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Direct numerical simulation of a zero-pressure gradient drag-reducing turbulent boundary layer of
homogeneous viscoelastic fluids was performed using constitutive equation models such as the
Oldroyd-B and Giesekus models. Mean velocity profiles and turbulence statistics at the different
streamwise locations were discussed using both inner and outer scaling. The maximum drag
reduction ratio for the Oldroyd-B model, which has the higher elongational viscosity, is larger than
for the Giesekus model. The distinct difference in turbulence statistics near the wall between the
Oldroyd-B model and Newtonian fluid is observed, as reported in the drag-reducing turbulent
channel flow, while in the outer region, distributions of turbulence statistics for the Oldroyd-B
model with a drag reduction ratio of about 40% are similar to those for Newtonian fluid. The
production term for the turbulent boundary layer does not correspond to the amount of drag
reduction, which is consistent with the fact that the streamwise turbulence intensity profile is not a
direct indication of the drag reduction. The contribution of the advection term to the budget of
streamwise Reynolds normal stress, which does not appear for the turbulent channel flow, is not
negligible near the wall for the Oldroyd-B model. For the Oldroyd-B model with a maximum drag
reduction ratio of 42%, we can see that quasi-streamwise vortices are weakened and become larger
in the streamwise direction, compared to Newtonian fluid. On the other hand, quasi-streamwise
vortices for the Giesekus model with a maximum drag reduction ratio of 16% are slightly larger than
those for Newtonian fluid. These modifications of near-wall coherent structures are explained by the
profile of the trace of mean viscoelastic stress and the elastic energy theory presented by Min et al.
�J. Fluid Mech. 486, 213 �2003�� for the drag-reducing turbulent channel flow. © 2007 American
Institute of Physics. �DOI: 10.1063/1.2749816�

I. INTRODUCTION

Velocity measurements of a drag-reducing turbulent
channel and pipe flows of viscoelastic fluids have yielded
valuable knowledge about the suppression of turbulence, the
modification of quasi-streamwise vortices and low-speed
streak structures, and the stress defect in which the sum of
viscous and turbulent shear stresses is not equal to the total
shear stress.1–15 On the other hand, there have been few ex-
perimental studies on the drag-reducing effect of viscoelastic
fluids for a turbulent boundary layer, which is a typical ex-
ternal flow.16–20 Recently, White et al.18 and Hou et al.19

have clarified the effects of polymer additives on the turbu-
lent boundary layer, and Itoh et al.20 found a difference in
turbulence statistics between drag-reducing polymer and sur-
factant fluids for the turbulent boundary layer. These experi-
mental studies have revealed the streamwise variation of tur-
bulence statistics and structures for the turbulent boundary

layer of viscoelastic fluids. However, the detailed mechanism
of the drag reduction for the turbulent boundary layer flow in
which the turbulent and the potential flows are mixed could
not be explained by the previous knowledge obtained for the
internal flow such as the channel and pipe flows, and has not
been well understood.

In the past decade, with the rapid growth of computa-
tional resources, direct numerical simulation �DNS� has been
performed to investigate the drag-reducing viscoelastic tur-
bulent flows. There have been many DNS studies of turbu-
lent channel flow using constitutive equation models such as
the finitely extensible nonlinear elastic-Peterlin �FENE-P�
model,21–34 the Oldroyd-B model,30,35–37 and the Giesekus
model.22,30,38–41 These numerical investigations have re-
vealed the higher-order turbulence statistics, budgets of ki-
netic energy and Reynolds stresses, and viscoelastic stress
fields �especially elongational stress fields� in which it is
considerably difficult or even impossible to obtain them us-
ing the experimental measurements. So far, the DNS of drag-
reducing turbulent channel flow has become a helpful and
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essential tool for understanding the drag-reducing mecha-
nism of viscoelastic fluids. On the other hand, there are few
DNSs of drag-reducing turbulent boundary layer flow of
viscoelastic fluids, as far as we know. Quite recently,
Dimitropoulos et al.42 performed a DNS of a polymer-
induced drag-reducing zero-pressure gradient turbulent
boundary layer flow of homogeneous polymer solutions us-
ing the FENE-P model. Drag reduction in turbulent boundary
layer flow of inhomogeneous polymer solutions was also in-
vestigated by Shin and Shaqfeh43 and Dimitropoulos et al.44

However, it is quite insufficient compared to the DNS of
drag-reducing turbulent channel flow.

In the present study, DNSs of a zero-pressure gradient
turbulent boundary layer of a drag-reducing homogeneous
viscoelastic fluid are performed using constitutive equation
models such as the Oldroyd-B and Giesekus models, in
which the rheological properties are different. The boundary
layer parameters, mean velocity profiles, turbulence statis-
tics, budgets of turbulent energy and Reynolds normal
stresses, and near-wall coherent structures such as low-speed
streaks and quasi-streamwise vortices are investigated and
are compared with those of Newtonian fluid.

II. NUMERICAL METHOD

The nondimensional governing equations for the incom-
pressible viscoelastic flow are continuity and momentum
equations,
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where ui is the velocity component, p is pressure, xi is a
spatial coordinate, t is time, and Eij is the viscoelastic stress
component. In this paper, x1 �x�, x2 �y�, and x3 �z� directions
are streamwise, wall-normal, and spanwise, respectively.
�=�s /�0 is the ratio of solvent viscosity �s to zero shear rate
solution viscosity �0. For the Giesekus model,45 the nondi-
mensional constitutive equation for Eij is as follows:
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where � is the mobility factor. The mobility factor � is from
0 to 1, and the Giesekus model with �=0 corresponds to the
Oldroyd-B model.45

In this study, the inflow condition for the boundary layer
is given by the method proposed by Lund et al.,46 so that the
computational domain is divided into the main part and
driver part in which the inflow condition for the main part is
obtained. In the present study, the nondimensional computa-
tional parameters are the momentum-thickness Reynolds
number Re�0

and the Weissenberg number We, and they are
defined as follows:

Re�0
=

�Ue�0

�0
, �4�

We =
�Ue

�0
, �5�

where Ue is the free-stream velocity, �0 is the momentum-
thickness at the inlet plane of the driver part, �0 is the zero-
shear viscosity of the solution, � is density, and � is the
relaxation time.

The second-order accurate finite-difference scheme on a
staggered grid is used. The velocity components are dis-
cretized on the grid cell edges, whereas the pressure and all
the components of viscoelastic stress tensors Eij are defined
at the center of each cell. The coupling algorithm of the
discrete continuity and momentum equations �1� and �2� is
based on the second-order splitting method.47 The resulting
discrete Poisson equation for the pressure is solved using the
SOR �successive over-relaxation� method after FFT in the
periodic �z� direction. The second-order upwind difference
scheme is used for the polymer-stress convection term
uk�Eij /�xk in �3�. An artificial diffusion �*We�2Eij /�xj

2 is
added in �3� to prevent the numerical instability, where �* is
the dimensionless artificial diffusion factor. The semi-
implicit time marching algorithm is used where the diffusion
term in the wall-normal direction is treated implicitly with
the Crank-Nicolson scheme, and the third-order Runge-Kutta
scheme is used for all other terms.

III. NUMERICAL CONDITION

The nonslip boundary condition �u=v=w=0� is applied
on the wall. The boundary conditions on the top surface of
the computational domain are

�u

�y
= 0, v = Ue

d	*

dx
,

�w

�y
= 0, �6�

where 	* is the boundary layer displacement thickness. A
convective boundary condition,

�ui

�t
+ Ue

�ui

�x
= 0, �7�

is used at the outlet plane. The inflow condition is generated
using the recycle method of Lund et al.46 In the present
study, the velocity field data at the streamwise center of the
driver part provide inflow data at the inlet of the main part.
The boundary conditions of viscoelastic stress components
are given by solving the constitutive equations at the wall
with the velocity boundary conditions satisfied, except for
the inlet boundary at the main part in which the Newtonian
velocity data are imposed directly. The periodic boundary
conditions for velocity and viscoelastic stress components
are imposed in the spanwise direction. The statistically
steady Newtonian velocity data are used as the initial condi-
tion for the Oldroyd-B model. Moreover, the statistically
steady velocity and viscoelastic stress data for the Oldroyd-B
model are used as the initial condition for the Giesekus
model.
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In the present study, the momentum-thickness Reynolds
number Re�0

is 500 and the Weissenberg number We is 25.
The size of the computational domain for the present simu-
lations is equal to �Lx
Ly 
Lz�= �200�0
30�0
20��0 /3�
in the streamwise, wall-normal, and spanwise directions, re-
spectively. The grid size is �Nx
Ny 
Nz�= �256
64
64�.
The grid spacing in x1 and x3 directions is uniform, and
the wall-normal grids are given by a hyperbolic tangent
stretching function. The grid resolution is evaluated by
�xi

+=�xiu /�0 �i=1,2 ,3�, where �xi is the grid spacing in
the xi direction, u is the friction velocity, and �0=�0 /� is the
zero-shear kinematic viscosity of the solution. The mesh
spacing in wall units ��x+
�y+
�z+� is shown in Table I.
It is shown that the present spatial resolution is comparable
with that of previous DNS attempts42 for the corresponding
drag-reducing turbulent boundary layer with the same spatial
discretization method. We confirmed that for the Newtonian
flow, the present numerical results are almost the same as for
the grid size of 384
64
96. In the driver part, the compu-
tational domain and grid size are �100�0
30�0
20��0 /3�
and �128
64
64�, respectively, so the grid resolution is
almost the same as that of the main part. In the present study,
the viscosity ratio � is fixed at 0.9 for the turbulent boundary
layer of dilute viscoelastic fluids.42 The mobility factor � for
the Giesekus model is 0.01. Here, the mobility factor � is
related to the extensibility of the polymer chains, i.e., the
smaller mobility factor corresponds to the larger elongational
viscosity. Generally, the Giesekus model represents the
shear-thinning property and the moderate elongational vis-
cosity, while the Oldroyd-B model represents the constant
shear viscosity and the higher elongational viscosity.45 The
present turbulence statistics are obtained by averaging over
space �spanwise direction� and time of over 1000�0 /Ue after
the turbulent flow becomes stationary, where the time incre-
ment �tUe /�0 is 0.008 for the Oldroyd-B and Giesekus mod-
els and 0.02 for Newtonian fluid, where the time increment
for viscoelastic fluid is smaller than half that for Newtonian
fluid.26 In this paper, − and � represent the time-space �span-
wise direction� average and the deviation, respectively. The

superscript + represents the variables normalized by wall
variables. The dimensionless artificial diffusion factor �* is
set to be 0.01.21 We found that the drag reduction ratio was
slightly underestimated due to the addition of the artificial
diffusivity, which did not significantly alter turbulence statis-
tics �not shown here�.26,48

The validity of the Newtonian code of the turbulent
boundary layer is confirmed by comparing our results with
the DNS data of Spalart49 at Re�=670. In addition, the code
verification for the drag-reducing flow is also done in the
turbulent channel flow at the friction Reynolds number of
150 and the friction Weissenberg number of 30 �see Yu and
Kawaguchi39�.

IV. RESULTS AND DISCUSSION

A. Boundary layer parameters

Figure 1 shows the dependence of the shape factor
H=	* /	 on the momentum-thickness Reynolds number Re�.
In the figure, the dot-dashed line represents the DNS data of
Spalart49 and the solid line represents Coles’ curve50 for the
Newtonian fluid. The data of H for Newtonian fluid agree
well with data of Spalart. Near the inlet region �550�Re�

�600�, the value of H for the Oldroyd-B model is smaller
than that for Newtonian fluid, while for Re��600, H for the
Oldroyd-B model drastically increases with the increase of
Re� and reaches the maximum at Re��670, where H for the
Oldroyd-B model is much larger than that for Newtonian
fluid and ranges between the value for the laminar flow
�H=2.59� and the value for the turbulent flow of Newtonian
fluid. On the other hand, H for the Giesekus model agrees
well with that for Newtonian fluid in the region 550�Re�

�600, and is slightly larger for Re��600.
Figure 2 shows the dependence of the friction coefficient

Cf =2�u /Ue�2 on the momentum-thickness Reynolds num-
ber Re�. Cf for Newtonian flow is somewhat larger than
Coles’ curve, possibly due to the effect of grid resolution.
The value of Cf for the Oldroyd-B model is larger than that
for Newtonian fluid in the region 550�Re��600, and is
much smaller for Re��600. On the other hand, the value of
Cf of the Giesekus model is slightly smaller than that for
Newtonian fluid in the region 550�Re��600, decreasing
with increasing Re� in the region 600�Re��640, and is

TABLE I. Numerical and physical conditions.

Newtonian Oldroyd-B Giesekus

Re�0
500 500 500

We — 25 25

Nx 256 256 256

Ny 64 64 64

Nz 64 64 64

Lx 200�0 200�0 200�0

Ly 30�0 30�0 30�0

Lz 20��0 /3 20��0 /3 20��0 /3

�x+ 20 20 20

�ymin
+ −�ymax

+ 0.38−36 0.38−36 0.37−36

�z+ 8.5 8.4 8.3

� — 0 0.01

� 1.0 0.9 0.9

�tUe /�0 0.02 0.008 0.008

FIG. 1. Shape factor vs Reynolds number.
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almost constant for Re��640, in which the value for the
Giesekus model is much larger than that for the Oldroyd-B
model.

B. Drag reduction ratio

The streamwise variation of drag reduction ratio %DR
and the local friction Weissenberg number We

* are shown in
Fig. 3. %DR is defined as follows:

%DR =
Cf ,Newtonian

− Cf ,viscoelastic

Cf ,Newtonian


 100, �8�

at the same streamwise positions. The local friction Weissen-
berg number We

* is defined as follows:

We
* =

�u
2

�0
. �9�

The drag reduction ratio %DR for the Oldroyd-B model
is negative and positive in the region 0�x /�0�50 and for
x /�0�50, respectively. The increase of friction drag �%DR
�0� near the inlet region may be due to the sudden change
of velocity fields caused by the unfavorable effect of the inlet
boundary condition in which the velocity field data of New-
tonian fluid in the driver part is used directly, as pointed out
by Dimitropoulos et al.42 Tabor and de Gennes51 established
that turbulence strains are not capable of inducing coil-
stretch transition. Polymers are in equilibrium with the mean
shear at the inlet and then experience a sudden increase in
hydrodynamic forces due to the addition of turbulence. This
obviously creates the opportunity for the high extensional
viscosity. Naturally, the high extensional viscosity is going to
have a dramatic impact on the flow, as reported by
Lumley.52,53 This is because the friction drag increases near
the inlet region for the Oldroyd-B model. Note that the same
behavior as a function of the streamwise location can also be
observed in the drag-reducing turbulent channel flows as a
function of time during the initial transient period after the
polymer is introduced in the flow �see Min et al.36�. On the
other hand, the drag reduction can be seen for the Giesekus
model even near the inlet region, and the amount of %DR
gradually increases in the streamwise direction. With respect
to the transient aspect, Min et al.35–37 observed an overshoot

of drag reduction and a relaxation to a steady state for the
turbulent channel flow using the Oldroyd-B model. It is no-
ticeable that the duration of the overshoot of drag reduction
ratio for the Oldroyd-B model is also observed in this study
and it is comparable to the length of the computational do-
main. Dubief et al.29,32 investigated the correlation between
velocity and polymer body force for the turbulent channel
flow. For further discussion of the transient aspect, one must
investigate the polymer interaction with coherent structures.
A parametric study with various mobility factors � and the
viscosity ratio � would also be helpful.

The maximum drag reduction ratio �%DR=42� is ob-
served at x /�0=150.8 for the Oldroyd-B model. The drag
reduction ratio for the Giesekus model is maximum �%DR
=16� at x /�0=100.8. It is found that the drag reduction ratio
for the Oldroyd-B model is larger than that for the Giesekus
model even at the same Weissenberg number �We=25� for
the turbulent boundary layer. The same trend has also been
reported for the drag-reducing turbulent channel flow.30 This
indicates that high elongational viscosity is important in or-
der to obtain a large drag reduction ratio, and the present
result supports the hypotheses suggested by Lumley52,53 and
the early numerical simulation results obtained by Orlandi.54

Next, we investigate the relation between the drag reduc-
tion ratio %DR and the local friction Weissenberg number
We

*. The local friction Weissenberg number We
* represents

the ratio of the relaxation time � and the viscous time �0 /u
2.

Note that Dimitropoulos et al.42,44 and Shin and Shaqfeh43

used the friction Weissenberg number based on the Newton-
ian wall shear rate at the inflow plane for the drag-reducing
turbulent boundary layer. Lumley52,53 suggested that drag re-
duction occurs when the relaxation time is longer than the
viscous time. For the Oldroyd-B model, the streamwise lo-
cation of the minimum of %DR corresponds to that of the
maximum of We

*. In addition, the We
* decreases down-

stream at 30�x /�0�150, while the drag reduction ratio in-
creases. Note that the amount of %DR increases with the
increase of the friction Weissenberg number We for the tur-
bulent channel flow.35–37 For the Giesekus model, the stream-

FIG. 3. Streamwise variation of drag reduction ratio and local friction Weis-
senberg number.

FIG. 2. Friction coefficient vs Reynolds number.
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wise variation of We
* is much smaller than that for the

Oldroyd-B model. In the present study, the local friction
Weissenberg number We

* is rewritten as follows:

We
* = Re�0

� u

Ue
�2

We. �10�

Equation �10� indicates that when the friction velocity u /Ue

varies in the streamwise direction owing to the drag-reducing
effect, the local friction Weissenberg number We

* also varies
for the turbulent boundary layer.

In this study, we obtained turbulence statistics at 20
different streamwise locations. The results at the locations
of x /�0=19.53 �upstream�, x /�0=100.8 �center�, and
x /�0=164.8 �downstream� are presented below. The drag re-
duction ratios at these locations are summarized in Table II
for all cases.

C. Mean velocity profiles

Figure 4 shows the profiles of the mean velocity
U+=U /u in the wall-coordinate y+=yu /�. In the figure, the
linear profile U+=y+, the log-law profile �U+=2.44 ln y+

+5.0�, and Virk’s ultimate profile55 �U+=11.7 ln y+−17� are
presented. The experimental results obtained by White
et al.18 and Itoh et al.20 for the drag-reducing turbulent
boundary layer of polymer and surfactant solutions, and the
experimental data of Itoh et al.20 for the turbulent boundary
layer of Newtonian fluid �Re�=641�, are also shown for
comparison. The amount of the drag reduction ratio %DR
and the momentum-thickness Reynolds number Re� reported
in White et al.18 and Itoh et al.20 are �%DR=45, Re�=1330�
and �%DR=50.1, Re�=444�, respectively. The present nu-
merical results for the Oldroyd-B model at x /�0=164.8, in
which the drag reduction ratio is %DR=41.0 and the Rey-
nolds number is Re�=687, are compared with these experi-
mental data. It is seen at x /�0=100.8 and 164.8 that U+ for
the Giesekus model shifts upward compared to Newtonian
fluid, while U+ for the Oldroyd-B model shifts upward com-
pared to the Giesekus model. This means that the mean ve-
locity shifts upward more as the amount of drag reduction
ratio becomes larger, which is consistent with the previous
experimental and numerical studies20,42 of turbulent bound-
ary layers. Min et al.36 also reported that the mean velocity
U+ shifts upward more with the increase of the friction Weis-
senberg number, i.e., the drag reduction ratio in the DNS of
the drag-reducing turbulent channel flow with the Oldroyd-B
model. For the Oldroyd-B model, the slope of the velocity
profile in the log-law region at x /�0=164.8 �%DR=41.0� is
steeper than that at x /�0=100.8 �%DR=34.2�, and ap-
proaches those of the experiments18,20 �see Fig. 4�. This cor-
responds to the fact that the slope of the velocity profile in

the large drag reduction ratio regime is larger than that in the
small drag reduction regime for the turbulent channel flow.37

At x /�0=19.53, the profile of U+ in the log-law region shifts
slightly up and down for the Giesekus and Oldroyd-B mod-
els, respectively. This corresponds to the fact that the drag
reduction ratio at x /�0=19.53 is positive and negative for the
Giesekus and Oldroyd-B models, respectively.

The distribution of the mean velocity scaled by the free-
stream velocity U /Ue is shown in Fig. 5. The abscissa y /	 is
the distance from the wall scaled by the boundary layer
thickness 	=	99.5. At x /�0=19.53, the difference in U /Ue

FIG. 4. Mean velocity profiles in wall units.

FIG. 5. Mean velocity profiles with outer scaling.

TABLE II. Drag reduction ratio.

Oldroyd-B Giesekus

%DRx/�0=19.53 −6.79 4.45

%DRx/�0=100.8 34.2 16.1

%DRx/�0=164.8 41.0 13.2
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among Newtonian fluid, the Oldroyd-B, and Giesekus mod-
els cannot be observed. For the Oldroyd-B model, at x /�0

=100.8 and 164.8, the mean velocity gradient for y /	�0.2
is slightly gentler than that of Newtonian fluid. According to
our experimental study20 for the drag-reducing turbulent
boundary layer, the mean velocity scaled by the outer vari-
able is about in the middle between the mean velocity profile
for the Newtonian and Blasius laminar profile. Figure 5 ob-
viously shows that the present numerical result of U /Ue is
entirely different from that of the experiments.20 This is be-
cause the inlet boundary condition for the present numerical
simulation does not correspond to that for the experiment,20

and the Oldroyd-B and Giesekus models, which are the
simple rheological models available, are used.

D. Turbulence statistics

Distributions of the streamwise turbulence intensity
scaled by friction velocity urms�+ =u�21/2

/u are shown in Fig.
6�a�. The maximum streamwise turbulence intensity for the
Oldroyd-B model is smaller, slightly larger, and much larger
at x /�0=19.53, 100.8, and 164.8, respectively, compared
with the corresponding values for Newtonian fluid. The pro-
file of urms�+ for the Oldroyd-B model at x /�0=164.8 almost
agrees with the experimental data of White et al.,18 although
the Reynolds number of the present DNS is much smaller
than that of the experiment. Note that the streamwise turbu-
lence intensity of Itoh et al.20 is smaller than that for New-
tonian fluid because of the low Reynolds number effect. Min
et al.37 found that for the turbulent channel flow, the maxi-
mum of streamwise turbulence intensity urms�+ increases with
the increase of the drag reduction ratio in the small drag
reduction regime, while it decreases in the large drag reduc-
tion regime. In the present study for the Oldroyd-B model,
the maximum of urms�+ at x /�0=164.8 is larger than that at
x /�0=100.8 with the smaller drag reduction. However, the
maximum value of streamwise turbulence intensity for the
turbulent boundary layer is also dependent on the streamwise
location, and it is not directly related to the amount of drag
reduction, taking account of the result that the maximum of
urms�+ for the Oldroyd-B model with %DR=34.2 is compa-
rable with that of Newtonian fluid at x /�0=100.8. At x /�0

=100.8 and 164.8, the value of y+ at the maximum of urms�+ for
the Oldroyd-B model is larger than that for Newtonian fluid,
as reported in previous experimental and numerical studies
on drag-reducing turbulent channel flow.9,10,35–38 This indi-
cates that the buffer layer for the Oldroyd-B model is thicker
than that for Newtonian fluid. On the other hand, the stream-
wise turbulence intensity urms�+ for the Giesekus model with
lower drag reduction ratio is slightly larger than that for
Newtonian fluid at any streamwise locations. Here, it has
been reported that the streamwise turbulence intensity for the
Giesekus model is considerably enhanced compared to New-
tonian fluid for the drag-reducing turbulent channel flow.38,40

This difference may be mainly due to the difference in the
drag reduction ratio. In order to compare the streamwise tur-
bulence intensity between the Giesekus model and Newton-
ian fluid, however, we would need to perform the DNS with

different mobility factor � and the viscosity ratio �. Readers
will be able to refer to our upcoming parametric study in the
near future.

Figure 6�b� shows distributions of the streamwise turbu-
lence intensity scaled by free-stream velocity urms� /Ue. It is
found that the profile of urms� /Ue for the Oldroyd-B model
agrees well with that for Newtonian fluid at y /	�0.7, while
urms� /Ue for the Oldroyd-B model does not agree with that for
Newtonian fluid at y /	�0.2 as seen in the profile of urms�+ .

This is consistent with our experimental measurements20 in
which the profiles of urms� /Ue are almost the same between
the drag-reducing and Newtonian fluids at y /	�0.7 �see Fig.
6�b��. On the other hand, the discernible difference in
urms� /Ue between the Giesekus model and Newtonian fluid
cannot be observed.

Next, distributions of the wall-normal turbulence inten-

FIG. 6. Profiles of streamwise turbulence intensity: �a� urms�+ , �b� urms� /Ue.

075106-6 Tamano et al. Phys. Fluids 19, 075106 �2007�

Downloaded 25 Aug 2010 to 133.68.192.95. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



sity vrms�+ are shown in Fig. 7�a�. At x /�0=19.53, the wall-
normal turbulence intensity vrms�+ for the Oldroyd-B model is
smaller in the region 5�y+�100 than that for Newtonian
fluid. At x /�0=100.8 and 164.8, the difference in vrms�+ be-
tween the Oldroyd-B model and Newtonian fluid is more
apparent, which indicates that the velocity fluctuation is con-
siderably attenuated in the wall-normal direction. The similar
trend is also reported in the experiments,20 but the magnitude
of the suppression is considerably larger than that of the
present simulation and the shape of the profile is largely
different, in which vrms�+ for the surfactant solution is almost
half that for Newtonian fluid and is virtually constant across
the boundary layer. In the drag-reducing turbulent channel
flow, the good agreement between the numerical and experi-
mental results has been reported by Min et al.36 using the
Oldroyd-B model. The present disagreement may be due to
the difference in the inlet boundary condition and the Rey-
nolds number. On the other hand, for the Giesekus model,
vrms�+ at x /�0=19.53 almost agrees with that of Newtonian
fluid, and the maximum of vrms�+ at x /�0=100.8 and 164.8 is
only slightly smaller than that of Newtonian fluid.

Figure 7�b� shows distributions of the wall-normal tur-
bulence intensity with the outer scaling vrms� /Ue. At x /�0

=19.53, the difference in vrms� /Ue among Newtonian fluid,
the Oldroyd-B model, and the Giesekus model is small. At
x /�0=100.8, vrms� /Ue for the Oldroyd-B model is much
smaller than that for Newtonian fluid near the wall. For the
Oldroyd-B model, vrms� /Ue at x /�0=164.8 is smaller than that
at x /�0=100.8, but it is still larger than that of the
experiment.20 Note that vrms� /Ue for the Oldroyd-B model
coincides with that for Newtonian fluid at y /	�0.7. It is also
noted that the wall-normal turbulence intensity in the drag-
reducing turbulent channel flow becomes smaller across the
channel. On the other hand, at x /�0=100.8 and 164.8,
vrms� /Ue for the Giesekus model is smaller than that for New-
tonian fluid at y /	�0.7, in which the difference between the
Giesekus model and Newtonian fluid is much smaller than
that between the Oldroyd-B model and Newtonian fluid.
Here, we confirmed that distributions of the spanwise turbu-
lence intensity with the inner and outer scaling were similar
to those of the corresponding wall-normal turbulence inten-
sity �not shown here�.

Figure 8�a� shows distributions of the Reynolds shear

stress scaled by the friction velocity, −u�v�+=−u�v� /u
2. The

FIG. 7. Profiles of wall-normal turbulence intensity: �a� urms�+ , �b� urms� /Ue.

FIG. 8. Profiles of Reynolds shear stress: �a� −u�v�+, �b� −u�v� /Ue
2.

075106-7 Direct numerical simulation of the drag-reducing Phys. Fluids 19, 075106 �2007�

Downloaded 25 Aug 2010 to 133.68.192.95. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



Reynolds shear stress −u�v�+ for the Oldroyd-B model is
smaller in the region 5�y+�100 than that for Newtonian
fluid at any streamwise locations, and the difference is larg-
est at x /�0=100.8. It is known that when the drag reduction
ratio is large, the Reynolds shear stress is almost zero in the
drag-reducing turbulent flow in viscoelastic fluids.10,11,13,20

The value of −u�v�+ for the Oldroyd-B model at y+�100 is
comparable with that of Newtonian fluid, unlike the DNS
result36 of the turbulent channel flow with the Oldroyd-B
model. It is seen that the present numerical result does not
predict the experiment20 where the Reynolds shear stress is
almost zero across the boundary layer. Even in the recent
studies26,33,34,37,41 on the DNS of the drag-reducing turbulent
channel flow in the large �high� or the maximum drag reduc-
tion regimes, the almost zero Reynolds shear stress profile
could not be obtained. This indicates that some kinds of im-
proved or even new constitutive equation models would be
needed for predicting the experimental results more accu-
rately. On the other hand, no distinct difference in −u�v�+

would be observed between the Giesekus model and New-
tonian fluid.

Figure 8�b� shows distributions of the Reynolds shear
stress −u�v� /Ue

2. At x /�0=100.8 and 164.8, −u�v� /Ue
2 for

the Oldroyd-B model is much smaller than that for Newton-
ian fluid at y /	�0.7, and is smaller than half at y /	�0.2.
On the other hand, the difference in −u�v� /Ue

2 between the
Giesekus model and Newtonian fluid is smaller than that

between the Oldroyd-B model and Newtonian fluid, but the
difference with the outer scaling becomes clearer than that
with the inner scaling.

Next, we compare the total shear stress profiles between
Newtonian fluid and the Oldroyd-B model. The total shear
stress T12 is defined as follows:

T12 = − u�v� +
1

Re�0

dU

dy
+

1 − �

Re�0

dĒ12

dy
, �11�

where −u�v� is the Reynolds shear stress, �dU /dy� /Re�0
is

the viscous shear stress, and �1−���dĒ12/dy� /Re�0
is the

polymer shear stress. Figure 9 shows that for the Oldroyd-B
model, the polymer shear stress is maximum at y /	=0.1, and
occupies about 30% of the total shear stress there. Note that
the ordinate is scaled by the inner variables. In addition, the
polymer shear stress is almost zero for y /	�0.7, which cor-
responds to the fact that the Reynolds shear stress profile
agrees well with that for Newtonian fluid at y /	�0.7 �see
Fig. 8�b��.

Figure 10 shows distributions of rms of the streamwise
vorticity fluctuation scaled by inner variables. At any stream-
wise locations, �xrms�+ for the Oldroyd-B model is much
smaller than that for Newtonian fluid at y+�100, while it
agrees well with that for Newtonian fluid at y+�100. At
x /�0=100.8 and 164.8, the maximum of �xrms�+ for the
Oldroyd-B model appears at y+�100, and the wall-normal
locations of the maximum move considerably away from the
wall compared to the location for Newtonian fluid �y+�20�.
Note that the location of minimum �xrms�+ for the Oldroyd-B
model �y+�5� is almost the same as that for Newtonian
fluid. Here, it has been reported that the locations of the
minimum and maximum of the rms of streamwise vorticity
fluctuation correspond to the average locations of lower lim-
its and the center of the quasi-streamwise vortices near the
wall, respectively.56 Therefore, it can be deduced that the
quasi-streamwise vortices become larger away from the wall,
compared to Newtonian fluid. The same trend has also been
reported in the drag-reducing turbulent channel flows,22,36

but the amount of the shift in the wall-normal direction ob-

FIG. 9. Profiles of total, Reynolds, viscous, and polymer shear stresses at
x /�0=100.8: �a� Newtonian fluid, �b� Oldroyd-B model.

FIG. 10. Profiles of streamwise vorticity fluctuation.
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served in the present study is much larger. On the other hand,
the profile of �xrms�+ for the Giesekus model virtually agrees
with that for Newtonian fluid at any streamwise locations.

Figure 11 shows distributions of the trace of mean vis-
coelastic stress Ekk

+, which represents the magnitude of the
polymer elongation. At any streamwise locations, Ekk

+ for
the Oldroyd-B model is larger than that for the Giesekus
model in the region 1�y+�50. For the Oldroyd-B model,
the value of Ekk

+ in the region 1�y+�50 at x /�0=100.8 is
larger than that at x /�0=164.8. Here, the increasing rate of
the drag reduction ratio %DR in the streamwise direction is
relatively large near the center of the computational domain
�x /�0=100.8�, and the %DR slightly decreases near the
downstream of the computational domain �x /�0=164.8� �see
Fig. 3�. From these results, it can be deduced that turbulence
statistics are strongly affected in the buffer layer by the high
elongational viscosity, and the effect appears significantly in
the region of center to downstream. Note that in the region
very close to the wall �y+�1�, Ekk

+ for the Giesekus model
is larger than that for the Oldroyd-B model at x /�0=100.8
and 164.8.

E. Budgets of turbulent kinetic energy

The budget data obtained by DNS are very helpful for
understanding the modification of turbulence statistics and
the drag-reducing mechanism. Therefore, budgets of turbu-
lent kinetic energy have been investigated for the drag-
reducing turbulent channel flow.23,25,26,35–37,40 But budgets of
turbulent kinetic energy remain unclear for the drag-reducing
turbulent boundary layer. The equation for the turbulent ki-

netic energy k=ui�ui� /2 is as follows in the drag-reducing
turbulent boundary layer:

− Ak + Tk
��� + Tk

��� + �k + Tk
�t� + Pk + Tk

�p� + Wk = 0, �12�

where advection term Ak, pressure diffusion term Tk
���, vis-

cous diffusion term Tk
���, dissipation term �k, turbulent diffu-

sion term Tk
�t�, production term Pk, polymer diffusion term

Tk
�p�, and polymer stress work term Wk are defined as

Ak = Uj
�

�xj
�1

2
ui�ui�� , �13�

Tk
��� = −

�

�xi
�ui�p�� , �14�

Tk
��� =

�

Re

�2

�xj�xj
�1

2
ui�ui�� , �15�

�k = −
�

Re

�ui�

�xj

�ui�

�xj
, �16�

Tk
�t� = −

�

�xj
�1

2
ui�ui�uj�� , �17�

Pk = − ui�uj�
�Ui

�xj
, �18�

Tk
�p� =

1 − �

Re

�

�xj
�ui�Eij� � , �19�

Wk = −
1 − �

Re
Eij�

�ui�

�xj
. �20�

In the above equations, the contribution of the viscoelastic
stress to the turbulent kinetic energy equation appears
through the polymer diffusion term Tk

�p� and the polymer
stress work term Wk.

Figure 12 shows the budget of turbulent kinetic energy
k+ at x /�0=100.8, in which the abscissa and ordinate are
scaled by the inner variables and the symbols are plotted at
the three points. The magnitudes of the production term Pk

and the dissipation term �k, which are dominant terms for the
Oldroyd-B model, are much smaller than those for Newton-
ian fluid. The same trend for the Oldroyd-B model has been
reported for the drag-reducing turbulent channel flow.36,37 On
the other hand, the magnitudes of Pk and �k for the Giesekus
model are slightly smaller than those for Newtonian fluid.
For the Oldroyd-B model, the polymer stress work term Wk

is comparable with the dissipation term �k for y+�50. For
the Giesekus model, the contribution of Wk to the turbulent
kinetic energy budget is smaller than that for the Oldroyd-B
model. However, the distinct difference in the budget of k+

between the Giesekus model and Newtonian fluid has been
reported for the drag-reducing turbulent channel flow.40 This
difference may be mainly due to the difference in the drag
reduction ratio. The polymer diffusion term Tk

�p� is negligible
for both the Oldroyd-B and Giesekus models.

Figure 13 shows the distributions of the production term
Pk at x /�0=19.53, 100.8, and 164.8. For the Oldroyd-B
model, the production term Pk at x /�0=100.8 is smaller than
those at x /�0=19.53 and 164.8. Min et al.36 reported that the
production and dissipation of the turbulent kinetic energy for
the Oldroyd-B model decrease throughout the channel with
the drag reduction ratio �the friction Weissenberg number�. It
is noticeable that the production term Pk at x /�0=100.8 with
%DR=34.2 is smaller than Pk at x /�0=164.8 with %DR
=41.0 in this study. This indicates that the production term
for the turbulent boundary layer does not correspond to the
amount of the drag reduction, which is consistent with the

FIG. 11. Trace of mean viscoelastic stress.
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fact that the streamwise turbulent intensity profile is not a
direct indication of the drag reduction �see Fig. 6�. At x /�0

=100.8 and 164.8, the maximum locations of Pk for the
Oldroyd-B model move away from the wall, compared with
those for Newtonian fluid. This corresponds to the fact that
the maximum location of streamwise turbulence intensity
moves away from the wall �see Fig. 6�. On the other hand,
the profiles of Pk for the Giesekus model are close to those
for Newtonian fluid at any streamwise locations. In the DNS
data40 on the drag-reducing turbulent channel flow with the
higher drag reduction for the Giesekus model, the decrease in

the magnitude of the production term is considerably large.
For both the Oldroyd-B and Giesekus models, the viscoelas-
tic effect on the production term is negligible for y+�100.

Figure 14 shows distributions of the polymer stress work
term Wk. For the Oldroyd-B model, Wk at x /�0=100.8 attains
its maximum at y+�10 and is larger than those at x /�0

=19.53 and 164.8. In addition, Wk for the Oldroyd-B model
at x /�0=19.53 has the negative peak at y+�20, and the lo-
cation of the negative peak shifts away from the wall
�y+�30� at x /�0=100.8. As a whole, the polymer stress
work term for the Oldroyd-B model makes a negative con-
tribution to the budget, as reported by Ptasinski et al.26 The
magnitudes of the maximum and the minimum of Wk for the
Giesekus model are smaller than those for the Oldroyd-B
model, respectively. It is noted that the contribution of the
polymer stress work to the turbulent kinetic energy budget
for the Oldroyd-B model with the larger drag reduction ratio
is larger, compared to the Giesekus model. This is supported
by Ptasinski et al.,26 who showed that the polymer stress
work becomes more important with increasing the drag re-
duction ratio for the turbulent channel flow.

FIG. 12. Budgets of turbulent kinetic energy k+ at x /�0=100.8: �a� Newton-
ian fluid, �b� Oldroyd-B model, and �c� Giesekus model.

FIG. 13. Distributions of production terms.

FIG. 14. Distributions of polymer stress work terms.
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F. Budgets of Reynolds normal stresses

Budgets of Reynolds normal stresses for the drag-
reducing turbulent boundary layer have not been investi-
gated, although there are a few investigations of the drag-
reducing turbulent channel flow.23,24,26,40 The equation for
the Reynolds stress ui�uj� is as follows in the drag-reducing
turbulent boundary layer:

− Aij + Tij
��� + Rij + Tij

��� + �ij + Tij
�t� + Pij + Tij

�p� + Wij = 0,

�21�

where advection term Aij, pressure diffusion term Tij
���,

pressure-strain correlation term Rij, viscous diffusion term
Tij

���, dissipation term �ij, turbulent diffusion term Tij
�t�, pro-

duction term Pij, polymer diffusion term Tij
�p�, and polymer

stress work term Wij are defined as

Aij = Uk

��ui�uj��
�xk

, �22�

Tij
��� = −

�

�xj
�ui�p�� −

�

�xi
�uj�p�� , �23�

Rij = p�
�ui�

�xj
+ p�

�uj�

�xi
, �24�

Tij
��� =

�

Re

�2

�xk�xk
�ui�uj�� , �25�

�ij = − 2
�

Re

�ui�

�xk

�uj�

�xk
, �26�

Tij
�t� = −

�

�xk
�ui�uj�uk�� , �27�

Pij = − ui�uk�
�Uj

�xk
− uj�uk�

�Ui

�xk
, �28�

Tij
�p� =

1 − �

Re

�

�xk
�ui�Ejk� + uj�Eik� � , �29�

Wij = −
1 − �

Re
�Ejk�

�ui�

�xk
+ Eik�

�uj�

�xk
� . �30�

Figure 15 shows budgets of the streamwise Reynolds
normal stress u�u�+ at x /�0=100.8 for Newtonian fluid and
the Oldroyd-B model, in which the scale of the ordinate is
different between Figs. 15�a� and 15�b�. The production term
P11 and the dissipation term �11 for the Oldroyd-B model are
much smaller than those for Newtonian fluid. For the
Oldroyd-B model, the contribution of the polymer diffusion
term T11

�p� and the polymer stress work term W11 to the budget
are comparable with that of the turbulent diffusion term T11

�t�,
and are not negligible. The contribution of A11 to the budget
is almost zero for Newtonian fluid, but it is not negligible
near the wall for the Oldroyd-B model. Note that the contri-
bution of the advection term A11 does not appear for the

turbulent channel flow. We confirmed that the budget of
u�u�+ for the Giesekus model was similar to that for New-
tonian fluid �not shown here�.

Figure 16 shows budgets of the wall-normal Reynolds
normal stress v�v�+ at x /�0=100.8 for Newtonian fluid and
the Oldroyd-B model. For Newtonian fluid, the maximum of
the pressure-strain correlation term R22 and the minimum of
the dissipation term �22 definitely appear at y+�25, while
such a maximum and minimum do not appear for the
Oldroyd-B model. For the Oldroyd-B model, in the region
50�y+�100, the contribution of the polymer stress work
term W22 to the budget is larger than that of the dissipation
term �22, and W22 is dominant in addition to the pressure-
strain correlation term R22. The same trend has been found in
the DNS24,26,40 of the drag-reducing turbulent channel flow
with the FENE-P and Giesekus models.

Figure 17 shows profiles of the streamwise, wall-normal,
and spanwise pressure-strain correlation terms. For the
Oldroyd-B model, R11, R22, and R33 for y+�100 are much
smaller than those for Newtonian fluid. This implies that the
redistribution of turbulent energy from the streamwise veloc-
ity components to wall-normal and spanwise velocity com-
ponents is strongly suppressed for the Oldroyd-B model, as
well as the drag-reducing turbulent channel flow.23,26,40 This
result also corresponds to the fact that the streamwise and
wall-normal turbulence intensities for the Oldroyd-B model

FIG. 15. Budgets of u�u�+ at x /�0=100.8: �a� Newtonian fluid, �b�
Oldroyd-B model.

075106-11 Direct numerical simulation of the drag-reducing Phys. Fluids 19, 075106 �2007�

Downloaded 25 Aug 2010 to 133.68.192.95. Redistribution subject to AIP license or copyright; see http://pof.aip.org/about/rights_and_permissions



become larger and smaller, respectively, compared to New-
tonian fluid �see Figs. 6 and 7�. This has also been pointed
out in the drag-reducing turbulent channel flow.23,24,26,40

Therefore, it can be deduced that the mechanism of the
modification of turbulence statistics and coherent structures

near the wall is similar for both the turbulent boundary layer
and channel flow. The difference in the pressure-strain cor-
relation terms between the Giesekus model and Newtonian
fluid is much smaller than that between the Oldroyd-B model
and Newtonian fluid.

Figure 18 shows the anisotropy invariant map57 for the
Reynolds stress tensor at x /�0=100.8, where the drag reduc-
tion ratios for the Oldroyd-B and Giesekus models are 34.2%
and 16.1%, respectively. In the figure, the abscissa and ordi-
nate are the second invariant II=−bijbji /2 and the third
invariant III=bijbjkbki /3 of the anisotropy tensor
bij =ui�uj� /uk�uk�−	ij, respectively. Compared to the Giesekus
model, the Oldroyd-B model shows more anisotropic behav-
ior of the Reynolds stress tensor near the wall �y /	�0.12�,
in which the second and third invariants approach the one-
dimensional component state. In addition, the near-wall tur-
bulence for the Giesekus model is more anisotropic than that
for the Newtonian fluid. This indicates that the near-wall
turbulence becomes more anisotropic with increasing the
drag reduction ratio.

Dubief et al.32 found that drag reducing flows were dra-
matically more anisotropic than the Newtonian flow.
Jovanović et al.58 and Frohnapfel et al.59 also reported that
the anisotropic state of near-wall turbulence is shifted to a
higher value as the drag reduction ratio increases. Their find-
ings for the turbulent channel flow support our numerical
results for the turbulent boundary layer. The present trend of
the anisotropy invariant map supports the fact that the mag-
nitude of the pressure-strain correlation terms near the wall is
much smaller than that for Newtonian fluid �see Fig. 17�, as
mentioned by Dubief et al.32 for the turbulent channel flow.
In the region from the center to the edge of the boundary
layer �0.5�y /	�1.2�, the invariants of the Reynolds stress
tensor for Newtonian fluid and the Oldroyd-B and Giesekus
models approach the isotropic state, and no distinct differ-
ence is observed among them.

FIG. 16. Budgets of v�v�+ at x /�0=100.8: �a� Newtonian fluid, �b�
Oldroyd-B model.

FIG. 17. Distributions of pressure-strain correlation terms at x /�0=100.8.

FIG. 18. Anisotropy invariant map for Reynolds stress tensor at
x /�0=100.8.
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G. Coherent structures

Figure 19 shows the contour of streamwise velocity in
the x-z plane at y /�0=0.152, which corresponds to y+=3–4
for Newtonian fluid, the Oldroyd-B model, and the Giesekus
model, and corresponds to the region within the viscous su-
blayer. For the Oldroyd-B model, the low-speed region
�black� expands in the spanwise direction, and the near-wall
streak structures for x /�0�50 are considerably larger than
that for Newtonian fluid. On the other hand, the near-wall
streak structures for the Giesekus model seem to be slightly
larger than that for Newtonian fluid.

To compare the spanwise spacing of near-wall streaks
among Newtonian fluid and the Oldroyd-B and Giesekus
models, the profiles of the two-point correlation coefficients
of streamwise velocity fluctuation Ruu at y /�0=0.152 and
x /�0=100.8 are shown in Fig. 20. The two-point correlation
coefficient Ruu is defined as follows:

Ruu =
u��z�u��z + rz�

u�2 . �31�

In the figure, the abscissa rz
+=rzu /� is the spanwise separa-

tion scaled by wall variables. The first minimum of Ruu ap-
pears at rz

+�50 and rz
+�75 for Newtonian fluid and the

Oldroyd-B model, respectively. It is well known in wall-
bounded turbulent flow that the averaged streak spacing �z

+

corresponds to twice the length of rz
+ in which the two-point

correlation coefficient of streamwise velocity fluctuation Ruu

is minimum.56 Therefore, the averaged streak spacing is
�z

+�100 for Newtonian fluid and �z
+�150 for the Oldroyd-B

model; i.e., the streak spacing for the Oldroyd-B model is
about 1.5 times larger than that for Newtonian fluid at y /�0

=0.152 and x /�0=100.8. On the other hand, the difference in
the streak spacing between the Giesekus model and Newton-
ian fluid is very small. Here, it has been reported in the
drag-reducing turbulent channel flow that the streak spacing
becomes larger with the increase in drag reduction. This is
consistent with the present result in which the streak spacing
for the Oldroyd-B model with the larger drag reduction ratio
is larger than that for the Giesekus model with the smaller
drag reduction ratio.

Next, the isosurface of the second invariant of the veloc-
ity gradient tensor Q�0

2 /Ue
2=0.005 is shown in Fig. 21. The

region in which the second invariant Q=−��ui /�xj�

��uj /�xi� /2 is positive represents the region in which the
strength of rotation overcomes the strain rate, and corre-
sponds to the region where the vortices exist.60 In the figure,
the flow is from left to right, and the black area represents
the wall. For Newtonian fluid, there are numerous quasi-
streamwise vortices near the wall in the region from the inlet
to outlet. For the Oldroyd-B model, for x /�0�50, only a few
quasi-streamwise vortices can be seen. For the Giesekus
model, the quasi-streamwise vortices are slightly different
from that for Newtonian fluid in the center region �90
�x /�0�130�. Note that the region of the vortices depends

FIG. 19. Contour of streamwise velocity �0.1�u /Ue�0.4, black to white�
in the x-z plane at y /�0=0.152: �a� Newtonian fluid, �b� Oldroyd-B model,
and �c� Giesekus model.

FIG. 20. Two-point correlation coefficient of streamwise velocity fluctua-
tion at y /�0=0.152 and x /�0=100.8.

FIG. 21. �Color online� Isosurface of second invariant of velocity gradient
tensor �Q�0

2 /Ue
2=0.005, blue�. Flow is from left to right: �a� Newtonian

fluid, �b� Oldroyd-B model, and �c� Giesekus model.
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somewhat on the Q criterion and the time. As shown in Fig.
11, the trace of mean viscoelastic stress Ekk

+ for the
Oldroyd-B model is larger than that for the Giesekus model
in the region 1�y+�50. Therefore, we can assume that
near-wall coherent structures are strongly affected by the
high elongational viscosity, and the effect appears signifi-
cantly for x /�0�50, in which the quasi-streamwise vortices
are weakened and become larger in the streamwise direction,
compared to Newtonian fluid.

To investigate the transport of the elastic energy,35,36

kp= �1−��Ekk / �2Re�0
�, near the wall, the contour of elastic

energy in the x-y plane at z /�0=0 and the y-z plane at
x /�0=100.8 are shown in Fig. 22. For the Giesekus model
with the smaller drag reduction ratio, large elastic energy
exists only in the region very close to the wall, while for the
Oldroyd-B model with the larger drag reduction ratio, large
elastic energy near the wall is transported to near the center
of the turbulent boundary layer �y /�0�5�. This corresponds

to the fact that the trace of mean viscoelastic stress Ekk
+ for

the Oldroyd-B model is large in the region away from the
wall �y+�100�, while Ekk

+ for the Giesekus model suddenly
decreases away from the wall �see Fig. 11�. In addition, the
present result is consistent with the finding of Min et al.35,36

for the drag-reducing turbulent channel flow in which with-
out drag reduction, high elastic energy exists only very near
the wall, while with drag reduction �%DR=20�, this energy
very near the wall is transported to the buffer and log layers.

Min et al.35,36 claimed that the extensional viscosity ef-
fect alone made it difficult to explain the onset of the drag
reduction and presented the following scenario for the
mechanism of drag reduction based on the elastic energy.
When the drag reduction occurs, the turbulent kinetic energy
near the wall is absorbed by the polymer and transformed
into elastic energy. This elastic energy is lifted up by the
near-wall vortex motion and released as turbulent kinetic en-
ergy or is dissipated in the buffer and log layers. In the
present study, the distinct difference in turbulence statistics
near the wall between the drag-reducing and Newtonian flu-
ids is observed, as reported in the drag-reducing turbulent
channel flow. Therefore, it can be deduced that the drag-
reducing mechanism in the present study is similar to that
presented by Min et al.35–37 for the turbulent channel flow. In
the outer region, distributions of turbulence statistics for the

drag-reducing fluid are similar to those for Newtonian fluid.
This indicates that the elastic energy does not reach the outer
region of the turbulent boundary layer for both the
Oldroyd-B and Giesekus models �see Fig. 22�. Note that for
the drag-reducing turbulent channel flow,35–37 turbulence sta-
tistics are different even at the center of the channel. Another
drag-reducing mechanism was proposed by Dubief et al.,29,32

who used the modified autoregeneration cycle of near-wall
turbulence, taking into account the action of polymers on
turbulent structures. Their drag-reducing mechanism derives
from the study of small-scale quantities such as polymer
work. For examination of the drag-reducing mechanism pro-
posed by Dubief et al.29,32 for the turbulent boundary layer
flow, further investigation of the correlation between velocity
and polymer body force would be needed.

Figure 23 shows the velocity vector in the y-z plane and
contour of the second invariant of velocity gradient tensor Q
at x /�0=100.8 for Newtonian fluid and the Oldroyd-B
model. In the figure, the abscissa and ordinate are spanwise

FIG. 22. Contour of elastic energy �0�kp�0.0025, white to black� in the x-y plane at z /�0=0 and the y-z plane at x /�0=100.8: �a� Oldroyd-B model, �b�
Giesekus model.

FIG. 23. �Color online� Velocity vector in the y-z plane and contour of Q
�0�Q�0

2 /Ue
2�0.005, white to red� at x /�0=100.8: �a� Newtonian fluid, �b�

Oldroyd-B model.
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and wall-normal wall units z+ and y+, respectively. For the
Oldroyd-B model, the quasi-streamwise vortices are hardly
observed, unlike the Newtonian fluid, and a few quasi-
streamwise vortices exist in the region relatively away from
the wall.

To investigate the streamwise variation of the near-wall
coherent structures, the velocity vector in the x-y plane and
contour of the second invariant Q at z /�0=5.563 are shown
in Fig. 24. Owing to the streamwise development of the tur-
bulent boundary layer, one must first obtain the time-
averaged velocity at all the streamwise locations within the
computational domain, and then evaluate the velocity fluc-
tuation in the y-z plane from the time-averaged velocity.
However, the implementation of such a procedure is quite
expensive. Therefore, in the present study, turbulence statis-
tics in the y-z plane at all the streamwise locations are esti-
mated by interpolating ones at 20 different streamwise loca-
tions, and then the velocity fluctuations in the y-z plane are
obtained at all the streamwise locations for saving the com-
putational cost. For Newtonian fluid, some fine near-wall
vortices can be observed, whereas with the Oldroyd-B
model, a near-wall vortex enlarged in the streamwise direc-
tion is observed in the region 140�x /�0�170.

V. CONCLUSIONS

Direct numerical simulation of a zero-pressure gradient
drag-reducing turbulent boundary layer of homogeneous vis-
coelastic fluids was performed at momentum-thickness Rey-
nolds number Re�0

=500 and Weissenberg number We=25
using constitutive equation models such as the Oldroyd-B
and Giesekus models.

The maximum drag reduction ratio for the Oldroyd-B
model �%DR=42�, which has the higher elongational viscos-
ity, is larger than that for the Giesekus model �%DR=16�
under the present numerical conditions. A distinct difference
is observed in turbulence statistics such as turbulence inten-
sities and Reynolds shear stress near the wall between the
Oldroyd-B model and Newtonian fluid, as reported in the
drag-reducing turbulent channel flow. In the outer region, on
the other hand, distributions of turbulence statistics for the
Oldroyd-B model with a drag reduction ratio of about 40%
are similar to those for Newtonian fluid, which is consistent

with the experiment of the drag-reducing turbulent boundary
layer of surfactant solutions but different from that of the
drag-reducing turbulent channel flow where turbulence sta-
tistics are smaller across the channel. The relation in magni-
tude of maximum values of streamwise turbulence intensity
between the Oldroyd-B model and Newtonian fluid varies in
the streamwise direction. This indicates that the maximum
value of streamwise turbulence intensity for the turbulent
boundary layer does not seem to be directly related to the
amount of the drag reduction. The modification of the
streamwise and wall-normal turbulence intensities near the
wall can be explained by investigating the profiles of
pressure-strain correlation terms and the anisotropy invariant
map for Reynolds stress tensor, following the previous study
on the drag-reducing turbulent channel flow.

To investigate the drag-reducing mechanism for the tur-
bulent boundary layer, budgets of turbulent kinetic energy
and Reynolds normal stresses, which have not been reported
for the drag-reducing turbulent boundary layer, were inves-
tigated. According to the streamwise variation in the relation
between the production term and drag reduction ratio, it is
deduced that the production term for the turbulent boundary
layer does not correspond to the amount of drag reduction,
which is consistent with the fact that the streamwise turbu-
lence intensity profile is not a direct indication of drag re-
duction. Compared to the Giesekus model, the contribution
of the polymer stress work to the turbulent kinetic energy
budget for the Oldroyd-B model with the larger drag reduc-
tion ratio is larger, whose trend is the same as the drag-
reducing turbulent channel flow. The contribution of the ad-
vection term to the budget of streamwise Reynolds normal
stress, which does not appear for the turbulent channel flow,
is not negligible near the wall for the Oldroyd-B model.

For the Oldroyd-B model with the maximum drag reduc-
tion ratio of 42%, for x /�0�50, the low-speed region is
considerably larger than that for Newtonian fluid, and the
quasi-streamwise vortices are weakened and become larger
in the streamwise direction, compared to Newtonian fluid.
On the other hand, near-wall coherent structures such as
near-wall streak structures and quasi-streamwise vortices for
the Giesekus model with the maximum drag reduction ratio
of 16% are slightly larger than those for Newtonian fluid.
The difference in modification of near-wall coherent struc-
tures between the Oldroyd-B and Giesekus models can be
explained by using the trace of mean viscoelastic stress and
the elastic energy presented by Min et al.36 for the drag-
reducing turbulent channel flow, which represent the elonga-
tional viscosity effect. Hence, we can deduce that the higher
extensional viscosity is the key to yield higher drag reduction
and the larger modification of turbulence statistics and coher-
ent structures for the turbulent boundary layer, and the drag-
reducing mechanism is essentially the same as that for the
drag-reducing turbulent channel flow, at least in the inner
region.

Unfortunately, the agreement of mean velocity and tur-
bulence statistics between the present DNS and the previous
experiments is not satisfactory. This is because the inlet
boundary condition, the Reynolds number, and the amount of
drag reduction for the present numerical simulation are dif-

FIG. 24. �Color online� Velocity vector in the x-y plane and contour of Q
�0�Q�0

2 /Ue
2�0.005, white to red� at z /�0=5.563: �a� Newtonian fluid, �b�

Oldroyd-B model.
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ferent from those for the experiments. In addition, we used
the Oldroyd-B and Giesekus models, which were simple
rheological models, for the fixed mobility factor and the vis-
cosity ratio, in order to investigate the effect of elasticity
easily. For better comparison between the DNS and experi-
ments, further DNS is warranted under the numerical condi-
tions corresponding to the existing experiments.
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