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The scaling law of a scalar flux spectrum (velocity-scalar cospectrum) in the inertial convective
range of passive scalar turbulence under a uniform mean scalar gradient is examined using direct
numerical simulation with a resolution of up to 2048° grid points. When the Reynolds number Re,
is increased up to Re, =585, the scalar flux spectrum tends to obey the power law k™73, as predicted
by Lumley [J. Atmos. Sci. 21, 99 (1964); Phys. Fluids 10, 855 (1967)], with a nondimensional
constant of C,,=1.50+0.08 at Re, =585. The Re, effect on the scaling of the scalar flux spectrum
is well compensated using the mean molecular destruction of the scalar flux €,,, The Rey
dependence of C, is also compared with the results of previous studies, and its asymptotic state at
an infinite Reynolds number is discussed. © 2007 American Institute of Physics.

[DOLI: 10.1063/1.2821906]

Passive scalars advected by turbulence have been inves-
tigated with great interest, not only because of their impor-
tance in industrial and/or environmental contexts, but also
due to their peculiar nature that can be used to elucidate the
dynamics and statistics of turbulence.' In many cases, an
imposed mean scalar gradient works as a source of scalar
fluctuations and plays an important role in the formation of
ramp-cliff structures, which cause strong intermittency and
persistent anisotropy at small-scales."? One of the key quan-
tities is the scalar flux (velocity-scalar cross-correlation)
(u36), which has a finite value when a mean scalar gradient
exists in the x5 direction. The scalar flux spectrum E, 4(k) is a
measure of how the scalar flux is distributed over the scales,
and is defined by —(u36)= [ E,4(k)dk when (u36) is nega-
tive, i.e., E,4(k)=—[dS,{u;(K) O(=K)), where the integral [dS,
is taken over a spherical shell in the wavenumber space.

The scaling behavior of the scalar flux spectrum in the
inertial convective range (ICR) was first predicted by
Lurnley3’4 on dimensional grounds as

E, (k) = C,sGePk?, (1)

where G is the mean scalar gradient [G=(0,0,G)], € is the
mean dissipation rate of the kinetic energy, and C,y is a
nondimensional constant expected to be of order unity. Mo-
tivated by the scaling of E, 4(k) using the Kolmogorov theory
and by practical importance of giving an estimate of the eddy
diffusivity K.4qy=—(u36)/G, many studies have been made
for the scalar flux spectrum with a mean gradient.S_14 Theo-
retical studies using the eddy damped quasinormal Markov-
ian (EDQNM) model have shown that in the ICR E, (k)
o k=2 for low to moderate and Lumley’s scaling law [Eq. (1)]
is approached only when Re,=0(107).”"" This feature has

turbulence,”™® in which the spectral slope of the one-
dimensional (1-D) scalar flux spectrum approaches the
power law form close to k™2 with increasing Re, up to Re,
=582. Recent experimental measurements in a turbulent jet
observed both k™73 and k™2 for the axial or radial velocity
components.13 Earlier observations consistent or inconsistent
with Eq. (1) are also described in Refs. 10 and 11. Scalar flux
spectra that are less steep than Eq. (1) have been reported
also in direct numerical simulations™'° (DNSs) and large
eddy simulation,'” but the width of the ICR due to computa-
tional limitation was not long enough to reach definite con-
clusion on the spectral slope.

The above facts show that there is no conclusive agree-
ment on the scaling of the scalar flux spectrum, suggesting
that the scaling law should be carefully examined when Re,
is low to moderate or finite. Indeed, in DNS, for example, a
resolution of at least 10247 is required to obtain an ICR with
a reasonable degree of accuracy to distinguish from other
scaling ranges and/or the spectral bump.ls*19 To observe Eq.
(1), it is necessary to achieve a much higher Re, than re-
quired to observe the 5/3 law for the energy and scalar vari-
ance spe(:tra.5’6’10’11 In order to address the above problem,
we have done very high resolution DNSs with grid points up
to 20483 for the passive scalar turbulence with a mean scalar
gradient, and examined Lumley’s scaling law (1) for the sca-
lar flux spectrum at Re, =585, which is higher than in previ-
ously reported studies.”1014

The governing equation for the scalar field 6(x,7) is
given by (d,+u;d,) 0= K&?B— Gus;, where the incompressible
velocity field u;(x,7) obeys the Navier-Stokes equation (J,
+u;0;)u;=—0;P+ Vﬂfuﬁfi with du;=0. The coefficients v and
k are the kinematic viscosity and molecular diffusivity, re-

been observed also in experimental studies of grld spectively. The Schmidt number Sc=v/k was fixed at unity

in the simulations. The random force f; was solenoidal,
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TABLE I. Fundamental DNS parameters obtained by the present series of
DNSs, where the Taylor microscale Reynolds number Re,, and the normal-
ized dissipations for the kinetic energy €, scalar variance y, and scalar flux
€, are defined by Re,=u,\/v, é= EL/u?ms, )”(=)7L/urm503ms, and €,
=€,/ G(u%), respectively. The steady-state statistical average is taken over
space and time during the normalized averaging time T, using the large
eddy turnover time Tqqy=L/tt,,, and denoted by (- ).

Run Gl Run G2 Run G3 Run G4
N 256 512 1024 2048
Koo 1.0 1.1 1.1 14
Rey 174 263 468 585
Ty 27 5.6 4.0 1.2
é 0.482 0.468 0.444 0.462
X 0.379 0.378 0.402 0.444
€0 0.069 0.050 0.031 0.027

the Reynolds numbers high and to realize the isotropic ve-
locity field even near the forcing scales, leading to the iner-
tial range wider than that by decaying turbulence case. A
uniform mean scalar gradient was imposed in the x5 direction
and fixed as G=1. The DNS numerical scheme was un-
changed from the previous studies. ' We performed DNSs
for different Re, cases. The numerical conditions and DNS
parameters are summarized in Table I. The present DNSs
satisfied the required accuracy conditions as far as the statis-
tics of the convection-dominated scaling range are
concerned.'"'®

To confirm the existence of an ICR, the kinetic energy
and scalar variance spectra compensated using Kolmogorov—
Obukhov—Corrsin scaling, ie., E(k7)=e2*k3E(k) and
E(k7)=x""€k>3E(k), are shown in Fig. 1 for all runs,
where )y is the mean dissipation rate for the scalar variance.
The curves fell almost on a single curve, irrespective of Re,,
for both E(k) and E,(k). This suggests that we can obtain
well converged second-order moments, even when the aver-
aging time is insufficient, as is the case for run G4. When

101 F T o T oo T L |

compensated spectra

FIG. 1. Variations of the compensated spectra for the energy and scalar
variance E(k7)=e3k>3E(k) and E,(k7)=€"3x'k*3E (k) against Re,.
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FIG. 2. Shell-summed scalar flux spectrum E,4(k) obtained from run G4.
The thin reference lines correspond to the power law forms for k3, k=2 and
k=3, The inset plot gives the behavior of the compensated E, 4(k) in terms of
Lumley’s scaling G~ '€ '*k"*E, (k) (upper curve) and k*E,4(k) (lower
curve), respectively. The horizontal thin line in the inset represents the value

of 1.50, which was obtained by averaging the values of the compensated
spectrum over 0.0085 < k7=<0.023.

Re, increases, the flat range in the scale k7<<0.03 extends
slowly toward the smaller wavenumbers. Plateaus are ob-
served in the range 0.003 <k7%<<0.03 of run G4, although the
spectral slopes are slightly steeper than k™3, as discussed
later. The Kolmogorov and Obukhov—Corrsin constants are
roughly evaluated as K=1.61 and C,.=0.68, respectively,
which are in good agreement with the values obtained by a
passive scalar DNS with an isotropic random source’’ and
the experimental values C!°=0.4 (C,.=5C'?/3=0.67) ob-
tained by Sreenivasan,”> who carefully examined the values
reported in many experiments.

Figure 2 shows the behavior of E, 4(k) obtained from run
G4. Scaling law close to the form k™7 is observed in the
range 0.004 <k7<<0.03, which is well within the ICR of
E(k) and E (k) (Fig. 1). In the range of 0.03<k7%<0.1, we
observe another scaling law of E, ,(k) between k=2 and k=73
To more carefully examine the scaling behavior, the compen-
sated plots G~ 'e'3kE, (k) and k’E,,(k) are simulta-
neously shown in the inset of the figure. The scaling of
E,o(k)<k™”3 can be clearly seen in the range 0.006<k%
<0.03. The spectral bump is manifested in the high wave-
number range of 0.03<k%<0.1 as well as for E(k) and
Ey(k); the peak wavenumber of the bump is approximately
k,7=0.11, which is comparable to that of E(k) (k,7%=0.13)
and smaller than that of E(k) (k,7=0.2). The inset of the
Fig. 2 indicates that the scaling behavior in the range of
0.03<k7<0.1 is closer to k2 rather than k=3, and suggests
that this scaling behavior corresponds to the spectral behav-
ior E, 4(k) = k=% observed in the previous studies, although we
are still far from definite conclusion and further studies with
higher Re, are necessary.

The nondimensional constant C,, for Lumley’s scaling
(1) was C,y=1.50+0.08, which was obtained by computing
the mean and standard deviation of the fluctuations of the
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FIG. 3. Temporal variations in the scaling exponents of the spectra E(k,1),
Ey(k,1), and E, 4(k,1), evaluated in the ICR of 0.0085 < k7%= 0.023, obtained
from the instantaneous fields of run G4. The horizontal thin lines indicate
the values from the dimensional analysis. The mean values of the spectral
slopes averaged over the duration of the temporal fluctuations are (n,),
=1.75+0.04, (ny),=1.72+0.06, and (n,,,=2.32+0.11, where the errors de-
note the standard deviations due to the temporal fluctuations.

compensated spectrum in the range 0.0085 < k7= 0.023. The
constant C,4,=3.5 by the spectral closure in Ref. 9 is consid-
erably larger than 1.5 by the present DNS, while C,,=1.2 by
the EDQNM model from Fig. 8 in Ref. 11 when Re,=10".

We investigated the temporal variations of the spectral
slopes to determine the degree of robustness of the 7/3 law
observed in Fig. 2. We define the instantaneous scaling ex-
ponent n,,() by E,4(k,t) ~ k6" within the ICR. Figure 3
shows the temporal variations of the exponents for the en-
ergy n,(1), scalar variance ny(f), and scalar flux n,,(f) ob-
tained from run G4. The value of n,,(t) varies with time
around the predicted value of 7/3, while n, () and n () fluc-
tuate above 5/3. The mean values and standard deviations
with respect to the temporal fluctuations are (n,),
=1.7520.04, (ny),=1.72£0.06, and (n,»,=2.32+0.11. Thus,
the mean value of n,, is close to 7/3, although the standard
deviation of n,, is larger than those of n, and ny The value
of (n,),=1.75 deviated from the dimensional prediction by
1.75-1.67=0.08, which is comparable to observations at a
higher Re, DNS'® and atmospheric measurements.”

The 1-D scalar flux spectrum is usually examined in
experimental ~ studies and  defined by  E.(k))
=—[[" dk,dks(us(k)(-K))  (transverse)  or E;g(lq)
=—[[7 dk,dky(u;(k)8(-K)) (longitudinal). Its relationship
to E,4(k) is®

3 (7 k2-K
Eié(ks)j f 2 2E, o(k)dk, ()
ks

where E thg(k) is usually observed in experimental studies and
E%(k):—(kz/ 2)(d/ dk)ElllLa(k)/ k must be satisfied from the re-
sult in Ref. 8. Figure 4 shows the variation in the compen-
sated scalar flux spectrum G~'&€"3k}3E!L(ks) for various
Re,, where E'L(k;) is computed directly according to its
definition instead of using Eq. (2). The flat range of the ICR
slowly extends toward smaller wavenumbers with increasing
Re,. The mean value of the compensated spectrum in this
plateau was evaluated using the relationship given by Eq. (2)
as C,yé=27Cu9/ 182=0.22 when C,y=1.5. The curves for

various Re, do not collapse well, even in the near dissipation
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FIG. 4. Variation in the compensated 1-D scalar flux spectra in terms of

Lumley’s scaling G™'&""*k})*E!L(ks) against Re,. The horizontal thin line

represents the constant evaluated using Egs. (1) and (2) with C,,=1.5. Inset:
Variation in the function G~'&"3kIPE!L(k;)/A(Rey) with A(Re,)
=¢,,(€n) 3G for various Re,. The collapse of the curves compares sat-
isfactorily to the usual compensated form.

range, which is in contrast to the excellent collapse for both
the energy and scalar variance spectra shown in Fig. 1. This
trend has been observed in previous DNS studies,’ empha-
sizing the sensitivity of the small-scale statistics of the scalar
flux on the large- and small-scale conditions. This situation is
also similar to that of the pressure spectrum, which has a
k73 scaling in the inertial range and depends slightly on
Re,, even in the dissipation range.

The results shown in Fig. 4 suggest that the scalar flux
spectrum obeys the scaling law

Eji(ks) = C,(Re,)GE*ky (ks 7), (3)

where f(x) is a nondimensional function supposed to be Re,
independent and satisfying f(0)=1, and C,(Re,) is a constant
dependent on Re,. The constant C;(Re,) is expressed in
terms of the average rate of the molecular destruction of the
scalar flux defined by €,,=(v+ k) [(k*E, 4(k)dk, which repre-
sents the statistics of the scalar flux at small scales. Substi-
tuting Eq. (3) in the definition of €., yields C,(Re,)
=(en) %€,/ (GD;) with D =[10(1+S")]f5x"3f(x)dx.
The function f(ks7)/D=G~'€ 3k}PE!L(ks)/A(Rey) with
A(Re,) =€,4(€7)"??G™! for various Re, is plotted in the in-
set of Fig. 4. Collapse of the curves is improved within the
Reynolds numbers and wavenumbers studied here.

We now examine the Re, dependence of the
nondimensional constant C,, The scaling form [Eq. (3)]
with k7<1 leads to C'.=C,(Re,)xé,Re, using Re,
=\156253(L/ 7)*3, where é=eL/u’ . and &,,=€,,/ G’
L is the integral scale. The DNS and EDQNM closure com-
putations indicate that €,4 varies with Re, as €,,> Re;‘s with
6=0.77 in the range 30=<Re, <300 (Refs. 7 and 11) or &
=1 in the range Re,> 10" Grid turbulence experiments
have suggested 6=0.7-0.9 in the range 85 SRex$582.6 The
present DNS gives él,0=3.9Re;0'78, which was obtained by
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fitting the data from Table I. Therefore, C,4 depends on Rey
as C,p* Re)l\_‘s, indicating a slightly increasing function of
Re, in the range Re, <O(10%) since 6=0.78.

If an asymptotic state free of Re, is realized for infinite
Reynolds numbers, then €,,> Re{l,11 meaning that €,, must
vanish. Present study suggests that even when the scaling
exponent 7/3 is observed at moderate Re,, the universality
of the scalar flux spectrum (C,,) would be attained at much
larger Re,.

In summary, we examined the scaling law of the scalar
flux spectrum in the ICR of passive scalar turbulence with a
uniform mean scalar gradient using a high resolution DNS
with 2048% grid points. The scaling law predicted by
Lumley3 “ was observed when Re, was increased up to Re,
=585. Lumley’s nondimensional constant, evaluated numeri-
cally, was C,,=1.50+0.08. We showed that the Re, effect on
the scalar flux spectrum was well compensated using €.
This also means that C,, depends on Re, when Re, is low to
moderate. It is indispensable to perform higher Re, DNSs to
obtain definite answer to the scaling of the scalar flux spec-
trum and the universality of the constant C,.
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