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PAPER

CombNET-III with Nonlinear Gating Network and Its Application
in Large-Scale Classification Problems

Mauricio KUGLER†a), Nonmember, Susumu KUROYANAGI†b),
Anto Satriyo NUGROHO††c), and Akira IWATA†d), Members

SUMMARY Modern applications of pattern recognition generate very
large amounts of data, which require large computational effort to process.
However, the majority of the methods intended for large-scale problems
aim to merely adapt standard classification methods without considering if
those algorithms are appropriated for large-scale problems. CombNET-II
was one of the first methods specifically proposed for such kind of a task.
Recently, an extension of this model, named CombNET-III, was proposed.
The main modifications over the previous model was the substitution of the
expert networks by Support Vectors Machines (SVM) and the development
of a general probabilistic framework. Although the previous model’s per-
formance and flexibility were improved, the low accuracy of the gating net-
work was still compromising CombNET-III’s classification results. In ad-
dition, due to the use of SVM based experts, the computational complexity
is higher than CombNET-II. This paper proposes a new two-layered gating
network structure that reduces the compromise between number of clus-
ters and accuracy, increasing the model’s performance with only a small
complexity increase. This high-accuracy gating network also enables the
removal the low confidence expert networks from the decoding procedure.
This, in addition to a new faster strategy for calculating multiclass SVM
outputs significantly reduced the computational complexity. Experimental
results of problems with large number of categories show that the proposed
model outperforms the original CombNET-III, while presenting a compu-
tational complexity more than one order of magnitude smaller. Moreover,
when applied to a database with a large number of samples, it outperformed
all compared methods, confirming the proposed model’s flexibility.
key words: large-scale classification problems, support vector machines,
gating networks, divide-and-conquer

1. Introduction

Modern applications of pattern recognition generate very
large amounts of data, which require large computational
effort to be processed. Human-computer interface (speech,
handwriting and gesture recognition), bioinformatics, object
recognition and spam mail detection are a few examples of
such kind of application. Due to these applications, large-
scale classification methods have being receiving an increas-
ing attention.

However, the majority of the methods intended for
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large-scale problems aim to directly adapt standard classifi-
cation methods, for example, reducing training time by de-
composition strategies. These methods do not consider if
the standard classifier structure is actually appropriated for
large-scale problems.

Classifiers ensembles are often used in cases where a
single classifier cannot properly represent the solution [1].
Mixture of experts [2] is an ensemble technique in which
different classifiers specialize in different regions of the in-
put space. When the data is split off among the classifiers,
the resulting structure is usually referred as a divide-and-
conquer classification model.

Several methods based on this principle had been pro-
posed. Methods using Multilayer Perceptron (MLP) based
experts are described in [3]–[7], mainly dedicated to prob-
lems with large number of categories. Those methods, how-
ever, implement several heuristics in order to reduce com-
putational complexities related to training and classification,
which complicate their use as components of other systems.
Support Vector Machines (SVM) based divide-and-conquer
classifiers, described in [8]–[10], were applied on binary
problems with large number of samples.

The model proposed on this paper is based on the
CombNET model, first introduced in [11]. In order to solve
problems of unbalance among the experts, the gating net-
work was modified and the model extended to CombNET-II
in [12]. CombNET-II presents a simpler and more flexible
structure than the models in [3]–[7]. The latest extension,
CombNET-III [13], substituted the original MLP based ex-
perts by multiclass SVM. It also implements a probabilistic
framework, enabling its direct application as part of other
systems. A more detailed description of CombNET-III will
be made in Sect. 2.

The main objectives of this paper are the improvement
of CombNET-III performance by the use of a nonlinear gat-
ing network and the reduction of its classification computa-
tional complexity, pointed in [13] as a main concern for fur-
ther developments. The use of a nonlinear gating network
with higher accuracy permits the elimination of less confi-
dent experts on the decoding phase, reducing considerably
the number of required calculations. Moreover, this paper
introduces a new strategy for reducing the number of Ker-
nel function evaluations performed by the multiclass SVM
experts when evaluating an unknown sample. This strategy
can also be applied in stand-alone multiclass SVM imple-
mentations.

Copyright c© 2008 The Institute of Electronics, Information and Communication Engineers
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Furthermore, the increased accuracy of the gating net-
work enables the application of the proposed model in prob-
lems with large number of samples, which were not a con-
cern in past CombNET model development works. This pa-
per aims to evaluate the proposed model performance when
applied to these problems, in comparison to other recently
proposed large-scale methods.

The organization of the paper goes as follows: a more
detailed revision of CombNET-III is presented in Sect. 2,
and Sect. 3 introduces the proposed model, its modifications
and new characteristics. Section 4 presents experiments
with the new model and some comparisons with previous
results, and Sect. 5 concludes the paper with analysis of the
results and suggests possible future extensions.

2. Large-Scale Classifier CombNET-III

The CombNET-II model proposed by Hotta et al. [12] is
a large-scale classifier that follows the classic structure of
divide-and-conquer methods: a gating network and many
experts classifiers, called respectively “stem” network and
“branch” networks in the original references. The branch
networks are MLP trained by gradient descent, while the
stem network is a modified VQ based sequential cluster-
ing algorithm, called Self Growing Algorithm (SGA), de-
veloped to solve the problem of unbalanced clusters gener-
ated by the Self-Organizing Map (SOM) used in the origi-
nal CombNET [11]. The basic SGA algorithm is described
in Fig. 1, in which � is the number of samples, R is the cur-
rent number of clusters, xi is the ith sample, ν j is the jth

cluster reference vector, Θs is the similarity threshold, Θp

is the inner potential threshold, h j is the jth cluster inner po-
tential and sim

(
ν j, xi

)
represents the similarity measurement

between the ith sample and the jth cluster.
Kugler et al. [13] recently presented an extension of

this model, called CombNET-III, which substitutes the MLP
branch networks by multiclass Support Vector Machines

Make ν1 = x1, h1 = 1 and R = 1
for i ∈ {2 . . . �}

Find νc so that:
sim (νc, xi) = max

j

[
sim
(
ν j, xi

)]

if sim (νc, xi) < Θs

R = R + 1, νR = xi , hR = 1
else
νnew

c = νold
c − h−1

c

(
xi − νold

c

)

hc = hc + 1
if hc > Θp

Divide νc in ν′c and νR+1 so that:
|hc − hR+1 | ≤ 1

end if
end if

end for
do Update the clusters (with necessary divisions)
until No significant changes in any clusters

Fig. 1 Self Growing Algorithm (SGA).

(SVM) based branch networks and introduces a new proba-
bilistic framework for combining the branch networks’ out-
puts. The SVMs uncalibrated outputs were moderated by a
sigmoid function in order to generate class posterior prob-
abilities, using Platt’s approach [14]. The branch network
structure is shown in Fig. 2.

The probabilistic framework for calculating the branch
networks outputs and the CombNET-III final posterior prob-
ability are defined in [13] as follows. Given an unknown
sample x, the jth branch network posterior probability of
class ωk is given by:

P
(
ωk

∣∣∣x, ν j

)
=

∑
h:mk,h�0

P
(
yk,h = mk,h |x )

H∑
h=1

∣∣∣mk,h

∣∣∣
(1)

where MK×H is the coding matrix, with mk,h = {−1, 0,+1},
K is the number of classes, H is the number of classifiers,
and ν j is the jth cluster. The final posterior probability of the
class ωk given an unknown sample x is given by:

P (ωk |x ) = c
R∏

j=1

⎡⎢⎢⎢⎢⎢⎢⎢⎣P
(
ν j |x
)γ

P
(
ωk

∣∣∣x, ν j

)1−γ

+
1 − P

(
ν j |x
)γ

2

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (2)

where the term c before the product is used to adjust the
probabilities scale in order to ensure they are calibrated,
summing to unity, R is the total number of clusters, ν j is the
jth cluster and γ is a weighting factor between the cluster
posterior probability and the branch networks class proba-
bilities. The final structure of the CombNET-III is shown
diagrammatically in Fig. 3.

CombNET-III outperformed both CombNET-II and a
single multiclass SVM, while presenting much smaller com-
putational complexity than the last. It also presented a much
smaller training time. Notwithstanding these advantages,
the CombNET-III model still presents some limitations sim-
ilarly to CombNET-II. Although presenting less interfer-
ence between the branch networks (as the SVM outputs with

Fig. 2 SVM branch network structure.
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Fig. 3 CombNET-III structure.

gaussian kernel tends to zero for outlier samples), the perfor-
mance of CombNET-III still depends on the gating network
accuracy, which decrease rapidly with increasing number of
clusters. Consequently, large number of clusters, required
by very large-scale problems, still cannot be used. Another
disadvantage of CombNET-III is its high classification com-
putational complexity. The use of SVM as the expert classi-
fiers considerably increased the number of required calcula-
tions when comparing to CombNET-II. Even this complex-
ity is much smaller than the single multiclass SVM, it can
be a limiting factor for the application of CombNET-III in
real world problems. These are the two problems addressed
on this paper by the proposed model introduced in the next
section.

3. Proposed Model

3.1 Nonlinear Gating Network

The standard SGA algorithm is an unsupervised procedure.
Thus, it does not consider the label of the samples when
clustering the data and has no controlling mechanism for the
number of categories neither their balance inside each clus-
ter. Therefore, for large-scale problems with large number
of categories, the use of raw data on the stem network train-
ing causes the samples belonging to categories with com-
plex distributions to be shattered among the clusters. This
creates very unbalanced problems for the branch networks,
and some cluster can end up containing a large number of
classes. These two problems can make the branch networks
training complex and slow, reducing also the overall classi-
fier performance.

In order to solve this problem, previous works pro-
posed the use of the average of each class samples on
the SGA algorithm training, instead of the raw data sam-
ples [12], [15]. This straightforward procedure, apart from
reducing the stem network training time, also avoids the
classes to be split among the clusters. Hence, it reduces the
number of classes per cluster and improves the balance of
samples of different classes inside each branch network.

However, the averaged data does not represent thor-
oughly the real data. In the case of complex distributions,

for k ∈ {1 . . . K}
Calculate x̄k = �

−1
k

∑
i:yi=k

xi

end for
Apply SGA to {x̄1 . . . x̄K } obtaining {ν1 . . . νR}
for j ∈ {1 . . .R}

Apply SGA to
⋃

i:yi=k,x̄k∈ν j
xi

obtaining
{
ς j,1 . . . ς j,S j

}

end for

Fig. 4 Proposed method algorithm (SGA-II).

several samples that belongs to a certain cluster can present
a higher similarity with some other neighbor clusters. This
problem tends to deteriorate with increasing number of clus-
ters, because the samples subspace learned by each branch
network starts to differ more and more from the subspace
represented by the corresponding stem cluster. Clearly,
there is a compromise between the stem and the branch net-
works performance. This paper proposes a new solution
that eliminates this compromise, increasing the stem net-
work performance while keeping the advantages of the use
of averaged data.

The main reason for the standard stem network of
CombNET-II and CombNET-III to present poor perfor-
mance with increasing number of clusters is the use of a
single reference vector for representing each of the clusters.
These reference vectors can only define linear hyperplanes
between the clusters, thus being unable to represent the true
complex boundaries generated by the use of averaged data.
Even though several methods which implement simple VQ
based gating networks do not present any mechanism for
controlling the balance among the clusters [3]–[5], [16], they
present a higher gating network accuracy due to the use of
multiple reference vectors to represent the clusters. The use
of multiple reference vectors, although increasing the gat-
ing computational complexity, defines complex nonlinear
boundaries between the clusters, which are a more faith-
ful representation of the samples subspaces learned by the
branch networks.

In order to obtain a high accuracy gating network while
keeping the clusters’ balance control, the proposed method
generates multiple reference vectors for each of the clus-
ters, according to the algorithm shown in Fig. 4, in which
the SGA algorithm from Fig. 1 is used as a subroutine, �k
is the number of samples belonging to the kth category, ς j,s

is the sth reference vector of the cluster ν j, S j is the num-
ber of reference vectors representing the jth cluster and the
notation x̄k ∈ ν j is defined as:

xk ∈ ν j ↔ sim
(
xk, ν j

)
> sim (xk, νc)∀c � j (3)

According to Fig. 4, after the SGA is used on the aver-
aged data (similarly to the original CombNET-III), each jth

cluster’s correspondent raw data is independently clustered,
again using the SGA, generating a set of reference vectors
ς j,s, where s = 1 . . .S j. The cluster posterior probability for
an unknown sample x then becomes:
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Fig. 5 CombNET-III with the two-layered self growing algorithm SGA-
II.

P
(
ν j |x
)
= max
ς j,s∈ν j

P
(
ς j,s |x

)
(4)

and can be directly applied in Eq. (2). On the decoding
phase, the reference vectors {ν1 . . . νR} generated from the
averaged data are no longer used. The proposed model is
diagrammatically illustrated in Fig. 5. From this point, the
original self growing algorithm and the new two-layered
structure will be referenced respectively SGA-I and SGA-II.

Nonlinear algorithms had already been used as gat-
ing networks for large-scale models. These strategies, as
well as the proposed SGA-II, are composed by two stages:
some clustering strategy divides the data and a non-linear
classifier learns the generated hyperplanes. For instance,
Collobert, Bengio and Bengio [10] used MLP and Mixture
of Gaussians based gating networks in a large-scale classi-
fication model. However, their approach requires the gating
and experts networks to be retrained several times. Initially,
the data is divided in random subsets, which are used to train
the expert networks. The expert classifiers are used to deter-
mine an objective function for the gating network retrain-
ing. The new gating network then defines new subsets and
the process is repeated until the termination criterion is ful-
filled. This method requires the gating to be retrained on
each iteration, hence making the procedure very time con-
suming. The SGA-II gating uses a fast sequential clustering
in both stages, which, despite the simple structure, results in
a high accuracy gating, as shown in Sect. 4.

3.2 Non-redundant Support Vectors

Support Vector Machines are well-known for being a high
computational complexity method on the recognition phase,
specially for problems with high number of features or com-
plex multiclass problems with high number of classes, as the
branch networks in CombNET-III.

In previous works, several strategies based on the elim-
ination of classifiers on the decoding phase had been intro-
duced [17]–[19]. These methods, however, usually presents
a performance penalty and make difficult to estimate the
posterior probability of classes which classifiers had been

eliminated along the decoding.
This paper introduces another approach, based on the

fact that, as each sample is used to train many binary classi-
fiers, usually these classifiers will present some support vec-
tors in common. When a new sample x is presented to the
classifiers, the Kernel value K (x, z) will be the same in all
classifiers that share the support vector z, so, it only needs
to be computed once.

The classification computational complexity of the
multiclass SVM is:

O

⎛⎜⎜⎜⎜⎜⎝N
H∑

h=1

S VT
h

⎞⎟⎟⎟⎟⎟⎠ (5)

where S VT
h represents the ith classifier’s total number of sup-

port vectors, H is the total number of classifiers and N is the
number of features. If the kernel value of x and the training
samples that are support vectors in at least one classifier are
calculated in advance, the complexity becomes:

O

⎛⎜⎜⎜⎜⎜⎝N · S VNR +

H∑

h=1

S VT
h

⎞⎟⎟⎟⎟⎟⎠ (6)

where S VNR is the number of non-redundant support vec-
tors. Its is clear that S VNR ≤ ∑H

h=1 S VT
h . The experimental

results show that for most of the cases, including the exper-
iments shown on this paper, S VNR � ∑H

h=1 S VT
h , reducing

considerably the decoding computational complexity.

3.3 High Confidence Branch Networks Selection

Equation (2) uses all branch network results to generate an
output. In most cases, part of these outputs correspond
to very low values that do not influence the final proba-
bility. Some previous applications of CombNET-II in em-
bedded systems for handwritten digits recognition [15] used
only the branch corresponding to the clusters with highest
score on the stem network, reducing significantly the com-
putational complexity. However, when applied to large-
scale problems with large number of categories, this ap-
proach tends to compromise the accuracy, as the classifica-
tion becomes more dependent on the gating network, which
presents a low accuracy.

The SGA-II, however, presents a much higher accu-
racy than the original SGA used on previous works. Hence,
branch networks corresponding to the lowest scores on the
gating network can be eliminated from Eq. (2) with a higher
confidence. The approach used on the experiments of this
paper was to choose a fixed number G, (1 ≤ G ≤ R) of the
highest gating network probabilities, although one could
also define a probability threshold.

The algorithm for calculating the final output using this
procedure is shown in Fig. 6. After the clusters posterior
probabilities are sorted, the lowest values are set to zero and
the correspondent branch networks’ outputs are set to the
random hypothesis. Thus, only the outputs of the branch
networks corresponding to the G highest cluster probabili-
ties are calculated, significantly reducing the computational
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Calculate P
(
ν j |x
)
, j ∈ {1 . . .R}

Sort {ν1 . . . νR} so that:
P
(
ν j |x
)
> P
(
ν j+1 |x

)
∀ j ∈ {1 . . .R}

for j ∈ {1 . . .R}
if j > G

Set P
(
ν j |x
)
= 0

Set P
(
ωk

∣∣∣x, ν j

)
= 0.5

else
Calculate P

(
ωk

∣∣∣x, ν j

)

end if
end for
Calculate P (ωk |x )

Fig. 6 Branch networks selection algorithm.

complexity. The value of G is set experimentally, depending
of the system requirements of accuracy and complexity.

4. Experiments

Two databases were used on the experiments, Kanji400 and
Forest. The Kanji400 database, already used in [13], il-
lustrates the efficiency of the proposed model in problems
with large number of categories. The Forest database exper-
iments explores the proposed model’s behavior in a prob-
lem with large number of samples and very unbalanced cat-
egories.

4.1 ETL9B Kanji400 Database

This database consists of a subset of the ETL9B database †.
The ETL9B database contains 3036 categories, composed
by 2965 Chinese characters (Kanji) and 71 Japanese Hi-
ragana characters. The first 400 classes were used, each
contains 200 samples, from which 150 samples were used
as the training set and 50 samples as the test set. The
characters were resized by their largest dimension and the
peripheral direction contributivity (PDC) feature extraction
method [20] was applied.

Five different configurations of the gating network
were tested, making the number of clusters in which the
problem was divided equal to 5, 8, 12, 16 and 20. The classi-
fication accuracy for those configurations is shown in Fig. 7,
in which the circles’ dotted line corresponds to the standard
SGA-I algorithm recognition rate and the squares’ solid line
to the proposed SGA-II algorithm. The SGA-II subclusters
were created from the same clusters generated in SGA-I.
Moreover, the same SGA-I was used in CombNET-II and
the original CombNET-III. The used similarity measure-
ment was the normalized dot-product (the cosine between
two vectors) and the inner potential threshold Θp is shown
in Fig. 7 under the x-axis (for details about the SGA algo-
rithm, see [12], [13]). Even though the use of the similarity
threshold Θs can speed up the convergence, it can also gen-
erate clusters with very few samples, deteriorating the bal-
ance among the clusters. For some large scale classification
problems, this parameter can be used as a fine adjustment of

Fig. 7 Stem networks recognition rate results for the Kanji400 database.

the clusters’ balance. On the Kanji400 experiments, how-
ever, such adjustment is not necessary and Θs was set to −1
for all cases.

The number of sub-clusters on the SGA-II was chosen
in order to keep its accuracy higher than 98%. As each data
split generates different boundaries, which complexity de-
pend on the size of the clusters and which categories they
contain, the average amount of reference vectors per clus-
ters is not proportional to the number of clusters. Although
the complexity of SGA-II is higher than SGA-I, it is still
much smaller than the branch networks and this increase can
be neglected. For increasing number of clusters, the SGA-I
presents a rapid decay on accuracy, as the linear hyperplanes
between the clusters start to be responsible for more and
more classes split, which true boundaries are usually very
nonlinear. The multiple reference vectors of SGA-II make a
better representation of those hyperplanes, achieving a sig-
nificant increase on the gating network accuracy, specially
for higher number of clusters.

For the CombNET-II experiments, the MLP neural net-
works were trained by gradient descent backpropagation un-
til the error was smaller than 10−4 or the iteration number
exceeds 500, with learning rate equal to 0.1, momentum 0.9
and sigmoidal activation function slope 0.1. The number
of hidden neurons and the γ parameter were optimized (by
testing several values) for each experiment realization. In
the case of CombNET-III (with both gating networks con-
figuration), the binary SVM classifiers had non-biased out-
put and a Gaussian kernel function, whose parameter σ was
optimized for each experiment realization. The soft-margin
C parameter was fixed at 200 (as several experimented val-
ues did not produce significant changes for the used data).
For CombNET-III, each branch network training data was
normalized to zero mean and unitary standard deviation.

Figure 8 shows the final recognition rate for the three
models. The proposed model outperformed the other

†Available under request from http://www.is.aist.go.jp/etlcdb
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Fig. 8 Final recognition rate results for the Kanji400 database.

methods, achieving an error rate reduction between 16.8%
and 51.9% in comparison with the original CombNET-III.
It must be pointed that both the original CombNET-III
and the proposed model used the same branch networks.
CombNET-II shows an almost linear decreasing accuracy
with increasing number of clusters. The original CombNET-
III presents a better accuracy for small number of clusters,
but also shows a rapid decrease for too many clusters. The
proposed model presented a decrease of less than 1% from
5 to 20 clusters.

Previous works on CombNET-II showed that, for prob-
lems with large number of categories where each category
belongs to only one clusters, the selection of few high con-
fident branch networks results in a significant decrease in
performance. Figure 9 shows the final recognition rate of
CombNET-III with SGA-I and SGA-II for an decreasing
number of computed branch networks. The x-axis repre-
sents the rate of considered branch networks for each num-
ber of clusters and the y-axis the proportional performance
decrease, with 1.0 corresponding to the result when all
branch networks are used. The dotted lines and solid lines
corresponds to the SGA-I and SGA-II respectively. With
SGA-II, there was no decrease until 50% and an almost neg-
ligible accuracy decrease until 20%. Using SGA-I, the re-
sult decreases from just one eliminated branch network and
presents a rapid decline after 50%.

The final computational complexities of CombNET-
III and the proposed modifications are shown in Fig. 10.
The circles’ dotted line represents the original CombNET-
III complexity for an increasing number of clusters. The di-
amonds’ dashed line and squares’ dotted line shows, respec-
tively, the complexity when using the non-redundant sup-
port vectors strategy and the branch network reduction. For
the later, the complexity is related to the smallest number
of branch networks that presents the no accuracy reduction.
If some tolerance is given, this complexity could be even
smaller. Finally, the triangles’ solid line shows the complex-

Fig. 9 High confidence branch networks selection recognition rate re-
sults for the Kanji400 database.

Fig. 10 Computational complexity for the Kanji400 database.

ity of the complete proposed model, using both strategies. It
is to be noticed that the y-axis is in logarithmic scale.

Table 1 described how these complexities were calcu-
lated, in which N is the number of features, R is the number
of clusters on the case of divide-and-conquer methods, G′ is
the smallest group of branch networks that presents no de-
crease on performance, H j is the number of binary SVM on
the jth, and S VNR

j and S VnhT are, respectively, the number

of non-redundant support vectors in the jth multiclass and
the number of support vectors in the hth binary SVM of the
jth cluster.

The proposed model presents a computational com-
plexity more than one order of magnitude smaller than the
original CombNET-III. Again, the gating network complex-
ity is not included on the equations of Table 1 as it is much
smaller than the branch networks complexity.
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Table 1 Classifiers computational complexity description.

Classifier Complexity Description

Original
CombNET-III

N · R∑
j=1

H j∑
h=1

S VT
jh

Non-Redundant
Support Vectors

R∑
j=1

⎛⎜⎜⎜⎜⎜⎝N · S VNR
j +

H j∑
h=1

S VT
jh

⎞⎟⎟⎟⎟⎟⎠

High Confidence Branch
Networks Selection

N · ∑
j∈G′

H j∑
h=1

S VT
jh

Complete Proposed
Model

∑
j∈G′

⎛⎜⎜⎜⎜⎜⎝N · S VNR
j +

H j∑
h=1

S VT
jh

⎞⎟⎟⎟⎟⎟⎠

Table 2 Forest database samples distribution and data sets.

Class Training Control Test Total Rate
SF 141227 35306 35307 211840 36.46%
LP 188867 47217 47217 283301 48.76%
PD 23836 5959 5959 35754 6.15%
WL 1832 458 457 2747 0.47%
AP 6328 1582 1583 9493 1.63%
DF 11578 2895 2894 17367 2.99%
KH 13676 3415 3419 20510 3.53%

Total 387344 96832 96836 581012 100.0%

4.2 UCI KDD Forest Database

This database, obtained from the UCI KDD Archive reposi-
tory [21], consists of the forest cover type for 30 x 30 meter
cells obtained from US Forest Service (USFS) Region 2 Re-
source Information System (RIS) data. It contains 581012
samples of 7 categories of forest cover, represented by 54
features, 10 quantitative values and 2 qualitative variables
codified in 44 binary features. The first two classes, “SF”
and “LP”, represents more than 85% of the data, while the
“WL”category contains only 0.47%, making this a very un-
balanced problem. Table 2 shows the samples distribution,
as well as how the data was split in three independent sets.
Sequentially, for each 3 samples of each class, 2 were used
for training and 1 for control/test. This second set was later
split in two parts, again sequentially, with 1 sample for the
control set and another for the test set.

The stem network was trained with raw data using Eu-
clidean distance dissimilarity measurement, with parame-
ters chosen in order to obtain 16 clusters. This is the min-
imal number of clusters generated by the SGA that pro-
duces branch networks which half-kernel matrixes fit on
3 GB of memory (the largest one (ν3) contains 35231 sam-
ples). Also, after the training, if a cluster contains samples
of a class that represents less than 10% of the cluster, these
samples are transferred to the nearest cluster that contains
this class. This procedure helps to keep the balance inside
each cluster, although some clusters still present some un-
balance. For instance, ν3 contains only 166 samples of class
“PD” and 14565 samples of class “SF”. This unbalance does
not seriously affect the accuracy, but adds unnecessary com-
plexity. The total number of subclusters generated by the

Fig. 11 Individual class error rates for the Forest database.

SGA-II is 1400 (average of 87.5 per cluster).
As each class belongs to several clusters, it is not pos-

sible to calculate the accuracy of the stem network. In order
to verify its performance, only the amount of control data
set samples with highest score on each cluster was verified.
This matched the clusters sizes with a difference up to 0.28%
of the total number of samples in each data set.

Each branch network parameters were optimized inde-
pendently by the accuracy of the control data set. However,
as it is not possible to define which samples of the control
data set should be used for optimizing each branch network,
the gating network probability was used define these splits.
For instance, given a sample x, if P (νi |x ) = max

j
P
(
ν j |x
)
,

the sample x will be used to optimize the ith branch network.
The average accuracy for all classes in all clusters achieved
90.36%. The γ parameter (from Eq. (2)) and G (described in
Sect. 3.3) were optimized based on the control data set av-
erage accuracy of all classes, being respectively 0.153 and
2.

The individual classes error rates for the test data are
shown in Fig. 11. Due to the use of different data splits, it
is difficult to make comparisons with other authors’ results.
Nevertheless, Fig. 11 also includes the results presented by
Dong, Krzyzak and Suen [22]. They used a similar split-
ting of data (75% for training and 25% for testing), with a
One-versus-Rest single multiclass SVM trained by decom-
position. Furthermore, Fig. 11 includes the result for the k-
Nearest Neighbor (kNN) classifier, which parameters K = 1
was found by the accuracy in the control data. Figure 11
does not include the results for the original CombNET-III.
When the SGA-I gating is used on this database, the con-
trol samples for each branch network cannot be properly se-
lected and the SVM parameters cannot be optimized. Also,
the real gating accuracy is probably very low, due to the high
number of clusters.

The proposed method outperformed both compared
methods. The final averaged error for all classes was
9.072%. For the method described in [22], the averaged er-
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Fig. 12 Error rates for the Forest binary classification problem.

ror was 16.144%. Surprisingly, the kNN method performed
better than the method from [22], resulting in an averaged
error of 11.460%. On reason for this can be the method
used by Dong, Krzyzak and Suen for splitting the data. The
Forest database samples for the larger categories presents a
large variation, with samples on the beginning of the origi-
nal file being very different from the ones on its end.

Liu, Hall and Bowyer [23] and Collobert, Bengio and
Bengio [10] considered only the binary classification of
class “SF” against the others, using respectively an ensem-
ble of decision trees and a mixture of SVMs. They se-
lected a training data set of 100000 samples and a test set of
50000. Both the proposed model and the model from Dong,
Krzyzak and Suen were not trained specifically for this bi-
nary classification problem. Nevertheless, considering that
misclassifications between classes different from “SF” are
not errors, the results can be compared. The γ parameter
was optimized for this purpose, obtaining 0.300. Figure 12
presents the results for this binary classification task, com-
paring the proposed model with the results from [10], [22],
[23].

The proposed model obtained the best accuracy. Of
course, this is not a proper comparison, as different data
splits were used, and the experiment’s objective are differ-
ent. Nevertheless, it illustrates the flexibility of CombNET-
III with the SGA-II gating network. CombNET-II presented
good results on unbalanced classification problems [24], and
the results obtained by the proposed model, which does not
use redundant training samples among the branches, are en-
couraging.

5. Discussion and Conclusions

This paper proposed an extension of the large-scale classi-
fication model CombNET-III. The main objectives of this
extension were to improve the accuracy over the original
CombNET-III and to reduce the classification computational
complexity. The main proposed modification was the use

of a nonlinear gating network, named SGA-II, which rep-
resents each cluster by several reference vectors, achieving
higher accuracy. This higher accuracy permits the elimi-
nation of the less confident branch networks, reducing the
computational complexity. Moreover, a new strategy for re-
ducing the number of Kernel function calls in each multi-
class SVM branch network was presented. The use of a
more accurate gating network also enables the application
of the proposed model in problems with large number of
samples.

The use of SGA-II proportionated a significant accu-
racy improvement for the Kanji400 database, with small
complexity increase. This enables the use of a larger number
of clusters, reducing the complexity. Moreover, the high-
confidence branch networks selection was shown to be effi-
cient with the use of SGA-II. In some cases, more than half
of the branches could be ignored with no accuracy penalty.
The non-redundant support vectors strategy, although asking
for a more complex implementation, reduced the complex-
ity by more than one order of magnitude, being an efficient
alternative for speeding-up multiclass SVM classification.

The results on the Forest database shows that
CombNET-III with SGA-II is an important alternative not
only for problems with large number of categories, but also
for problems with large number of samples and/or unbal-
anced problems. By splitting the data, “less unbalanced”
smaller problems can be efficiently solved.

Even though an important reduction on computational
complexity was achieved, further investigation about feature
subset selection on the branch networks could reduce this
complexity even more. Refinements of the branch network
selection procedure (e.g. the use of a probability threshold)
also need to be explored. A deeper investigation of the appli-
cation of the proposed model on unbalanced problems and
also in problems with a much higher number of categories is
also necessary. Another important research direction is the
use of more sophisticated training procedures on the branch
networks for reducing training time.

Acknowledgments

The first author is supported by the Ministry of Education,
Culture, Sports, Science and Technology, Government of
Japan, and also by a grant from the Hori Information Sci-
ence Promotion Foundation, Japan. The research of the third
author is partially supported by the Grant-in-Aid for Private
University High-Tech Research Center from Ministry of Ed-
ucation, Culture, Sports, Science and Technology, Govern-
ment of Japan.

References

[1] L.I. Kuncheva, Combining Pattern Classifiers: Methods and Algo-
rithms, John Wiley & Sons, New Jersey, 2004.

[2] R.A. Jacobs, M.I. Jordan, G.E. Hinton, and S.J. Nowlan, “Adaptive
mixtures of local experts,” Neural Comput., vol.3, no.1, pp.79–87,
1991.



294
IEICE TRANS. INF. & SYST., VOL.E91–D, NO.2 FEBRUARY 2008

[3] M. Arai, J. Wang, K. Okuda, and J. Miyamichi, “Thousands of hand-
written kanji recognition by “HoneycombNET”,” IEICE Trans. Inf.
& Syst. (Japanese Edition), vol.J76-D-II, no.11, pp.2316–2323,
Nov. 1993.

[4] M. Arai, K. Okuda, and J. Miyamichi, “Thousands of hand-written
kanji recognition by “HoneycombNET-II”,” IEICE Trans. Inf. &
Syst. (Japanese Edition), vol.J77-D-II, no.9, pp.1708–1715, Sept.
1994.

[5] M. Arai, K. Okuda, H. Watanabe, and J. Miyamichi, “A large scale
neural network “HoneycombNET-III” that has a capability of ad-
ditional learning,” IEICE Trans. Inf. & Syst. (Japanese Edition),
vol.J80-D-II, no.7, pp.1955–1963, July 1997.

[6] K. Saruta, N. Kato, M. Abe, and Y. Nemoto, “A fine classification
method of handwritten character recognition using exclusive learn-
ing neural network (ELNET),” IEICE Trans. Inf. & Syst. (Japanese
Edition), vol.J79-D-II, no.5, pp.851–859, May 1996.

[7] K. Saruta, N. Kato, M. Abe, and Y. Nemoto, “High accuracy
recognition of ETL9B using exclusive learning neural network - II
(ELNET-II),” IEICE Trans. Inf. & Syst., vol.E79-D, no.5, pp.516–
522, May 1996.

[8] J.T.Y. Kwok, “Support vector mixture for classification and regres-
sion problems,” Proc. International Conference on Pattern Recog-
nition (ICPR’98), pp.255–258, Brisbane, Queensland, Australia,
1998.

[9] R. Collobert, S. Bengio, and Y. Bengio, “A parallel mixture of
SVMs for very large scale problems,” Neural Comput., vol.14, no.5,
pp.1105–1114, May 2002.

[10] R. Collobert, S. Bengio, and Y. Bengio, “Scaling large learning
problems with hard parallel mixtures,” International Journal on Pat-
tern Recognition and Artificial Intelligence, vol.17, no.3, pp.349–
365, 2003.

[11] A. Iwata, T. Touma, H. Matsuo, and N. Suzumura, “Large scale 4
layered neural network “CombNET”,” IEICE Trans. Inf. & Syst.
(Japanese Edition), vol.J73-D-II, no.8, pp.1261–1267, Aug. 1990.

[12] K. Hotta, A. Iwata, H. Matsuo, and N. Susumura, “Large scale neu-
ral network CombNET-II,” IEICE Trans. Inf. & Syst. (Japanese Edi-
tion), vol.J75-D-II, no.3, pp.545–553, March 1992.

[13] M. Kugler, S. Kuroyanagi, A.S. Nugroho, and A. Iwata,
“CombNET-III: A support vector machine based large scale clas-
sifier with probabilistic framework,” IEICE Trans. Inf. & Syst.,
vol.E89-D, no.9, pp.2533–2541, Sept. 2006.

[14] J.C. Platt, “Probabilistic outputs for support vector machines and
comparisons to regularized likelihood methods,” in Advances in
Large Margin Classifiers, ed. A.J. Smola, P. Bartlett, B. Schölkopf,
and D. Schuurmans, pp.61–74, MIT Press, Cambridge, MA, 1999.

[15] H. Kawajiri, T. Yoshikawa, J. Tanaka, A.S. Nugroho, and A. Iwata,
“Handwritten numeric character recognition for facsimile auto-
dialing by large scale neural network CombNET-II,” Proc. 4th In-
ternational Conference on Engineering Application of Neural Net-
works, pp.40–46, Gibraltar, June 1998.

[16] Y. Waizumi, N. Kato, K. Saruta, and Y. Nemoto, “High speed and
high accuracy rough classification for handwritten characters using
hierarchical learning vector quantization,” IEICE Trans. Inf. & Syst.,
vol.E83-D, no.6, pp.1282–1290, June 2000.

[17] J.C. Platt, N. Cristianini, and J. Shawa-Taylor, “Large margin DAGs
for multiclass classification,” Advances in Neural Information Pro-
cessing Systems, vol.12, pp.547–553, 2000.

[18] B. Kijsirikul, N. Ussivakul, and S. Meknavin, “Adaptive directed
acyclic graphs for multiclass classification,” Proc. 7th Pacific Rim
International Conference on Artificial Intelligence, pp.158–168,
Springer-Verlag, 2002.

[19] B. Kijsirikul, N. Boonsirisumpun, and Y. Limpiyakorn, “Multiclass
support vector machines using balanced dichotomization,” Proc. 8th
Pacific Rim International Conference on Artificial Intelligence, ed.
C. Zhang, H.W. Guesgen, and W.K. Yeap, LNAI 3157, pp.973–974,
Springer-Verlag, Berlin, Aug. 2004.

[20] N. Hagita, S. Naito, and I. Masuda, “Chinese character recogni-

tion by peripheral direction contributivity feature,” IEICE Trans. Inf.
& Syst. (Japanese Edition), vol.J66-D, no.10, pp.1185–1192, Oct.
1983.

[21] S. Hettich and S.D. Bay, “The UCI KDD archive,” Irvine, CA: Uni-
versity of California, Department of Information and Computer Sci-
ence, 1999. http://kdd.ics.uci.edu

[22] J. Dong, A. Krzyzak, and C.Y. Suen, “Fast svm training algorithm
with decomposition on very large data sets,” IEEE Trans. Pattern
Anal. Mach. Intell., vol.27, no.4, pp.603–618, April 2005.

[23] X. Liu, L.O. Hall, and K.W. Bowyer, “Comments on “A parallel
mixture of SVMs for very large scale problems”,” Neural Comput.,
vol.16, no.7, pp.1345–1351, July 2004.

[24] A.S. Nugroho, S. Kuroyanagi, and A. Iwata, “A solution for im-
balanced training sets problem by CombNET-II and its application
on fog forecasting,” IEICE Trans. Inf. & Syst., vol.E85-D, no.7,
pp.1165–1174, July 2002.

Mauricio Kugler received the degree in
electrical engineering in 2000, and the M.Sc.
degree in biomedical engineering in 2003, both
from the Federal Technological University of
Parana, Brazil. In 2007, he received a Ph.D. de-
gree in computer science and engineering from
the Nagoya Institute of Technology, Japan. Cur-
rently, he is an assistant professor at the De-
partment of Computer Science and Engineer-
ing at this same institute. His research inter-
ests include machine learning, large scale pat-

tern recognition methods, biomedical signals processing, spiking neural
networks and hardware programming. He is a member of the Institute of
Electrical & Electronics Engineers (IEEE).

Susumu Kuroyanagi received a B.S. in
1991 from the Department of Electrical and
Computer Engineering at the Nagoya Institute
of Technology. He completed the first half of
the doctoral program in 1993 and the second
half in 1996, receiving the D.Eng. degree from
the same institute. In 1996, he became a re-
search associate in the Department of Electrical
and Computer Engineering at the Nagoya Insti-
tute of Technology, and, in 2003, a research as-
sociate in the Graduate School of Engineering,

at the Department of Computer Science and Engineering. Since 2006, he
has been an associate professor in this same Graduate School. He is en-
gaged in researches about neural networks and auditory information pro-
cessing, also being a member of the Acoustic Society of Japan, the Japan
Neural Network Society and Japanese Society for Medical and Biological
Engineering.



KUGLER et al.: COMBNET-III WITH NONLINEAR GATING AND ITS APPLICATION IN LARGE-SCALE PROBLEMS
295

Anto Satriyo Nugroho is a researcher work-
ing for Agency for the Assessment & Applica-
tion of Technology (BPPT), Indonesia. He re-
ceived his B.Eng. degree in 1995, M.Eng. in
2000 and Dr.Eng. degree in 2003, all in Electri-
cal & Computer Engineering from Nagoya Insti-
tute of Technology, Japan. From 2003 to 2007,
he is working for Chukyo University as visiting
professor in School of Life System Science &
Technology. His research interest is in the field
of pattern recognition, bioinformatics and data

mining. He is a member of the Institute of Electrical & Electronics Engi-
neers (IEEE).

Akira Iwata received a B.S. in 1973 from
the Department of Electrical Engineering, Fac-
ulty of Engineering, Nagoya University. He
completed the M.E. program in 1975 and be-
came a research associate in the Department of
Information, Nagoya Institute of technology. He
was a visiting researcher from April 1982 to
October 1983 in the research Institute of Med-
ical information, University of Giessen Med-
ical School, Germany. He became an asso-
ciate professor in the Department of Informa-

tion, Nagoya Institute of Technology in 1984, and a professor in the Depart-
ment of Electrical and Computer Engineering in 1993, and vice president
in 2002, and has been a professor in the Department of Computer Science
and Engineering, Graduate School, since 2004. He is engaged in research
on neural networks and internet security, He holds a D.Eng. degree. He
received an IEICEJ paper Award in 1993 and an Information Processing
Society Best Author Award in 1998. He is a member of the Information
Processing Society, JSMEBE, the Japan Electrocardiography Society, the
Japan Neural Network Society, and Japan Society for Medical Information
Processing. He is an IEEE Senior Member.


