1

T∑
t1=t0

χ′t0 ,t1( j)

−
(
ξ̄ j

)2
, (30)

where χ′t0,t1 ( j) is the probability of occupying the j-th state
of the HSMM λ′ from time t0 to t1, which can be written as

χ′t0,t1( j) =
1

P (o | λ′)
N∑

i=1
i� j

α′t0−1(i)ai j ·
t1∏

s=t0

b j(os)

· p j(t1 − t0 + 1) · β′t1 ( j), (31)

In the HMM-based speech synthesis system, the MSD-
HMMs have been used to model log F0 sequences. Thus,
we derive reestimation formulae for HSMM based on multi-
space probability distributions (MSD-HSMMs) in order to

†The HSMM with continuous state duration PDFs is
also known as continuously variable duration HMM (CVD-
HMM) [21].
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construct the HSMM-based speech synthesis system.
A sample space composed of G spaces is considered.

Each space is an ng-dimensional real space Rng , specified by
a space index g. We consider that each observation ot con-
sists of a set of space indexes Xt (e.g., Xt = {1}, Xt = {1, 3, 5},
or Xt = {1, 2, . . . ,G}) and a continuous random variable
xt ∈ Rng , that is,

ot = (Xt, xt) , (32)

where all spaces specified by each Xt should have the same
dimensionality. On the other hand, Xt does not necessarily
include all indices specifying the same dimensional spaces.
It is noted that both the observation vector xt and the space
index set Xt are random variables that are determined by an
observation device (or feature extractor) at each observation.

Each space has its probability wg, where
∑G

g=1 wg = 1.
If ng > 0, each space has a PDF fg (xt) , xt ∈ Rng , where∫
R

ng fg (xt) dxt = 1. If ng = 0, we assume that xt takes only
one sample point. Therefore, we have fg (xt) = 1 if ng = 0.
Accordingly, the output probability of the observation ot for
the j-th state is defined by

b j (ot) =
∑

g∈S (ot)

wjg f jg (V (ot)) , (33)

where

S (ot) = Xt, V (ot) = xt. (34)

Let us assume that f jg (·), ng > 0 is the ng-dimensional
multi-variate Gaussian distribution with the mean vector µ jg

and covariance matrix Σ jg. The reestimation formulae of
wjg, µ jg, and Σ jg are derived as follows:

w̄ jg =

T∑
t=1

t∑
d=1

γd
t ( j, g)

G∑
h=1

T∑
t=1

t∑
d=1

γd
t ( j, h)

, (35)

µ̄ jg =

T∑
t=1

t∑
d=1

ζd
t ( j, g)

T∑
t=1

t∑
d=1

γd
t ( j, g)

, ng > 0 (36)

Σ̄ jg =

T∑
t=1

t∑
d=1

ηd
t ( j, g)

T∑
t=1

t∑
d=1

γd
t ( j, g)

, ng > 0 (37)

where γd
t ( j, g), ζd

t ( j, g), and ηd
t ( j, g) are the occupancy prob-

ability and first and second order statistics, respectively,
given by

γd
t ( j, g) =

1
P (o | λ′)

N∑
i=1,
i� j

α′t−d(i)ai j p j(d)β′t( j)

·
t∑

s=t−d+1,
g∈S (os)

wjgN
(
V (os) | µ jg,Σ jg

) t∏
k=t−d+1,

k�s

b j(ok), (38)

ζd
t ( j, g) =

1
P (o | λ′)

N∑
i=1,
i� j

α′t−d(i)ai j p j(d)β′t( j)

·
t∑

s=t−d+1,
g∈S (os)

wjgN
(
V (os) | µ jg,Σ jg

) t∏
k=t−d+1,

k�s

b j(ok) · V (os) ,

(39)

ηd
t ( j, g) =

1
P (o | λ′)

N∑
i=1,
i� j

α′t−d(i)ai j p j(d)β′t( j)

·
t∑

s=t−d+1,
g∈S (os)

wjgN
(
V (os) | µ jg,Σ jg

) t∏
k=t−d+1,

k�s

b j(ok)

·
[
V (os) − µ jg

] [
V (os) − µ jg

]�
. (40)

3.3 Decision Tree-Based Context Clustering

There are a number of contextual factors (e.g., phone iden-
tity, accent, stress, location, part-of-speech) that affect spec-
trum, excitation, and duration of speech. In the HMM-
based speech synthesis system, context-dependent models
are used to capture these factors. If context-dependent mod-
els that take account of more combinations of the above con-
textual factors are constructed, we should be able to obtain
more accurate models. However, as the number of contex-
tual factors increases, the number of possible combinations
also increases exponentially. As a result, we cannot estimate
model parameters robustly. Furthermore, it is impossible to
prepare a speech database that includes every possible com-
bination of contextual factors.

To avoid this problem, a variety of parameter sharing
techniques have been developed [24]–[27]. The use of pho-
netic decision trees [15] is one good solution to this problem.
This technique has been extended for MSD-HMMs [28] and
state duration PDFs [11]. In the HMM-based speech syn-
thesis system, distributions of spectrum, excitation, and du-
ration are clustered separately because they have their own
influential contextual factors.

Although the decision tree-based context clustering
technique was originally been derived for the HMM, it can
be applied to the HSMM with no modifications. The follow-
ing assumptions are made in the same manner as described
by Odell [15]:

• The occupancy probabilities γd
t ( j, g) are not altered

during the clustering procedure. In practice, careful
selection of the initial state assignments ensures that
there are no significant changes.
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• The contribution of state transition and duration proba-
bilities to the total probability is negligible. This is re-
lated to the previous point. Although the transition and
duration probabilities will have a significant effect on
total likelihood, their contribution would only change
if changes occurred in the state assignments. These are
assumed to be fixed throughout the clustering proce-
dure, so the contribution of the transition and duration
probabilities is constant and unaffected by the cluster-
ing.
• The total likelihood of the training data can be approx-

imated by an average of the log likelihoods weighted
by the probability of state occupancy. This is an ap-
proximation unless the state occupancy probabilities
are zero or one, as is the case for deterministic state
assignments, but is often nearly true for probabilistic
assignments.

These assumptions would also hold in the HSMM. By pro-
viding the state occupancy probabilities using the gener-
alized forward-backward algorithm instead of the normal
forward-backward algorithm, the state output PDFs of the
HSMM can be clustered by decision trees in the same man-
ner as the HMMs. Furthermore, the state duration PDFs can
also be clustered by decision trees using the same procedure
as described by Yoshimura et al. [11].

3.4 Speech Parameter Generation Algorithm

For the HMM-based speech synthesis system, three algo-
rithms for generating a speech parameter vector sequence
for a given HMM have been derived [16]. These algorithms
aim to solve the following three problems:

Case 1. For given λ, q and g, maximize P (o | q, g, λ) with
respect to o,

Case 2. For given λ, maximize P (o, q, g | λ) with respect
to q, g, and o,

Case 3. For given λ, maximize P (o | λ) with respect to o,

where λ is an MSD-HMM, q = {q1, q2, . . . , qT } is a state
sequence, g = {g1, g2, . . . , gT } is a space index sequence,
and gt is a space index at time t.

In the Case 1 algorithm, the expected state durations d̄
(see Eq. (21)) are used to give q. Then a speech parameter
vector sequence is generated from λ according to given q
and g. The objective function of the Case 2 algorithm can
be factorized as

P (o, q, g | λ) = P (o | q, g, λ) P (q, g | λ) (41)

= P (o | q, g, λ) P (g | q, λ) P (q | λ) .
(42)

In this algorithm, the expected state durations d̄ are used as
the initial q, and the state duration PDFs p j (d) are used for
giving P (q | λ). On the other hand, in the Case 3 algorithm,
for giving initial q, the state duration PDFs are not incor-
porated explicitly. This is because the Case 3 algorithm is
derived based on the EM algorithm for the HMM, not the

HSMM. To b the state duration PDFs explicitly, it should be
re-derived based on the EM algorithm for the HSMMs.

This algorithm aims to find a critical point of output
probability P (o | λ′) with respect to o. An auxiliary function
of the current speech parameter vector sequence o and the
new one ō is defined by

Q (o, ō) =
∑

all g,d,q

P
(
o, g, d, q | λ′) log P

(
ō, g, d, q | λ′) ,

(43)

where d = {d1, d2, . . . , dN} is a set of state durations and N is
the number of HSMM states. It can be shown that substitut-
ing o, which maximizes Eq. (43) for o, increases the output
probability unless o is a critical point. Equation (43) can be
rewritten as

Q (o, ō) = P (o | λ)
{
−1

2
ō�Σ−1 ō+ ō�Σ−1µ + C

}
(44)

where C is a constant independent of ō, and Σ−1 and Σ−1µ
are an expected inverse covariance matrix and an expected
inverse covariance matrix times mean vector, respectively,
given as

Σ−1 = diag
[
Σ−1

1 ,Σ
−1
2 , . . . ,Σ

−1
T

]
, (45)

Σ−1
t =

T∑
τ=1

τ∑
d=1

N∑
j=1

G∑
h=1

δ(t, τ, d) · γd
τ ( j, h)Σ−1

jh , (46)

Σ−1µ =
[
Σ−1

1 µ1
�
,Σ−1

2 µ2
�
, . . . ,Σ−1

T µT

�]�
, (47)

Σ−1
t µt =

T∑
τ=1

τ∑
d=1

N∑
j=1

G∑
h=1

δ(t, τ, d) · γd
τ ( j, h)Σ−1

jh µ jh, (48)

δ(t, τ, d) =

{
1 τ − d + 1 ≤ t ≤ τ
0 otherwise

. (49)

We assume that a speech parameter vector ot consists
of an M-dimensional static feature vector

ct = [ct(1), ct(2), . . . , ct(M)]� (50)

and its first and second order dynamic feature vectors, that
is

ot =
[
c�t ,∆c�t ,∆

2c�t
]�
, (51)

where ∆ct and ∆2ct are given by

∆ct =

L(1)
+∑

τ=−L(1)
−

w(1)(τ)ct+τ, ∆ct =

L(2)
+∑

τ=−L(2)
−

w(2)(τ)ct+τ,

(52)

and w(i)(·) are window coefficients for calculating the i-th
order dynamic features. The conditions in Eq. (52) can be
arranged in a matrix form:

o =Wc, (53)
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where

c =
[
c�1 , c

�
2 , . . . , c

�
T

]�
, (54)

W = [W1,W2, . . . ,WT ]� ⊗ IM×M , (55)

Wt =
[
w(0)

t ,w
(1)
t ,w

(2)
t

]
, (56)

w(0)
t =

[
0, . . . , 0︸��︷︷��︸

t−1

, 1, 0, . . . , 0︸��︷︷��︸
T−t

]�
, (57)

w(d)
t =

[
0, . . . , 0︸��︷︷��︸
t−L(d)

− −1

,w(d)(−L(d)
− ), . . . ,w(d)(L(d)

+ ), 0, . . . , 0︸��︷︷��︸
T−

(
t+L(d)

+

)
]�
.

(58)

Under the conditions in Eq. (53), the static feature vector se-
quence that maximizes Eq. (43) can be determined by solv-
ing the following set of linear equations:

W�Σ−1Wc̄ =WΣ−1µ. (59)

This can be done efficiently using the Cholesky or QR de-
composition [16]. The whole procedure is summarized as
follows:

Step 0. Set the initial speech parameter vector sequence c;
Step 1. Calculate γd

t ( j, g) using the generalized forward-
backward algorithm;

Step 2. Calculate Σ−1 and Σ−1µ and solve Eq. (59);
Step 3. Set c = c̄. If a certain convergence condition is

satisfied, stop; otherwise, go back to Step 1;

Results of an informal experiment showed that the use
of the Case 3 algorithm slightly improved the quality of syn-
thesized speech but drastically increased the computational
cost compared with the Case 1 algorithm. Therefore, no fur-
ther experiments evaluating the performance of the Case 3
algorithm were conducted for this study.

4. Experiments

4.1 Experimental Conditions

The first 450 of the phonetically balanced 503 sentences
from the ATR Japanese speech database B-set [29], uttered
by two female speakers (FTK and FYM) and two male
speakers (MHT and MYI), were used for training. The re-
maining 53 sentences were used for evaluation. Speech sig-
nals were sampled at a rate of 16 kHz and windowed with a
5 ms shift, and mel-cepstral coefficients were obtained from
STRAIGHT-spectrum [30]. Fundamental frequency values
included in the database were used. Aperiodicity measures
in the frequency domain based on a ratio between the lower
and upper smoothed spectral envelopes to represent the rel-
ative energy distribution of aperiodic components [31] were
also extracted. Feature vectors consisted of spectrum, F0,
and aperiodicity parameter vectors. The spectrum param-
eter vectors consisted of 39 STRAIGHT mel-cepstral co-
efficients including the zeroth coefficient, their delta and
delta-delta coefficients. The F0 parameter vectors consisted

of log F0, its delta and delta-delta. The aperiodicity pa-
rameter vectors consisted of average values of the aperi-
odicity measures in five frequency bands, i.e., 0-1 kHz, 1-
2 kHz, 2-4 kHz, 4-6 kHz, and 6-8 kHz [32], and their delta
and delta-delta. A seven-state (including the beginning and
ending null states), left-to-right, no skip structure was used
both for HMM and HSMM. Each state output PDF was
composed of spectrum, F0, and aperiodicity streams. The
spectrum and aperiodicity streams were modeled by single
multi-variate Gaussian distributions with diagonal covari-
ance matrices. The F0 stream was modeled by a multi-space
probability distribution consisting of a Gaussian distribution
for voiced frames and a discrete distribution for unvoiced
frames. Each state duration PDF was modeled by a five-
dimensional (equal to the number of emitting states in each
phoneme model) multivariate Gaussian distribution.

Forty-two Japanese phonemes including a silence and
a pause were used, and context-dependent labels were for-
mulated based on phoneme labels and linguistic information
included in the database. In this paper, the following con-
textual factors were taken into account:

• phoneme:

- the current phoneme

- the preceding and succeeding two phonemes

• mora:†

- distance between the accent nucleus and position of
the current mora in the current accentual phrase

- the position of the current mora in the current accen-
tual phrase

• morpheme:

- the part of speech, conjugate type, and conjugate
form of the preceding, current, and succeeding mor-
phemes

• accentual phrase:

- the number of morae in the preceding, current, and
succeeding accentual phrases

- the type of accents in the preceding, current, and suc-
ceeding accentual phrases

- the position of the current accentual phrase in the
current breath phrase

• breath phrase:

- the number of morae, accentual phrases of the pre-
ceding, current, and succeeding breath phrases

- the position of the current breath phrase in the utter-
ance

• utterance:

- the number of morae, accentual phrases, and breath
phrases in the utterance.

The decision tree-based context clustering technique was

†A mora is a syllable-sized unit in Japanese.
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Table 1 Number of leaf nodes of constructed decision trees for spec-
trum, F0, aperiodicity, and duration.

Speakers Models Spect. F0 Ap. Dur.

FTK HMM 610 1,246 621 320
HSMM 648 1,320 655 321

FYM HMM 582 1,389 784 387
HSMM 615 1,479 791 312

MHT HMM 752 1,139 707 336
HSMM 807 1,138 747 265

MYI HMM 469 1,316 819 360
HSMM 513 1,307 835 273

Table 2 Number of evaluated pairs of speech samples assigned to each
combination of speaker and speaking rate.

Speakers Speaking rates
2.00 1.50 1.00 0.75 0.50 Total

FTK 54 54 51 64 63 286
FYM 58 62 55 39 53 267
MHT 54 48 51 68 58 279
MYI 49 50 62 50 57 268

Total 215 214 219 221 231 1,100

separately applied to distributions for spectrum, F0, aperi-
odicity, and state duration. We used training procedure de-
scribed by Zen et al. [33] in this experiment.

4.2 Experimental Results

Table 1 shows the total number of leaf-nodes after deci-
sion tree-based context clustering. In this paper, the min-
imum description length (MDL) criterion [34] was used to
stop tree growth [2], [35]. It can be seen from the table that
the total number of model parameters for both HMMs and
HSMMs are about the same.

The effectiveness of HSMMs was evaluated in a sub-
jective listening test. To compare the duration controlling
ability of these two systems, synthesized speech samples in
different speaking rates (0.5, 0.75, 1.0, 1.5, or 2.0 × average
duration estimated by the state duration PDFs†) were used.
The ML-based method described by Yoshimura et al. [11]
was used to determine state durations.

To evaluate these models in practical conditions, we
used the speech parameter generation algorithm consider-
ing global variance [32]. This is an extension of the basic
speech parameter generation algorithm [16] and a significant
improvement over the basic algorithm has been reported.††

Twenty-two subjects were presented a pair of synthe-
sized utterances from the HMM and HSMM-based systems
in random order and then asked which speech sounded more
natural. For each subject, 50 pairs were chosen at ran-
dom from 1060 pairs of synthesized speech (four speakers
× five speaking rates × 53 test sentences). Table 2 shows the
number of evaluated pairs assigned to each combination of
speaker and speaking rate. This experiment was carried out
in a sound proof room using headphones.

Figures 5 and 6 show preference scores averaged over
speakers and speaking rates, respectively. It can be seen
from the figures that the use of HSMMs improved the re-

Fig. 5 Preference scores between HMM and HSMM-based systems for
different speaking rates.

Fig. 6 Preference scores between HMM and HSMM-based systems for
different speakers.

ported naturalness of synthesized speech, especially when
the speaking rates were slower or faster than the average
speaking rates. Interestingly, most of the subjects observed
that the use of HSMMs improved the reported naturalness
both in duration and in spectrum and excitation.

5. Conclusion

In this paper, a statistical speech synthesis system based on a
hidden semi-Markov model (HSMM), which can be viewed
as a hidden Markov model (HMM) with explicit state du-
ration models, was developed and evaluated. The use of
HSMMs enables us to explicitly incorporate state duration
PDFs into both the synthesis and the training parts of the
system. Subjective listening test results showed that the
use of HSMMs improved the reported naturalness of syn-
thesized speech.

Future work will focus on the use of other distributions
†The speaking rates of average duration for speakers mht, myi,

ftk, and fym were 5.33, 8.82, 7.37, and 7.89 (mora/sec), respec-
tively.
††Experimental results using the basic speech parameter gener-

ation algorithm has been described by Zen et al. [36].
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such as gamma or log Gaussian distributions for state dura-
tion PDFs.
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