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Abstract. We discuss various bifurcation problems in which two isolated periodic orbits
exchange periodic “bridge” orbit(s) between two successive bifurcations. We propose normal
forms which locally describe the corresponding fixed point scenarios on the Poincaré surface
of section. Uniform approximations for the density of states for an integrable Hamiltonian
system with two degrees of freedom are derived and successfully reproduce the numerical
quantum-mechanical results.

PACS numbers: 05.45.Mt, 03.65.Sq

1. Introduction

The periodic orbit theory [1, 2, 3] has made important contributions to the understanding
of quantum chaos [4, 5, 6] and to the semiclassical interpretation of quantum shell effects
in finite fermion systems [7]. Through semiclassical trace formulae, it relates the density
of states of a quantum Hamiltonian to the sum over all periodic orbits of the corresponding
classical Hamiltonian system. Gutzwiller’s trace formula [1] assumes the periodic orbits to be
isolated and therefore applies most directly to chaotic systems; it can, however, also be used
for integrable systems with isolated orbits (see e.g., [8, 9]).

In the derivation of the trace formula [1], the stationary phase approximation is used
for evaluating some of the trace integrals over the semiclassical amplitude, leading to Gauss-
Fresnel integrals. In systems with regular or mixed classical dynamics, periodic orbits can
undergo bifurcations at critical values of a system parameter (e.g., energy or deformation).
At such critical points, one or more of the Gauss-Fresnel integrals become singular and cause
the divergence of the Gutzwiller amplitudes of the bifurcating orbits. This situation can be
remedied [10] by going to higher than second-order terms in the expansion of the action
function, which appears in the phase of the trace integrand, around the critical point in phase
space. The minimum number of terms required in this expansion are given by the so-called
normal forms, which are characteristic for each type of bifurcation (see also [11]) and lead to
usually well-known catastrophe integrals. At the bifurcation points, one obtains in this way
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local uniform approximations for the semiclassical amplitudes that are finite and contain the
contributions of all orbits involved in the bifurcation.

The local uniform approximations do, however, not reproduce the correct asymptotic
Gutzwiller amplitudes far away from the bifurcation point where all involved orbits are
isolated. To achieve this goal, global uniform approximations must be developed which
interpolate smoothly from the local behavior at the bifurcation to the asymptotic regions
of the isolated orbits. This has been done in Refs. [13, 14, 15] for all generic bifurcations
occurring in Hamiltonian systems with two degrees of freedom according to the classification
of Meyer [12] (and listed also in [11]), in Refs. [16, 17] for codimension-two bifurcations, and
in Ref. [18] for the transcritical bifurcation. (In passing, we mention that similar divergences
of the Gutzwiller amplitudes occur when a symmetry is broken – or restored – under the
variation of a system parameter. Local uniform approximations for symmetry breaking have
been developed in Refs. [10, 19]; the prototype of a global uniform approximation for the
breaking of U(1) symmetry was developed in Ref. [20], which inspired those mentioned
above for bifurcations as well as global uniform approximations for the breaking of other
symmetries [21].)

In this paper we investigate a type of bifurcation that has not yet been studied in this
context and that we term bridge orbit bifurcation. Typically, this bifurcation consists of a
pair of isolated orbits which are connected through a “bridge orbit” that only exists in a
finite interval of the system parameter. Under its monotonous variation, the bridge orbit is
born at a bifurcation of the first isolated orbit and then absorbed at a bifurcation of the second
isolated orbit. This scenario has been found in both integrable and non-integrable Hamiltonian
systems[22, 23, 24]. It occurs, e.g., in the two-dimensional rationally deformed harmonic
oscillator under a generic class of perturbations; other examples will be given in section 2.
In the integrable case the bridge orbit forms a continuously degenerate family (i.e., a rational
torus), while in non-integrable cases it is typically isolated. Since the two isolated orbits which
exchange the bridge orbit typically are well separated in phase space, the bridge bifurcation
is accompanied by global changes of the phase space structure which cannot be treated with
the usual perturbative normal forms derived from the Birkoff-Gustavson expansion. This
is different from the generic bifurcations of codimension one [11], and also from those of
codimension two considered in [16, 17], where only local changes in the phase space structure
occur around a central periodic orbit that exists at all values of the relevant system parameter.

In all the bifurcation types investigated so far in connection with uniform
approximations, all orbits participating in the bifurcations become asymptotically isolated far
enough from the bifurcation point(s). Even in the codimension-two bifurcations considered in
[16, 17], where some isolated orbits only exist between two adjacent bifurcations, these have
their well-defined partners which become asymptotically isolated at least on one side of one
of the bifurcations. For the bridge orbits studied here, this is not the case. The bridge orbits
are entirely intrinsic to the bifurcation scenario and cannot be linked to any ‘external’ orbit
existing far away from the bifurcation. This causes a generic problem in the construction of
the global uniform approximations which will be discussed in section 4.

In section 2, we present some examples of bridge orbit bifurcations in integrable and
non-integrable systems with two degrees of freedom. In section 3, we propose a new
type of normal form (derived in detail in the appendix) which successfully describes the
scenario of the bridge orbit bifurcation in integrable systems. In section 4, we derive local
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and global uniform approximations from this normal form, give analytic trace formulae
for the semiclassical density of states and compare its numerically computed results with
fully quantum-mechanical results for the corresponding quantum Hamiltonians. Section 5 is
devoted to a summary and concluding remarks.

In the following sections, numerical integrations of the classical equations of motion are
performed with Adams’ Method (a kind of predictor-corrector method) to get solutions of high
accuracy. Periodic orbits are obtained by searching fixed points (q, p) of the Poincaré map
in a suitable surface of section using a two-dimensional Newton-Raphson iteration method,
whereby the stability matrix (linearized Poincaré map) is obtained at the same time. The fixed
points are smooth functions of the system parameter and can easily be followed through the
bifurcation points under variation of the parameter, as well as new branches of fixed points
emerging from the bifurcation points.

2. Bridge orbit bifurcations in two dimensional rα potential models

Let us start from a system with two degrees of freedom described by the Hamiltonian

H0(p,r) =
1
2

p2 +
1
2
|r|α . (2.1)

Since the potential is a homogeneous function of the coordinates r = (x,y), the Hamiltonian
has the scaling property

H0(c
1
2 p,c

1
α r) = cH0(p,r) , c > 0 , (2.2)

and the equations of motion (EOM) are invariant under the following scaling transformation:

p → c
1
2 p, r → c

1
α r, t → c

1
α − 1

2 t , (2.3)

while the energy transforms as E → cE. Therefore, the phase-space profile is independent of
energy and one has the same set of periodic orbits at all energies E. The action integral along
a periodic orbit (po) has the following energy dependence

Spo(E) =
∮

po(E)
p ·dr =

(
E
E0

)1
2+

1
α∮

po(E0)
p ·dr = h̄Eτpo , (2.4)

where the dimensionless scaled energy E and the dimensionless scaled period τpo of the orbit
are defined by

E =

(
E
E0

)1
2+

1
α
, τpo =

1
h̄

∂Spo

∂E
=

1
h̄

∮
po(E0)

p ·dr , (2.5)

whereby the reference energy E0 can be chosen arbitrarily.
We now consider two kinds of perturbations of the system (2.1). The first one is

introduced by a magnetic field perpendicular to the (x,y) plane. The motion of a charged
particle in the plane is described by the Hamiltonian

Hκ =
1
2

p2 +
1
2

rα −κ r
α
2 −1(xpy − ypx), (2.6)

where the radial dependence of the perturbation (with r = |r|) is determined such that the
scaling invariance persists for any finite κ . The strength of the magnetic field is proportional
to κ r

α
2 −1. Using polar coordinates r = (r,θ), p = (pr, pθ ), (2.6) reads

Hκ =
1
2

(
p2

r +
p2

θ
r2

)
+

1
2

rα −κ r
α
2 −1 pθ . (2.7)
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Figure 1. Scaled periods τ of periodic orbits for the Hamiltonian (2.6) as functions of κ .
Isolated circular orbits and families of bridge orbits are indicated by dashed and solid curves,
respectively. Circles represent bifurcation points.

κ=−0.05 κ=−0.03 κ=0 κ=0.03 κ=0.05

κ=0.31 κ=0.314 κ=0.333 κ=0.36 κ=0.4 κ=0.41 κ=0.4234

κ=0.167 κ=0.18 κ=0.2 κ=0.22 κ=0.24 κ=0.26 κ=0.272

Figure 2. Some short bridge orbits in Hamiltonian (2.6) for α = 2.4 and for different values
of κ . Upper row shows symmetric (1,1) bridge, middle and lower rows show asymmetric (2,1)
and (3,2) bridges, respectively.
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This system is integrable since pθ = Λ is a constant of motion. For any non-zero κ , there
exist two isolated circular periodic orbits C± with different radii r± and angular momenta
Λ±, which are found as solutions of the equations

Veff(r,Λ) =
1
2

rα +
Λ2

2r2 −κΛr
α
2 −1 = E , (2.8)

∂Veff

∂ r
(r,Λ) =

α
2

rα−1− Λ2

r3 −κΛ
(α

2
−1

)
r

α
2 −2 = 0 . (2.9)

Evidently they depend on the parameter κ . The radii r± correspond simply to the minima of
the effective potential (2.8). Small oscillations around the circular orbits C± have frequencies
ω± for their angular and Ω± for their radial motions which are given by

ω± =
Λ±

r2
±

−κr
α
2 −1
± , Ω± =

√
∂ 2Veff

∂ r2 (r±,Λ±) . (2.10)

They become periodic for those values κ± for which the two frequencies are commensurate,
i.e., when

Ω±

ω±
(κ±) =± (n++n−)

n±
, (2.11)

with positive integers n+ and n−. Precisely at the values κ = κ±, the orbits C± must undergo
bifurcations, because the trace of their stability matrix M equals two: TrMC±(κ±) =+2. The
interesting phenomenon now is that the two bifurcations are connected by a bridge orbit B
that is created (or absorbed) at the bifurcations. It is actually a degenerate family of orbits with
TrMB(κ) = +2 for all values κ− ≤ κ ≤ κ+. More precisely, a bridge orbit B emerges from a
bifurcation of the n−-th repetition of the orbit C− at κ = κ− and is absorbed at a bifurcation
of the n+-th repetition of the orbit C+ at κ = κ+. It can therefore be labeled by the repetition
numbers as B(n+,n−). Figure 1 shows the scaled periods of the shortest periodic orbits of the
system (2.6) as functions of the parameter κ . At each crossing point of some repetitions of the
two circular orbits, indicated by the pair of numbers (n+,n−), one finds a bridge orbit family
connecting them. The shapes of some of the bridge orbits are shown in figure 2. In figure 3,
the scaled periods and the traces of stability matrices are plotted as functions of κ for the
circular orbits C± and the bridge orbits connecting them. TrMC±(κ) touches the horizontal
line TrM = 2 at κ = κ±, and in between there exist the bridge orbit families having TrMB = 2.

The second perturbation is introduced by an elliptic deformation. We modify the
Hamiltonian (2.1) as follows:

Hβ =
1
2

p2 +
1
2
(
r fβ (θ)

)α
, (2.12)

fβ (θ) =

√
η cos2 θ +

1
η

sin2 θ , β =
2(η −1)

η +1
. (2.13)

The scaling rule (2.2) persists for any β , but the system is nonintegrable for β ̸= 0. We take
β as the deformation parameter, which is related to the axis ratio η by the second equation in
(2.13). For any β ̸= 0, there are two isolated periodic orbits Ax and Ay: straight-line librations
along the x and y axis, respectively. Figure 4 shows the scaled periods of the shortest periodic
orbits in the system (2.12) as functions of β . Again one, finds bridge orbits B which bifurcate
from the repetitions (nx,ny) of the orbits Ax and Ay near each crossing point.

In figure 5, we plot some of the shortest bridge orbits in the (x,y) plane. The system
(2.12) is non-integrable and the bridge orbits here are isolated. The symmetric bridges
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Figure 3. Scaled period τ (upper panels) and trace of stability matrix M (lower panels) of the
symmetric (1,1) (left-hand side) and asymmetric (2,1) (right-hand side) bridge orbits for the
Hamiltonian (2.6) with α = 2.2, shown by solid lines as functions of the parameter κ . The
dashed lines show the corresponding quantities for the circular orbits C±.

B(m,m) are bounded by two isochronous pitchfork bifurcations; the example of B(1,1) is
illustrated in figure 6. In the left panel of figure 7, the graph of TrM(β ) for the 2nd repetition
of the Ax orbit touches the horizontal line TrM =+2 at κ = 0.628 and two stable and unstable
branches emerge from an island-chain bifurcation. The unstable and stable branches submerge
sequentially into the Ay orbit at κ = 0.688 and 0.728, respectively, in two successive pitchfork
bifurcations. For asymmetric crossings (nx,ny) with nx ̸= ny, the bridges consist of two
isolated branches, i.e., one stable and one unstable orbit, which we label by B(nx,ny)s and
B(nx,ny)u, respectively. For the bridge orbits B(2,1), the common left end is a non-generic
island-chain bifurcation of the 2nd repetition of the Ax orbit, while the right ends are two
isochronous pitchfork bifurcations of the Ay orbit occurring at two different deformations
(see the left panel of figure 7). The asymmetric B(n+,n−) bridges with n+,n− ≥ 2 also
consist of two isolated branches with different actions and stabilities, but their end points are
common at both ends of both branches, since they occur both at period-multiplying island-
chain bifurcations (cf. the right panel in figure 7 for the B(3,2) bridges).

In the limit α → 2, Hκ becomes the cranked and Hβ is the anisotropic harmonic
oscillator. (Note that both systems have identical spectra after a suitable transformation
from α to κ , cf. section 3.2.8 of [7]). In this limit, each bifurcation pair coalesces and
the connecting bridge orbit shrinks to a point at which the two isolated orbits intersect. At
the crossing points, one has locally periodic-orbit families of two-fold degeneracy due to the
dynamical SU(2) symmetry of the rationally deformed harmonic oscillator in two dimensions.

A scenario involving two bridge orbits is obtained if one breaks the U(1) symmetry that
the Hamiltonian (2.13) possesses at β = 0. Let us e.g., modify the shape function fβ (θ) in
(2.13) by the following one:

fβ ,β4
(θ) =

√
η cos2 θ +

1
η

sin2 θ −β4 cos4θ , (2.14)
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Figure 4. Same as figure 1 but for the Hamiltonian (2.12) as functions of deformation
parameter β . Bridge orbits are isolated in contrast to those for (2.6).

β=−0.16 β=−0.1 β=0.0 β=0.1 β=0.16

β=0.604 β=0.64 β=0.66 β=0.68 β=0.708

β=0.6 β=0.64 β=0.68 β=0.72 β=0.77

Figure 5. Some short bridge orbits in the Hamiltonian (2.6) for α = 2.4 and for several values
of deformation parameters β . The upper row shows the symmetric bridge B(1,1), the middle
and lower rows display the stable and unstable branches of the asymmetric B(2,1) bridge.
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Figure 6. Scaled period τ (upper panel) and trace of the stability matrix M (lower panel) of the
symmetric (1,1) bridge orbit for the Hamiltonian (2.12) with α = 2.2, shown by solid lines as
functions of the deformation parameter β . The dashed lines show the corresponding quantities
for the Ax and Ay orbits.
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Figure 7. Same as figure 6 but for asymmetric (nx,ny) bridge orbit bifurcations, with two pairs
of values for the nx-th repetition of the Ax orbit the and the ny-th repetition of the Ay orbit.
The suffixes s and u represent the stable and unstable branches, respectively.

with nonzero β4. In this case, a second bridge orbit appears around β = 0 for the symmetric
(m,m) bifurcations. Figure 8 shows the properties of these bridge orbits. For β4 = 0 it
corresponds to figure 6 where the two isolated orbits Ax and Ay intersect in a point with
U(1) symmetry (β = 0) and their stability traces intersect at TrM = 2 (see the lower part of
the figure). For β4 ̸= 0, this crossing point is split, so that the second bifurcation of each orbit
occurs at different points on the β axis; the new pair of bifurcations is now connected by a
second bridge orbit B2. For β4 > 0, as shown on the left side of figure 8, both bridges are
stable, while for β4 < 0 (see right side) one of them is stable and the other is unstable. All
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Figure 8. Same as figure 6 but for the shape function (2.14) with β4 =±0.002 and α = 2.2.

bifurcations here are of the non-generic pitchfork type.
Finally, we mention a bifurcation scenario that has been discussed in [24]. Hereby a pair

of isolated orbits exchange their stability via an isolated bridge orbit. Examples for this are
found in the coupled quartic oscillator

Hα =
1
2

p2 +
1
4
(x4 + y4)+α x2y2 . (2.15)

Figure 9 shows a narrow region of the chaoticity parameter α . The shapes of two crossing
isolated orbits F and P in the (x,y) plane are shown by inserts, as well as various shapes of the
bridge orbit Q interpolating between those two shapes. Note the extremely small scale: the
maximum value of |TrM −2| of the bridge orbit is smaller than 10−7. On a larger scale, the
bridge orbit may not be observed numerically and the two isolated orbits F and P would appear
to cross in a point. The bifurcation diagram then would look similar to that of a transcritical
bifurcation [18]. The orbits F and P are created at α = 0.6315 in a period-tripling bifurcation
from a straight-line libration along the y axis; at α = 0 they become members of an integrable
3:2 torus with U(1) symmetry. We refer to [18] for details of this bifurcation scenario and to
[24, 25] for details of the potential (2.15). A bridge bifurcation of the same type has been also
found to occur in a two-dimensional spin-boson Hamiltonian [26].

3. Normal forms for some bridge-orbit bifurcation scenarios

Normal forms are frequently used in singularity theory (see e.g., [27]) and catastrophe
theory (see e.g., [28]) to classify bifurcations. The natural variables of the normal forms
for bifurcations in Hamiltonian systems with two degrees of freedom are the two canonical
variables (q, p) spanning a projected Poincaré surface of section transverse to the bifurcating
parent orbit, and a bifurcation parameter ε . These variables are usually chosen such that
the bifurcation of the parent orbit occurs at (q, p,ε) = (0,0,0). The normal form function
S(q, p,ε) must fulfill the condition that its critical points correspond to the fixed points in
(q, p,ε) space in the neighborhood of the origin, and hence to the periodic orbits taking part

9
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Figure 9. Stability exchange of isolated orbits F and P in the coupled quartic oscillator (2.15)
via two non-generic pitchfork bifurcations connected by an isolated bridge orbit Q. The inserts
exhibit the shapes of the orbits in the (x,y) plane.

in the bifurcation. This condition, however, is not sufficient to specify the normal form for
a given bifurcation uniquely. Usually, S(q, p,ε) is chosen to contain a minimum number of
parameters and simple functions of the variables (q, p,ε) – often just polynomial expressions
in q, p and ε – that yield the desired fixed-point scenario of a given bifurcation. For the
generic bifurcations in two-dimensional symplectic maps according to the classification of
Meyer [12], the standard normal forms have been given in [10, 11]. They can also be used for
non-generic bifurcations of the same type (i.e., with the same fixed-point scenario in phase
space) occurring in systems with discrete symmetries (see e.g., [29]). Normal forms for non-
generic bifurcations in Hamiltonian systems with different fixed-point scenarios can be found
in [18] (for the transcritical bifurcation) and in [16, 17] (for codimension-two bifurcations).

For bifurcations involving more than two orbits, it is often useful to transform the
Poincaré variables (q, p) to action-angle variables (φ , I) (cf. [11, 15]):

p =
√

2I cosφ , q =
√

2I sinφ , I ≥ 0 , φ ∈ [0,2π) . (3.1)

This becomes particularly useful when one considers integrable systems for which the normal
form function does not depend on the angle φ , so that one only has to deal with a function
S(I,ε) depending on two variables. For instance, in [17], a simple bifurcation of a torus from
an isolated orbit in the integrable Hamiltonian H = (p2

x + p2
y)/2+(x2 + y2)/2−λ y3/3 could

be described by the normal form

S1(I,ε) = S0 − εI +aI2 (3.2)

with suitably chosen constants S0 and a and bifurcation parameter ε . The situation there
corresponds to one half of that seen in figure 3: a torus B bifurcates from an isolated orbit C.
The stationary condition for (3.2) is

∂S1

∂ I
(IB,ε) = 0 , ⇒ IB =

ε
2a

. (3.3)

Since I must be positive definite, the torus B exists only for ε/a > 0; its stability trace is
always TrMB =+2 there. The isolated parent orbit arises from I = 0 as a semiclassical end-
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Figure 10. Poincaré surface of section for (2.6) with α = 2.4 and κ = 0.

point correction (see [17] for details). Its stability trace is given by TrMC = 2− ε2, so that it
is always stable except at the bifurcation point ε = 0.

In this section, we develop normal forms for some of the bridge-bifurcation scenarios
described in the previous section. We start with the integrable model (2.6). Figure 10 shows
a Poincaré surface of section obtained for the parameters α = 2.4 and κ = 0, fixing y = 0
(and ẏ > 0). Since the system is integrable, all fixed points lie on continuous curves which are
intersections of rational tori with the (x, px) = (q, p) plane, except for the two isolated fixed
points along the x axis which belong to the isolated rotating orbits C±. The corresponding
bifurcation diagrams are seen in figure 1 where the rational tori correspond to the B(1,1)
bridge orbit. The envelope of the curves in figure 10 corresponds to the boundary of the
classically accessible phase space given by py = 0.

The phase-space diagram seen in figure 10 is completely analogous to that of a two-
dimensional isotropic harmonic oscillator H = (p2

x + p2
y)/2 + ω2(x2 + y2)/2. The tori

correspond to the elliptic orbits, the isolated points to the circular orbits C± (with both time
orientations), and the line x = 0 to the librating orbits. (The boundary contains the librating
orbits along the y axis, i.e., with py = 0, which strictly cannot be seen in the Poincaré plot.)
It is useful to parameterize the orbits by their (conserved) angular momentum L = xpy − ypx.
The circular orbits C+ and C− have maximum and minimum value of L, respectively, and
all intermediate nonzero L values correspond to elliptic orbits which are degenerate against
rotations around the origin about an angle ϕ ∈ [0,π). L = 0 corresponds to the librating orbits
which have the same degeneracy.

This analogy suggests to use the angular momentum L and the rotation angle ϕ of the
harmonic-oscillator orbits to define action-angle variables φ = 2ϕ and I = L/2 and map these
onto the Poincaré variables of our present integrable system (2.6). This transformation is
derived in Appendix A. The resulting mapping of (φ , I) to the Cartesian Poincaré variables
(q, p) is given by the relations (here for ω = 1)

q =
√

2ρ
cosθ√

1− sinθ cosφ
,

p =
√

2ρ
sinθ sinφ√

1− sinθ cosφ
, ρ > 0 , 0 ≤ φ ≤ 2π ,
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I =
1
2

q
√

4ρ −q2 − p2 = ρ cosθ , 0 ≤ θ ≤ π , (3.4)

which define an area-conserving canonical transformation (φ, I) ↔ (q, p). Hereby θ is
an angle parameterizing the angular momentum by L = Lc cosθ , where Lc is the angular
momentum of the C+ orbit in the harmonic oscillator. Note that the transformation defined by
(3.4) is more complicated than that given in (3.1); in particular, the action variable I here can
have both signs. It is limited by the values ±ρ yielding the fixed points (q, p) = (±

√
2ρ,0)

which correspond to the two isolated orbits C± at their bifurcation points where the bridge
orbit is created or absorbed.

It turns out now that the bridge bifurcations in the integrable system (2.6) can be
described by the same normal form function S1(I,ε) as defined in (3.2) above, except that
here we have to use the definition of I in (3.4). As shown in Appendix A, ρ equals Lc/2 in the
harmonic oscillator model. Here, ρ > 0 is simply a parameter of the normal form that will be
determined in section 4.

The stationary points of S1(I,ε) are most conveniently found in terms of the variable θ .
The stationary condition is

∂S1

∂θ
= ρ sinθ(ε −2aI) = 0 . (3.5)

The stationary points satisfying sinθ = 0, i.e., θ = 0 and π , correspond to the two isolated
circular orbits C± with I = ±ρ . In addition, there is another stationary point satisfying
IB = ε/2a as in (3.3) above, corresponding to the B torus. Since IB must also fulfill the
condition IB = ρ cosθ , it has real values only for

−2|a|ρ ≤ ε ≤ 2|a|ρ , (3.6)

so that the B torus only exists in the range of ε values between the bifurcation points of the C±
orbits. The actions of these periodic orbits are obtained by inserting their stationary values of
I into the normal form (3.2); they become

SC± = S1(±ρ,ε) = S0 ∓ ερ +aρ2, SB = S1(IB,ε) = S0 −
ε2

4a
. (3.7)

The traces of their stability matrices can be obtained from the normal form by [15]

TrM =

(
∂ 2Ŝ

∂ p∂q

)−1[
1+

(
∂ 2Ŝ

∂ p∂q

)2

− ∂ 2Ŝ
∂ p2

∂ 2Ŝ
∂q2

]
,

Ŝ(q, p,ε) = S1(q, p,ε)+qp , (3.8)

whereby Ŝ(q, p,ε) is the generating function of the Poincaré map with initial momentum p
and final coordinate q in the (q, p) plane at the value ε of the bifurcation parameter. From this
we obtain for our periodic orbits

TrMC± = 2− (ε ∓2aρ)2 , TrMB = 2 . (3.9)

Hence we see that the normal form (3.2) with the mapping (3.4) correctly describes the
bifurcation scenario of the bridge orbits found in the model (2.6), as illustrated in figure 1.

In non-integrable systems, the normal form must depend also on the angle variable φ .
Let us consider the following normal form

S2(I,φ ,ε) = S0 − εI +aI2 +b(ρ2 − I2)cos2 φ
= S0 − ερ cosθ +ρ2(acos2 θ +bsin2 θ cos2 φ) , (3.10)

12
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which respects the fact that the φ-dependent terms in any canonically invariant quantity (such
as action, stability) should vanish for I =±ρ . The stationary phase conditions become

∂S2

∂φ
= −2bρ2 sin2 θ sinφ cosφ = 0 , (3.11a)

∂S2

∂θ
= ρ sinθ(ε −2ρ cosθ(a−bcos2 φ)) = 0 . (3.11b)

The above set of equations have the following solutions:

sinθ = 0 , θ± = 0 , π ⇔ I± =±ρ , (3.12a)

cosφ = 0 , φB1 =
π
2
,

3π
2

⇔ IB1 = ρ cosθB1 =
ε
2a

, (3.12b)

sinφ = 0 , φB2 = 0 , π ⇔ IB2 = ρ cosθB2 =
ε

2(a−b)
. (3.12c)

The periodic orbits corresponding to the solutions (3.12b) and (3.12c) exist for −2|a|ρ < ε <

2|a|ρ and −2|a−b|ρ < ε < 2|a−b|ρ , respectively. The actions of these periodic orbits are

S± = S0 ∓ ερ +aρ2, (3.13a)

SB1 = S0 −
ε2

4a
, (3.13b)

SB2 = S0 −
ε2

4(a−b)
+bρ2, (3.13c)

and the traces of their stability matrices are

TrM± = 2− (ε ∓2aρ)[ε ∓2(a−b)ρ] , (3.14a)

TrMB1 = 2+
b
a
(ε −2aρ)(ε +2aρ) , (3.14b)

TrMB2 = 2− b
a−b

[ε −2(a−b)ρ][ε +2(a−b)ρ]. (3.14c)

Thus, the periodic orbits (3.12b) and (3.12c) are the two bridge orbits which connect the two
periodic orbits corresponding to (3.12a) at the bifurcation points εbif =±2aρ and ±2(a−b)ρ .
The bridge orbits found in figure 8 can be regarded as of this type. For b = a (or a = 0) the
bridge orbit B2 (or B1) shrinks to a single point ε = 0. This corresponds to the situation found
for the (1,1) orbit in figure 6. The orbit Q in figure 9 can be regarded as the bridge orbit B2 in
the limit of extremely small |a−b|.

Figure 11 shows the Poincaré surface of section for the Hamiltonian (2.12), with
deformations given by (2.14), for α = 2.2, β4 = 0.002 and several values of β along the
right half of the (1,1) bridge bifurcation region (cf. the left panel of figure 8). The Poincaré
variables (q, p) are here defined by q= (x+y)/

√
2, p= (px+ py)/

√
2 at the surface of section

x−y= 0, ẋ− ẏ> 0. At β = 0, the existing periodic orbits are the bridge B1 at (q, p)≈ (0,±1),
the bridge B2 at (q, p) = (0,0), and the diameter orbits Ax, Ay at (q, p) ≈ (∓1,0). Both
bridges are stable and the diameters are unstable. At the bifurcation point β = 0.016, the
bridge B2 merges into the Ax orbit and Ax becomes stable. At the bifurcation point β = 0.077,
the bridge B1 merges into the Ay orbit and Ay becomes stable. By fitting (3.13) and (3.14)
to the periodic orbit quantities for α = 2.2 and β4 = 0.002, we obtain aρ = −0.12 and
bρ = −0.145. The bifurcation points are thus ε = ±0.24 and ±0.05 for the B1 and B2
bridges, respectively. Figure 12 shows the contour map of the normal form (3.10) with the
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Figure 11. Poincaré surface of section for the Hamiltonian (2.12) with deformation (2.14),
plotted for α = 2.2, β4 = 0.002 and several values of β in the (1,1) bifurcation region. (See
text for definitions of the Poincaré variables (q, p).)
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above values of a and b, and with ε corresponding to each value of β in figure 11. One will
see that the phase space profiles of figure 11 are nicely reproduced by this normal form.

For the asymmetric bridges (n+,n−) with n+ ̸= n− we have so far not found any
suitable normal form. One may need a mapping based on the anisotropic (rational) harmonic
oscillator instead of that given in (3.4) which is based on the isotropic oscillator. This will be
investigated in further research.

4. Uniform approximations for the density of states

4.1. Local uniform approximation

In this section we evaluate the semiclassical level density around the bifurcation points using
the normal form obtained in the above section. In the following we limit ourselves to the
integrable model described by the Hamiltonian (2.6). The calculation of the parameters in
a normal form from a given Hamiltonian is in general a very difficult problem. The idea
of the uniform approximations is to avoid their direct calculation by relating them to the
local invariant properties of the participating periodic orbits in the vicinity of a bifurcation,
which can be obtained numerically from a periodic-orbit search. The bridge bifurcations
occurring in the Hamiltonian (2.6) involve three orbits: the two circular orbits C± (with
repetition numbers n+ and n−) and the bridge orbits B(n+,n−) (cf. figures 1, 3). From
these, we can determine five independent quantities: the three actions S± and SB, and the
two stability traces TrM± (recall that TrMB = 2 is constant). The normal form given by
(3.2) and (3.4) contains the four parameters S0, ε , a and ρ , which we can determine using
four of the above five orbit properties. In problems with only one bifurcation point, such a
way of determining the normal form parameters does not contradict with remaining unused
quantities, but in the present situation of the bridge bifurcations, the values of the parameters
do depend on which quantities are used. This problem is related with the global nature of
the bridge bifurcations, where the parameters undergo significant changes between the two
bifurcation points. Different from all bifurcations treated so far in the literature in uniform
approximations, the bridge orbit here has no ‘external link’, i.e., there is no external orbit
outside the bifurcation interval to which its properties can be asymptotically linked. This
leads to a slight ambiguity in determining the parameter a, as we shall see below.

In order to determine the normal form parameters uniquely, at least locally for each given
ε , we add one more term to S1(I,ε) in (3.2) and use the normal form

S3(I,ε) = S0 + εI +aI2 +bI3, I = ρ sinθ . (4.1)

The stationary-phase analysis then predicts the properties of the periodic orbits to be

S± = S0 +aρ2 ∓ (ερ −bρ3) (4.2a)

SB = S0 −
ε2(1+2bε/a2 +

√
1+3bε/a2)

a(1+
√

1+3bε/a2)3
(4.2b)

TrM± = 2− [ε − (±2aρ +3bρ2)]2. (4.2c)

The five normal form parameters (S0, ε , a, b, and ρ) are now uniquely determined by the five
equations in (4.2), although these cannot be solved analytically. Due to the scaling rules, the
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Figure 13. Normal form parameters determined from periodic orbit quantities. Left and right
panels are results for the (1,1) and (2,1) bridge bifurcations, respectively, for α = 2.02. In the
center panels, the scaled periods τ of all three orbits are shown besides τ0 = S0/h̄E .

parameters have the following energy dependences:

S0 = h̄Eτ0 , ρ = h̄E ρ̃ , a =
ã

h̄E
, b =

b̃
(h̄E)2 , (4.3)

where τ0, ρ̃ , ã, and b̃ are dimensionless constants. Ideally, these four parameters should not
depend on the bifurcation parameter ε throughout the bifurcation region.

Figure 13 shows their results which we have determined numerically for the (1,1) and
(2,1) bridge-orbit bifurcations for α = 2.02. In the center panels, we show besides τ0 also
the scaled periods τ of all three periodic orbits. The parameters a, b, S0 and ρ turn out to
be approximately constant throughout the bifurcation region, as hoped, in particular for the
symmetric (1,1) bridge. Note that at ε = 0, the value of b is exactly zero for the symmetric
bridge bifurcation, so that the cubic term in (4.1) does not contribute there. Furthermore, the
contribution of the cubic term bI3 to the actions of the periodic orbits remains much smaller
than that of the quadratic term aI2 throughout the whole bifurcation region in both cases (1,1)
and (2,1). It will therefore be omitted again in the following.

The combined contribution of all orbits involved in the bifurcation to the semiclassical
level density is given by [9, 10]

δg(E) =
1

2π2h̄2 Re
∫

dq
∫

dpΨ(q, p,ε)exp
[

i
h̄

{
Ŝ(q, p,ε)−qp

}
− iπ

2
ν
]
, (4.4)

where Ŝ(q, p,ε) is the generating function defined in (3.8) which contains the appropriate
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normal form, and the amplitude function Ψ(q, p,ε) is given by

Ψ(q, p,ε) =
∂ Ŝ
∂E

∣∣∣∣ ∂ 2Ŝ
∂q∂ p

∣∣∣∣1/2

. (4.5)

Here ν is the Maslov index of the bridge orbit labeled by (n+,n−). It is given by

ν = 2nr , nr = n++n− , (4.6)

where nr is equal to the number of librations in the radial direction. The amplitude function
Ψ(q, p,ε) usually has a moderate dependence on the variables q, p,ε and can be replaced by
its value at the origin, Ψ(0,0,0) = ∂S0/∂E = T0, which is the average period of the orbit
cluster. By transforming the variables from (q, p) to (φ , I) and integrating over φ , one obtains

δg(E)≃ T0

π h̄2 Re ei(S0/h̄−πν/2)
∫ ρ

−ρ
dI ei(−εI+aI2)/h̄. (4.7)

Here, we omitted the cubic term bI3 in the normal form (4.1) as stated above. The integral on
the right-hand side can be analytically expressed as∫ ρ

−ρ
dI ei(−εI+aI2)/h̄ =

√
2π h̄
4a

eiε2/4ah̄ {σ+(c++ is+)+σ−(c−+ is−)} , (4.8)

c± = C(|x±|) , s± = S(|x±|) , x± =

√
4a

2π h̄

(
ρ ∓ ε

2a

)
, σ± = sgnx± , (4.9)

where C(x) and S(x) are the Fresnel functions defined by

S(x) =
∫ x

0
sin

(π
2

t2
)

dt , C(x) =
∫ x

0
cos

(π
2

t2
)

dt . (4.10)

Inserting (4.8) into (4.7), one obtains the local uniform approximation to the level density:

δg(E) =
T0

h̄3/2√2πa
Re ei(SB/h̄−πν/2) {σ+(c++ is+)+σ−(c−+ is−)} . (4.11)

In terms of the scaled dimensionless normal form parameters given in (4.3), the scaled level
density becomes

δg(E) =
√

E
2π ã

τ0 Re ei(τBE−πν/2) {σ+(c++ is+)+σ−(c−+ is−)} , (4.12)

where τB = SB/h̄E = τ0 + ε̃2/4ã is the scaled period of the bridge orbit, c± and s± are given
by (4.9) with the arguments

x± =

√
2ãE
π

(
ρ̃ ∓ ε

2ã

)
. (4.13)

4.2. Global uniform approximation

The local uniform approximation (4.11) is valid only in the vicinities of the bifurcation points,
where the properties of periodic orbits are nicely described by the normal form (3.2). Far from
the bifurcation points in the ε variable, the standard asymptotic trace formulae should work,
which are given in the form of the Gutzwiller formula [1] for the isolated orbits and the
Berry-Tabor formula [30] for the family of bridge orbits. The purpose of the so-called global
uniform approximations is to interpolate between the local result (4.11) and the standard trace
formulae. For the generic bifurcations, such global uniform approximations were developed
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by Sieber and Schomerus [13, 14, 15]. We shall presently follow their procedure to derive a
global uniform approximation for the integrable bridge bifurcations.

In order to go beyond the local uniform approximation, one can start from equation (4.4),
but one has to expand the amplitude function Ψ(q, p,ε) around the bifurcation point in a way
similar to the normal form function S(q, p,ε) for the action integral. We find that it is sufficient
here to take into account only a linear term in I. We thus write δg(E) as

δg(E) =
1

π h̄2 Re
∫ ρ

−ρ
dI(α +β I)exp

[
i
h̄

{
Ŝ(q, p)−qp

}
− iπ

2
ν
]
. (4.14)

In principle, the parameters α and β are determined from higher-order expansion coefficients
in the normal form (cf. [14]), but in practice one may determine them from the condition
that the integral (4.14) reproduces the asymptotic contributions of the bifurcating orbits to the
standard trace formulae far from the bifurcation points. There, the action differences between
different periodic orbits corresponding to the stationary points of the normal form (3.2) are
much larger than h̄. This is equivalent to taking the asymptotic expansions of the Fresnel
integrals when their arguments are much larger than unity,

x± =

√
2(aρ2 ∓ ερ + ε2/4a)

π h̄
=

√
2
π

S±−SB

h̄
≫ 1 .

Their asymptotic forms are (see e.g., [31])

C(x)≃ 1
2
+

1
πx

sin
π
2

x2, S(x)≃ 1
2
− 1

πx
cos

π
2

x2,

C(x)+ iS(x)≃ eiπ/4
√

2
− i

πx
eiπx2/2, x ≫ 1 . (4.15)

Their contribution to the level density is then given by

δg(E) =
1

π h̄2 Reei(S0/h̄−πν/2)
∫ ρ

−ρ
dI(α +β I)ei(−εI+aI2)

=
1

π h̄2 Re

[√
2π h̄
4a

(
α +

βε
2a

)
ei(SB/h̄−πν/2) {σ+(c++ is+)+σ−(c−+ is−)}

+
β h̄
2a

(
ei(S+/h̄−π(ν+1)/2)− ei(S−/h̄−π(ν+1)/2)

)]
, (4.16)

with SB and S± given by (3.7). Inserting (4.15), one has

δg(E)≃
α + εβ

2a

π h̄2√πa/h̄

(
σ++σ−

2

)
cos

(
SB

h̄
− π

2
ν +

π
4

)
+

α +βρ
π h̄|2aρ − ε|

cos
(

S+
h̄

− π
2
(ν +σ+)

)
+

α −βρ
π h̄|2aρ + ε|

cos
(

S−

h̄
− π

2
(ν +σ−)

)
. (4.17)

The first term on the right-hand side can be identified as the contribution of the bridge orbit
with its Berry-Tabor amplitude

ABT =
T0

π h̄2

√
2π h̄
|K|

, K =
∂ 2S
∂ I2 , (4.18)
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and we have

α +
εβ
2a

= TB , a =
1
2
K , (4.19)

TB being the period of the primitive bridge orbit. The second and third terms in the right-hand
side of (4.17) are identified as the contributions of two isolated orbits with their Gutzwiller
amplitudes

A± =
T±

π h̄n±
√
|2−TrM±|

, (4.20)

where T± are the full periods of these orbits and n± are their repetition numbers. Furthermore
one finds

α ±βρ = T± , 2aρ ± ε = σ±n±
√
|2−TrM±| . (4.21)

From (4.20) and (4.21), we can determine the parameters α and β by

α =
1
2
(T++T−) ,

β
2π h̄a

=
T+−T−

σ+T+
A+

+
σ−T−

A−

. (4.22)

Inserting them into (4.16), we obtain the global uniform approximation for the level density

δg(E) =
ABT√

2
Re

[
ei(SB/h̄−πν/2) {σ+(c++ is+)+σ−(c−+ is−)}

]
+

T+−T−
σ+T+

A+
+

σ−T−
A−

{
cos

(
S+
h̄

− π
2
(ν +1)

)
− cos

(
S−

h̄
− π

2
(ν +1)

)}
(4.23)

with the arguments of the Fresnel integrals given by

x± =

√
2
π

S±−SB

h̄
. (4.24)

Note that all quantities entering this formula are determined from the invariant properties of
the periodic orbits.

The global uniform approximation (4.23) is the main result of this section. We shall refer
to it in the following as UA2. It becomes important in particular when the two bifurcations,
at which the bridge orbits are created and annihilated, are close to each other so that neither
of the isolated circular orbits are in the asymptotic region; the two bifurcations then cannot
be treated separately. Sufficiently far from the bifurcation points, where all orbits reach their
asymptotic domains, one can use the asymptotic trace formulae, referred to as ASY in the
following, i.e., the Gutzwiller formula [1] for the isolated circular orbits and the Berry-Tabor
formula [30] for the bridge orbit families. If this is also the case for a central region between
the two bifurcations, where the bridges are present, their bifurcations from/into the isolated
orbits can be treated separately in the uniform approximation given in [17], which we shall
refer to as UA1.

4.3. Numerical results

In the following, we test numerically the various semiclassical approximations to the level
density. We restrict ourselves to the coarse-grained level density in the scaled energy variable
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Figure 14. Oscillating part of the scaled level density δg(E) for the Hamiltonian (2.6) with
α = 2.4 and κ = 0.31. Solid, dashed and dotted curves represent UA1, ASY (divided by 10)
and QM, respectively. In the semiclassical level densities, the periodic orbit sum includes the
Cn+
+ orbits with n+ ≤ 3, the orbit C−, and the bridge B(2,1).

E , which quantum-mechanically is defined in terms of the scaled energy spectrum {Ei} by a
sum over normalized Gaussians with width γ :

gγ(E) =
1√
πγ ∑

i
exp{−(E −Ei)

2/γ2}. (4.25)

In the semiclassical trace formulae, each contribution of a periodic orbit (po) then has to
be multiplied by an exponential damping factor exp{−(γτpo/2)2} (see e.g., [7]), so that the
contributions of longer orbits are suppressed and the sum over the periodic orbits converges.
In our numerical results given below, we have used γ = 0.3 in all cases. With this value of γ ,
the condition for the above damping factor to be smaller than 10−2 corresponds to τpo > 14,
whose contributions can be safely neglected.

In figure 14 the oscillating part of the scaled level densities δg(E), labeled by ASY
and UA1, are compared with the quantum-mechanical result (QM) for the system (2.6) with
α = 2.4 and κ = 0.31. These values of the parameters correspond to a point close to the left
bifurcation of the bridge orbit B(2,1). In calculating the semiclassical level densities, we take
into account the circular periodic orbits Cn+

+ with repetition numbers n+ ≤ 3, the orbit C− and
the bridge family B(2,1) (see figure 1 for the values of their scaled periods). We see that the
uniform approximation UA1 for the bifurcating circular orbits with the bridge orbit improves
the semiclassical level density over the asymptotic one and nicely reproduces the quantum
results near the bifurcation points.

Figure 15 shows the result of the global uniform approximation UA2 for α = 2.02.
κ = 0.0025 and κ = 0.322 correspond to the bifurcation points of the bridge orbits B(1,1) and
B(2,1), respectively. In the periodic orbit sum, all periodic orbits with τ < 15 are included;
namely, Cn

± and bridge B(n,n) with n ≤ 3 for κ = 0.0025, and Cn+
+ with n+ ≤ 3, C− and

B(2,1) for κ = 0.322. In comparison to the separate uniform treatment of the two bifurcations
(approximation UA1), the UA2 formula (4.17) reasonably improves the level density, but we
obtain a slight overestimation. Let us consider the origin of this deviation. We note that
for α ∼ 2, there is no asymptotic region between the two bifurcation points. Therefore, the
procedure to determine the parameters to reproduce the Berry-Tabor asymptotic form is not
justified. In the UA2, the normal form parameter a is determined such that the asymptotic
form reproduces the Berry-Tabor trace formula. This corresponds to using the curvature K of
the torus for the normal form parameter a as in (4.19).
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Figure 15. Comparison of uniform approximations for α = 2.02. Solid, dashed and dotted
curves represent UA2, UA1 and QM, respectively. Upper and lower panels are calculated at
the bifurcation points of symmetric bridge (1,1) and asymmetric bridge (2,1), respectively. In
the upper panel, the periodic orbit sum in the semiclassical level density is taken over C

n±
± and

the bridge B(n+,n−) with n± ≤ 3, while in the lower panel, Cn+
+ with n+ ≤ 3, C− and the

bridge B(2,1) are taken into account.
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Figure 16. Normal form parameter ã = h̄Ea (see (4.3)) determined from (4.2) (solid curve)
and that from (4.19) (dashed curve). Left and right panels show the results for (1,1) and (2,1)
bridge orbits, respectively.

Figure 16 compares the values of a determined by the two methods, i.e., by (4.19) and
(4.2). They are significantly different from each other, and the global uniform approximation
(UA2) does not coincide with the local uniform approximation (4.11) in the bifurcation region.

Using the local uniform approximation (4.11) with the normal form parameters given
by (4.2) (referred to as UA2L), the results are much improved near the bifurcation points as
shown in figure 17, but at the middle of the bridge, the quantum results lie between UA2 and
UA2L.

Our numerical results can be interpreted as follows. The normal form (3.2) or (4.1) is
constructed to reproduce the bifurcation properties of the three participating periodic orbits.
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Figure 17. Comparison of the global and local uniform approximations. Solid, dashed and
dotted curves represent uniform approximations UA2L, UA2 and QM, respectively, calculated
at the bifurcation points of (1,1) and (2,1) bridge orbits. The periodic orbits included in the
semiclassical level densities are same as in figure 15.
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Figure 18. Same as figure 17, but calculated at the middle of two bifurcation points of (1,1)
and (2,1) bridge orbits.

Therefore, it is most reliable around the bifurcation points ε ∼ εbif. However, the bridge orbit
undergoes large changes between the two bifurcation points which are globally separated in
the phase space, and therefore higher-order terms in I in the normal form could contribute
significantly in the middle region of the bridge. In fact, the curvature K of the torus,
which is an invariant property of the periodic orbit family and important for determining
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its contribution to the level density, is not correctly described by the form (4.1), as shown
in figure 16. When the parameter a is shifted toward the value determined by the curvature
K, the agreement between the local uniform approximation and the quantum results becomes
better. This could be achieved by normal forms with higher-order terms in I which, however,
would render the global uniform approximation more complicated and less analytic.

5. Summary

We have investigated the appearance of bridge orbits, which connect two isolated orbits via
two successive bifurcations near the points where their periods and stabilities coincide, in
various Hamiltonian systems with two degrees of freedom. In a class of integrable systems,
the bridge orbits form degenerate families. For these we used a mapping derived from the
Poincaré variables of the isotropic harmonic oscillator to derive a very simple normal form
from which all the invariant properties of the participating periodic orbits can be derived
analytically. Using this normal form, we have derived analytical uniform approximations for
the semiclassical level density of the corresponding quantum systems. Although the normal
form parameters could not be determined uniquely and their values undergo slight variations
between the two bifurcations, the numerical agreement between the semiclassical and the
quantum-mechanical coarse-grained level densities is very satisfactory.

We expect that the remaining differences and the slight variations of the normal form
parameters can be reduced by including more terms in the normal form. This would be at
the cost of losing the simple analytical forms of the uniform approximations and of having to
determine more parameters numerically.

The exploration of suitable normal forms for bridge-orbit bifurcations in non-integrable
systems, such as those shown in figures 7 and 9, is the subject of further studies. The uniform
approximations for non-integrable system form also an important subject for understanding
the deformed shell structure in realistic nuclear mean-field models [22, 23].
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Appendix A. Derivation of the mapping for bridge orbit bifurcations

In this appendix, we derive a mapping from the Poincaré variables (q, p) to action-angle
variables (φ , I) that are suitable for the normal forms of bridge orbit bifurcations. Let us
consider the isotropic two-dimensional harmonic oscillator

H =
1
2
(p2

x + p2
y)+

1
2

ω2(x2 + y2) . (A.1)

All its trajectories are periodic with period T = 2π/ω; they are ellipses which may degenerate
to a circle or to linear librations. We parameterize these periodic orbits using the two constants
of motion energy E and angular momentum L = xpy − ypx. The orbit whose longer semiaxis
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lies on the x axis is written as

x0(t) = qc

(
cos

θ
2
+ sin

θ
2

)
cos(ωt) , (A.2)

y0(t) = qc

(
cos

θ
2
− sin

θ
2

)
sin(ωt) , (A.3)

qc =
√

Lc/ω , Lc = E/ω , L = Lc cosθ . (A.4)

Here Lc is the maximum angular momentum at fixed energy, which is that of the circular orbit
running anti-clockwise in the (x,y) plane.

Rotating this orbit by an angle φ/2 about the origin, one obtains the most general orbit

x(t) = x0(t)cos
φ
2
− y0(t)sin

φ
2
,

y(t) = x0(t)sin
φ
2
+ y0(t)cos

φ
2
, 0 ≤ φ ≤ 2π . (A.5)

The projected Poincaré surface of section Σ := {(x(ti), px(ti))| y(ti)=0, ẏ(ti)>0} at successive
times (i = 1,2, . . .), with ti+1 = ti +T , defines the Poincaré variables (q, p) = (x(ti), px(ti)).
Each point (q, p) corresponds to an orbit with period T , and therfore the Poincaré variables
(q, p) have a one-to-one correspondence with the variables (θ ,φ), given by

q =
qc cosθ√

1− sinθ cosφ
, p =

pc sinθ sinφ√
1− sinθ cosφ

, pc = ωqc . (A.6)

The Jacobian of the transformation (φ ,θ)→ (q, p) is

∂ (q, p)
∂ (φ,θ)

=−1
2

pcqc sinθ . (A.7)

We now define the action variable I by

I = ρ cosθ , ρ =
1
2

pcqc =
1
2

Lc , −ρ ≤ I ≤ ρ . (A.8)

Comparing to (A.4), one sees that I = L/2. One also sees easily that the transformation
(φ, I)→ (q, p) becomes canonical since

∂ (q, p)
∂ (φ , I)

= 1 . (A.9)

For the inverse transformation, one finds from (A.6) and (A.8) the relation

I =
1
2

q
√

4ρω − p2 −ω2q2 ,
1
2
(p2 +ω2q2)< 2ρω (= E) . (A.10)
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