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Abstract

Given an n-vertex directed graph G = (V,E) and a set R ⊆ V × V of requests,
we consider to assign a set of edges to each vertex in G so that for every request
(u, v) in R the union of the edge sets assigned to u and v contains a path from
u to v. The Minimum Certificate Dispersal Problem (MCD) is defined as one to
find an assignment that minimizes the sum of the cardinalities of the edge sets
assigned to each vertex. This problem has been shown to be NP-hard in general,
though it is polynomially solvable for some restricted classes of graphs and re-
stricted request structures, such as bidirectional trees with requests of all pairs
of vertices. In this paper, we give an advanced investigation about the difficulty
of MCD by focusing on the relationship between its (in)approximability and re-
quest structures. We first show that MCD with general R has Θ(log n) lower and
upper bounds on approximation ratio under the assumption P ̸= NP . We then
assume R forms a clique structure, called Subset-Full, which is a natural setting
in the context of the application. Interestingly, under this natural setting, MCD
becomes to be 2-approximable, though it has still no polynomial time approx-
imation algorithm whose factor better than 677/676 unless P = NP . Finally,
we show that this approximation ratio can be improved to 3/2 for undirected
variant of MCD with Subset-Full.
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1. Introduction

Background and Motivation. Let G = (V, E) be a directed graph and R ⊆ V ×V
be a set of ordered pairs of vertices, which represents requests about reachability
between two vertices. For given G and R, we consider an assignment of a set of
edges to each vertex in G. The assignment satisfies a request (u, v) if the union
of the edge sets assigned to u and v contains a path from u to v. The Minimum
Certificate Dispersal Problem (MCD) is the one to find the assignment satisfying
all requests in R that minimizes the sum of the cardinalities of the edge sets
assigned to each vertex.

This problem is motivated by a requirement in public-key based security
systems, which are known as a major technique for supporting secure commu-
nication in a distributed system [1, 2, 3, 4, 5, 6, 7]. The main problem of the
systems is to make each user’s public key available to others in such a way
that its authenticity is verifiable. One of well-known approaches to solve this
problem is based on public-key certificates. A public-key certificate contains
the public key of a user v encrypted by using the private key of a user u. If
a user u knows the public key of another user v, user u can issue a certificate
from u to v. Any user who knows the public key of u can use it to decrypt the
certificate from u to v for obtaining the public key of v. All certificates issued
by users in a network can be represented by a certificate graph: Each vertex
corresponds to a user and each directed edge corresponds to a certificate. When
a user w has communication request to send messages to a user v securely, w
needs to know the public key of v to encrypt the messages with it. For satisfying
a communication request from a vertex w to v, vertex w needs to get vertex
v’s public-key. To compute v’s public-key, w uses a set of certificates stored in
w and v in advance. Therefore, in a certificate graph, if a set of certificates
stored in w and v contains a path from w to v, then the communication request
from w to v is satisfied. In terms of cost to maintain certificates, the total
number of certificates stored in all vertices must be minimized for satisfying all
communication requests.

While, from the practical aspect, MCD should be handled in the context of
distributed computing theory, its inherent difficulty as an optimization problem
is not so clear even in centralized settings: Jung et al. discussed MCD with
a restriction of available paths in [4] and proved that the problem is NP-hard.
In their work, to assign edges to each vertex, only the restricted paths which
are given for each request is allowed to be used. MCD, with no restriction
of available paths, is first formulated in [7]. In [7], MCD, with no restriction
of available paths, is proved to be also NP-hard even if the input graph is
strongly connected. Known results about the complexity of MCD are actually
only these NP-hardness. This fact yields a theoretical interest of revealing the
(in)approximability of MCD. As for the positive side, MCD is polynomially
solvable for bidirectional trees, rings and Cartesian products of graphs [7].

This paper also investigates how the request structures affect the difficulty
of MCD. As seen above, MCD is doubly structured in a sense: One structure
is the graph G itself and the other is the request structure R. We would like to
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Table 1: Approximability / Inapproximability bounds shown in this paper

Restriction on request
Arbitrary Subset-Full Full

Inapproximability
Ω(log n)

677/676 open261/260
(for bidirectional graphs)

Approximation ratio O(log n)
2 2 [7]

3/2
(for undirected graphs)

n is the number of vertices.

investigate how the tractability of MCD changes as the topology of R changes.
In passing, a typical doubly structured problem in this sense is the H-coloring
problem [8]. The H-coloring problem is coloring problem with restrictions of
adjacent colors, which are given by a graph H. That is, when the graph H is a
complete graph, the H-coloring problem is equivalent to the traditional coloring
problem. About H-coloring, so-called dichotomy theorem is well known: H-
coloring is solvable in polynomial time if and only if H has a loop or is bipartite
graph; otherwise the problem is NP-complete. On MCD, our interest here
is to investigate whether the hardness (of approximation) of MCD depends
on the restrictions about R. A similar structure is also found in the VPN
design problem [14]. It is defined as a certain kind of connection-establishment
problems, and allows the optimal solution computable within polynomial time
when the request is all-to-all connections(i.e., in the context of MCD, R induces
a complete subgraph)[15].

Revealing the relationship between tractability and request structures is a
natural problem not only from the theoretical viewpoint but also from the prac-
tical viewpoint, because, in public-key based security systems, a set of requests
should have a certain type of structures. For example, it is reasonable to con-
sider the situation in which a set of vertices belonging to a certain community
should have requests between each other in the community. This situation is
interpreted that R forms a clique structure. Thus the following question arises:
If R forms a clique, can the approximability of MCD be improved?

Our Contribution. In this paper, we investigate the approximability of MCD
from the perspective how the structure of R affects the complexity of MCD. We
classify the set R of requests according to the elements of R: R is subset-full if
for a subset V ′ of V , R consists of all reachable pairs of vertices in V ′, and R
is full if the subset V ′ is equal to V . Note that Subset-Full corresponds to the
situation that R forms a clique. Table 1 summarizes the results in this paper.

Here we review our contribution. We first consider the general case: We show
that if we have no restriction about R, a lower bound on approximation ratio
for MCD is Ω(log n) and an upper bound is O(log n), where n is the number
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of vertices. Namely, the lower and upper bounds coincide as Θ(log n) in terms
of order. Moreover, it is proved that we can still obtain the inapproximability
Ω(1) of MCD even when the graph class is restricted to bidirectional graphs.

As the second half of the contribution, for subset-full requests, we show that
the lower bound of approximation ratio for MCD is 677/676 and the upper
bound is 2. The lower bound is obtained by a gap-preserving reduction from
VERTEX-COVER. The upper bound is proved by a detailed analysis of the
algorithm MinPivot , which is proposed in [7]. While Zheng et al. have shown
that MinPivot achieves approximation ratio 2 with full requests, we can obtain
the same approximation ratio by a different approach even when the set of
requests is subset-full. In addition, by extending the approach, it is also shown
that MinPivot guarantees 3/2 approximation ratio for MCD of the undirected
variant with subset-full requests.

The remainder of the paper is organized as follows. In Section 2, we define
the Minimum Certificate Dispersal Problem (MCD). Section 3 presents inap-
proximability of MCD with general R and one with Subset-Full. The upper
bound of MCD with general R and one with Subset-Full are shown in Sections
4 and 5 respectively. Section 6 concludes the paper.

2. Minimum Certificate Dispersal Problem

Let G = (V, E) be a directed graph, where V and E are the sets of vertices
and edges in G respectively. An edge in E connects two distinct vertices in
V . The edge from vertex u to v is denoted by (u, v). The numbers of vertices
and edges in G are denoted by n and m, respectively (i.e., n = |V |,m = |E|).
A sequence of edges p(v0, vk) = (v0, v1), (v1, v2), . . . , (vk−1, vk) is called a path
from v0 to vk of length k. A path p(v0, vk) can be represented by a sequence of
vertices p(v0, vk) = (v0, v1, . . . , vk). For a path p(v0, vk), v0 and vk are called the
source and destination of the path respectively. The length of a path p(v0, vk) is
denoted by |p(v0, vk)|. For simplicity, we treat a path as the set of edges on the
path when no confusion occurs. A shortest path from u to v is the one whose
length is the minimum of all paths from u to v, and the distance from u to v is
the length of a shortest path from u to v, denoted by d(u, v).

A dispersal D of a directed graph G = (V, E) is a family of sets of edges
indexed by V , that is, D = {Dv ⊆ E|v ∈ V }. We call Dv a local dispersal
of v. A local dispersal Dv indicates the set of edges assigned to v. The cost
of a dispersal D, denoted by c(D), is the sum of the cardinalities of all local
dispersals in D (i.e., c(D) = Σv∈V |Dv|). A request is a reachable ordered pair of
vertices in G. For a request (u, v), u and v are called the source and destination
of the request respectively. A set R of requests is subset-full if there exists
a subset V ′ of V such that R consists of all reachable pairs of vertices in V ′

(i.e., R = {(u, v)|u is reachable to v in G, u, v ∈ V ′ ⊆ V }), and R is full if the
subset V ′ is equal to V . We say a dispersal D of G satisfies a set R of requests
if a path from u to v is included in Du ∪ Dv for any request (u, v) ∈ R.

The Minimum Certificate Dispersal Problem (MCD) is defined as follows:
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Figure 1: Reduction for general case (from
SET-COVER)
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Figure 2: Reduction for Subset-Full (from
VERTEX-COVER)

Definition 1 (Minimum Certificate Dispersal Problem (MCD)).
INPUT: A directed graph G = (V, E) and a set R of requests.
OUTPUT: A dispersal D of G satisfying R with minimum cost.

The minimum among costs of dispersals of G that satisfy R is denoted by
cmin(G,R). For short, the cost cmin(G,R) is also denoted by cmin(G) when R
is full. Let DOpt be an optimal dispersal of G which satisfies R (i.e., DOpt is
one such that c(DOpt) = cmin(G, R)).

In this paper, we deal with MCD for undirected graphs in Section 5.3. For
an undirected graph G, the edge between vertices u and v is denoted by (u, v)
or (v, u). When an edge (u, v) is included in a local dispersal Dv, the vertex v
has two paths from u to v and from v to u.

3. Inapproximability

It was shown in [7] that MCD for strongly connected graphs is NP-hard by
a reduction from the VERTEX-COVER problem. In this section, we provide
another proof of NP-hardness of MCD for strongly connected graphs, which
implies a stronger inapproximability. Here, we show a reduction from the SET-
COVER problem. For a collection C of subsets of a finite universal set U , C′

(⊆ C) is called a set cover of U if every element in U belongs to at least one
member of C′. Given C and a positive integer k, SET-COVER is the problem of
deciding whether a set cover C′ ⊆ C of U with |C′| ≤ k exists. By considering the
graph where each element corresponds to an edge and each subset to a vertex,
it becomes equivalent to VERTEX-COVER. Then, from the definition, each
element is contained in exactly two subsets.

The reduction from SET-COVER to MCD is as follows: Given a universal
set U = {1, 2, . . . , n} and its subsets S1, S2, . . . , Sm and a positive integer k as
an instance I of SET-COVER, we construct a graph GI including gadgets that
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mimic (a) elements, (b) subsets, and (c) a special gadget: (a) For each element
i of the universe set U = {1, 2, . . . , n}, we prepare an element gadget ui (it is
just a vertex); let VU be the set of element vertices, i.e., VU = {ui | i ∈ U}.
(b) For each subset Sj ∈ C, we prepare a directed path (vj,1, vj,2, . . . , vj,p)
of length p − 1, where p is a positive integer used as a parameter. The end
vertex vj,p is connected to the element gadgets that correspond to elements
belonging to Sj . For example, if S1 = {2, 4, 5}, we have directed edges (v1,p, u2),
(v1,p, u4) and (v1,p, u5). (c) The special gadget just consists of a base vertex
r. This r has directed edges to all vj,1’s of j = 1, 2, . . . , m. Also r has an
incoming edge from each ui. See Figure 1 as an example of the reduction,
where S1 = {1, 2, 3}, S2 = {2, 4, 5} and S3 = {3, 5, 6}. We can see that GI is
strongly connected. The set RI of requests contains the requests from the base
vertex r to all element vertices ui, i.e., R = {(r, ui) | ui ∈ VU}.

We can show the following, although we omit the proof because it is straight-
forward: (i) If the answer of instance I of SET-COVER is yes, then cmin(GI , RI)
≤ pk +n. (ii) Otherwise, cmin(GI , RI) ≥ p(k +1)+n. About the inapproxima-
bility of SET-COVER, it is known that SET-COVER has no polynomial-time
approximation algorithm with factor better than 0.2267 ln n, unless P = NP [9].
More precisely, there exists g such that the following decision problem (SET-
COVER GAP problem) is NP-hard: Given a SET-COVER instance, distin-
guishing between (a) there exists a set cover with at most size g, and (b) every
set cover has size at least 0.2267g lnn. By the above reduction, we obtain a
gap-preserving reduction [10] as follows:

Lemma 1. The above construction of GI is a gap-preserving reduction from
SET-COVER to MCD for strongly connected graphs such that

(i) if OPTSC(I) ≤ g, then cmin(GI , RI) ≤ p · g + n,

(ii) if OPTSC(I) ≥ g ·c ln n, then cmin(GI , RI) ≥ (p·g+n)
(
c lnn − cn ln n−n

p·g+n

)
,

where OPTSC(I) and g denote the optimal value of SET-COVER and a gap
parameter for I respectively, and c = 0.2267.

Note that for any positive constant α ≤ 1, there exists p of polynomial size with
respect to n that satisfies

(
c lnn − cn ln n−n

p·g+n

)
≥ (p · g + n) · c lnn (1 − α). Thus,

from the NP-hardness of SET-COVER GAP problem, for any positive constant
α < 1, there exists g′ such that it is NP-hard to distinguish between (a) there
exists a dispersal whose cost is at most size g′, and (b) every dispersal has size
at least g′ · (c − α) ln n. This implies the following theorem.

Theorem 2. There exists no ((0.2267−α) ln |V |−ε) factor approximation poly-
nomial time algorithm of MCD for strongly connected graphs unless P = NP ,
where α and ε are arbitrarily small positive constants.

It might be difficult to directly extend the result to more restricted classes
of strongly connected graphs, e.g., bidirectional graphs, but we can still obtain
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some inapproximability result for bidirectional graphs, by slightly modifying
the graph GI , though we omit the details. We use a reduction not from SET-
COVER but from VERTEX-COVER. The graph constructed from VERTEX-
COVER is similar to GI , but we replace each (directed) edge by bidirectional
edges, and also we delete edges between ui’s and r. Furthermore, we set p = 1.
Then we obtain the following lemma:

Lemma 3. There is a gap-preserving reduction from VERTEX-COVER for
graphs with degree at most 4 to MCD for bidirectional graphs such that

(i) if OPTV C(I) = g, then cmin(GI , RI) ≤ g + n,

(ii) if OPTV C(I) ≥ c · g, then cmin(GI , RI) ≥ (g + n)
(
c − (c−1)n

g+n

)
,

where OPTV C(I) and g denote the optimal value of VERTEX-COVER and a
gap parameter for I, and c = 53/52.

In this lemma, c = 53/52 represents an inapproximability of VERTEX-COVER
for graphs with degree at most 4 under the assumption P ̸= NP [11]. Since
we can assume 4 · g ≥ n (otherwise, the answer is clearly “no”), we obtain the
following theorem.

Theorem 4. There exists no (261/260 − ε) factor approximation polynomial
time algorithm of MCD for bidirectional graphs unless P = NP , where ε is an
arbitrarily small positive constant.

Again we consider another reduction from VERTEX-COVER for graphs
with degree at most 4, in which we embed an instance to MCD problem with
a subset-full request structure. As well as the reduction from SET-COVER,
we prepare (a) edge gadgets, (b) vertex gadgets, and (c) special gadgets. The
reduction from VERTEX-COVER to MCD with subset-full requests is as fol-
lows: Given G = (V,E) with degree at most 4 and a positive integer k as an
instance I of VERTEX-COVER, where V = {1, 2, . . . , n} is the vertex set and
E = {e1, e2, . . . , em} is the edge set, we construct an MCD graph G′

I . (a) For
each edge ei in E, we prepare an m-length directed path (ui, ui,1, . . . , ui,m−1, w)
and (w, ui) as an edge gadget, where w is a common vertex among edge gadgets.
(b) For each vertex j ∈ V , we prepare a vertex uV

j as a vertex gadget. If j is con-
nected with edge ei, we add directed edges (uV

j , ui). For example, if e5 = {2, 3},
we have directed edges (uV

2 , u5), (uV
3 , u5). Note that each ui has exactly two

incoming edges from vertex gadgets. (c) The special gadgets consist of p base
vertices r1, r2, . . . , rp and one root vertex r. Each rj and r are connected by
path (r, rj,1, . . . , rj,m−1, rj) and edge (rj , r). Also, each ri has directed edges
to all uV

j ’s of j = 1, 2, . . . , m. Furthermore, we prepare an m-length directed
path from w to r, i.e., (w, w1, . . . , wm−1, r). See Figure 2 as an example of the
reduction, in which we have e2 = {1, 2}, e3 = {1, 3} and e5 = {2, 3}. We can
see that G′

I is strongly connected.
The set R′ of requests are defined as R′ = Ra,a ∪ Ra,c ∪ Rc,c, where Ra,a =

{(ui, uj) | i, j = 1, 2, . . . ,m, and i ̸= j}, Ra,c = {(ui, rj), (rj , ui) | i = 1, . . . , m}
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and Rc,c = {(ri, rj) | i, j = 1, 2, . . . , p, and i ̸= j}. Let V (a) and V (c) denote
{ui | i = 1, . . . , m} and {rj | j = 1, 2, . . . , p}, respectively.

Lemma 5. Let p = m. The above construction of G′
I and R′ is a gap-preserving

reduction from VERTEX-COVER with degree at most 4 to MCD with subset-full
requests for strongly connected graphs such that:

(i) If OPTV C(I) = g(I), then cmin(G′
I , R′) ≤ m(g(I) + 3m + 3).

(ii) If OPTV C(I) > c · g(I), then cmin(G′
I , R′) > m(g(I) + 3m + 3)(c −

(3m+3)(c−1)
g(I)+3m+3 ),

where OPTV C(I) denotes the optimal value of VERTEX-COVER for I and
c = 53/52.

Proof. In this proof, we define k1 := g(I) and k2 := c · g(I). We first show
(i). For a vertex cover C with size k1, we construct a solution of MCD as
follows: Assume edge ei is covered by a vertex c(i) in C, and let Dui =
{(ui, w), (w, ui), (uV

c(i), ui), (w, r)} for i = 1, 2, . . . , m, where {(ui, w)} = {(ui,

ui,1), (ui,1, ui,2), . . . , (ui,m−2, ui,m−1), (ui,m−1, w)} and {(w, r)} = {(w,w1), (w1,
w2), . . ., (wm−2, wm−1), (wm−1, r)}. Also let Drj = {(r, rj), (rj , r)}∪{(rj , u

V
i ) |

i ∈ C} for j = 1, 2, . . . , p(= m), where {(r, rj)} = {(r, rj,1), (rj,1, rj,2), . . . ,
(rj,m−2, rj,m−1), (rj,m−1, rj)}. Then we have c(D) = m(2m+2)+p(m+1+k1) =
m(3m + 3 + k1), which shows (i).

We next show (ii) by contradiction. We assume that there exists an in-
stance I of VERTEX-COVER whose optimal solution size is more than k2,
but cmin(G′

I , R′) ≤ m(3m + 3 + k2). Suppose that DOpt (for simplicity, we
denote by D in this proof) is an optimal solution of MCD instance G′

I and
R′. We can treat directed paths p(ui, w) = (ui, ui,1, . . . , w), for i = 1, . . . ,m,
p(w, r) = (w,w1, . . . , wm−1, r) and p(r, rj) = (r, rj,1, . . . , rj,m−1, rj) for j =
1, . . . , p, as edges with length m, because these edges are used only to make
w, r and rj directly reachable from ui, w and r, respectively; in an optimal so-
lution, they are not chosen separately in D. Thus from now on, we denote
p(ui, w), p(w, r) and p(r, rj) simply by (ui, w), (w, r) and (r, rj), for each i
and j. In this notation, the costs of (ui, w), (w, r) and (r, rj) are all m. We
first claim that (ui, w) ∈ Dui

and (r, rj) ∈ Drj
for every i = 1, 2, . . . , m and

j = 1, 2, . . . , p. Otherwise, |{i | (ui, w) ̸∈ Dui}| + |{j | (r, rj) ̸∈ Drj}| ≥ 1 holds.
Let A = {i | (ui, w) ̸∈ Dui} and B = {j | (r, rj) ̸∈ Drj}. Since (ui, rj) ∈ R′ for
any pair of i and j, we have (ui, w), (w, r), (r, rj) ∈ Dui ∪ Drj for any i and j.
This implies that {(ui, w) | i ∈ A} ⊆ Duj for any j, and {(r, rj) | j ∈ B} ⊆ Dui

for any i. Also if (w, r) ̸∈ Dui for some i, then (w, r) ∈ Drj for every j, and
if (w, r) ̸∈ Drj for some j, then (w, r) ∈ Dri for every i. These imply that
c(D) =

∑
i |Dui | +

∑
j |Duj | ≥ mp|A| + m2|B| + m(m − |A|) + m(p − |B|) +

min{m, p}m = m2(|A| + |B| + 3) − m(|A| + |B|). Then, if |A| + |B| > 0, we
have c(D) ≥ 3m2 + m(|A| + |B|)(m − 1) ≥ 3m2 + m(m − 1). Since we can
assume k2 < m−4 (otherwise, we can solve the original vertex cover problem in
polynomial time by an exhaustive search), we have c(D) ≥ 3m2 + m(m − 1) =
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3m2+m(3+m−4) > 3m2+m(3+k2), which contradicts the assumption; we can
assume (ui, w) ∈ Dui and (r, rj) ∈ Drj for every i and j, and either (w, r) ∈ Dui

for every i or (w, r) ∈ Drj
for every j. For these, we should allocate cost 3m2

in c(D).
Let us now consider Ra,c. We first consider the reachability from ri to uj . In

order to make uj ’s reachable from ri, we can have the following two strategies:
One is that ri takes a route via some ui′ and w, and then reaches other uj ’s.
The other is that ri takes a route to every uj via a uV vertex (not via another
uj′). We call the former strategy (s1) and the latter (s2). To realize (s1), Dri

or Duj ’s should contain (ui′ , w). If Dri does not contain (ui′ , w), then (m − 1)
Duj ’s contain (ui′ , w), but it contradicts the size of c(D). Thus, for any ri in
this strategy (s1), there exists i′ such that (ui′ , w) ∈ Dri . If p− 1(= m− 1) ri’s
take (s1), we need extra costs m(m − 1) for c(D), which contradicts the size of
c(D) again; there are at least two ri’s taking the other strategy (s2). From the
above argument, we can assume that if ri takes (s2), (uj , w) ̸∈ Di holds for any
i. Paths between ri’s and uj ’s form a directed acyclic graph that ends at uj ’s; w
is not reachable from ui’s in Dra and Drb

, where both ra and rb take (s2). For
any ra taking (s2), there exists Ca ⊆ V of G such that for any uj some i ∈ Ca

satisfies (uV
i , uj) ∈ Dra ∪ Duj (this condition implies that Ca is a vertex cover

of G), and for any i ∈ Ca (ra, uV
i ) ∈ Dra ∪ Duj .

The cost allocated at this point is evaluated as follows. Let α be the ratio
of ri’s taking strategy (s1). (Consecutively, the ratio of ri’s taking strategy
(s2) is 1 − α. The numbers of ri’s taking (s1) and (s2) are pα = mα and
p(1 − α) = m(1 − α), respectively.) For each ri taking strategy (s1), we should
have (ui′ , w) ∈ Dri and (ri, u

V
j ) ∈ Dri ∪

∪
j Duj for some i′ and j′, whose cost is

at least m + 1 for each; in total, mα(m + 1). For m(1 − α) ri’s taking strategy
(s2), it costs at least m(1 − α)k∗ + m, where k∗ denotes the size of minimum
vertex covers of G. Thus the total cost newly booked by the previous paragraph
is mα(m + 1) + m(1 − α)k∗ + m.

Next we consider Ra,a. By the above argument, we have (r, ri) ∈ Dri
for

every i. To make ri reachable from rj , there are two ways: one is (rj , r) ∈
Dri

∪ Drj
, and the other is that Dri

∪ Drj
includes a path from rj to r via w.

The former costs at least 1 per ri. In the latter case, the cost may be absorbed
by other paths. In fact, if rj takes strategy (s2) stated above, rj may have a
path from rj to w; the cost for connecting rj and r can be 0 (in case strategy
(s2), we cannot include any (ua, w), it should take cost 1). Thus the total cost
allocated here is at least m(1 − α).

Finally, we consider Rc,c. Similarly as above, we have (ui, w) ∈ Dui for every
i. To make ui reachable from uj , there are two ways: one is (w, ui) ∈ Dui ∪Duj ,
and the other is that Dui ∪Duj includes a path from w to ui via r. The former
costs at least 1 per ui. In the latter case, the cost may be absorbed by other
paths. However, in the previous argument, any (r, ra) are not in Dui but some
(r, ra) should be included in Dui ; the cost of (r, ra), m, is newly added. That
is, the total cost allocated here is at least m.

Summing them up, we have cost at least (3 + α)m2 + m(3 + k∗(1 − α)) ≤
cmin(G′

I , R′) ≤ m(3m + 3 + k2). This yields k2 − k∗ = α(m − k∗) ≥ 0, which

9



contradicts the assumption that k2 < k∗. 2

The constant c = 53/52 represents an inapproximability bound for VERTEX-
COVER with degree at most 4 under the assumption P ̸= NP [11]. From this
lemma and 4g(I) ≥ m, we obtain the following theorem:

Theorem 6. There exists no (677/676 − ε) factor approximation polynomial
time algorithm of MCD with subset-full requests for strongly connected graphs
unless P = NP , where ε is an arbitrarily small positive constant.

Remark 1. Some readers may consider that it might be possible to get much
stronger inapproximability bounds (e.g., Ω(log n)) from SET-COVER, by tuning
the value of p. However, it is actually not possible. If we let p be larger value,
e.g., n2, then the structure of optimal solutions drastically changes; by letting
each of ui’s have larger Duj , we can keep Dri with a smaller size, which is no
longer a gap-preserving reduction. In fact, in the following section, we present a
2-approximation polynomial time algorithm, which implies that there does not
exist any gap-preserving polynomial time reduction from SET-COVER.

4. Approximability

In the previous section, we show that it is difficult to design a polynomial
time approximation algorithm of MCD whose factor is better than (0.2267(1 +
α)−1 lnn− ε), even if we require that the input graph is strongly connected. In
this section, in contrast, we show that MCD has a polynomial time approxima-
tion algorithm whose factor is O(log n), which is applicable for general graphs.
This implies that we clarify an optimal approximability / inapproximability
bound in terms of order under the assumption P ̸= NP .

The idea of O(log n)-approximation algorithm is based on formulating MCD
as a submodular set cover problem [12]: Let us consider a finite set N , a nonneg-
ative cost function cj associated with each element j ∈ N , and non-decreasing
submodular function f : 2N 7→ Z+. A function f is called non-decreasing if
f(S) ≤ f(T ) for S ⊆ T ⊆ N , and is called submodular if f(S) + f(T ) ≥
f(S ∩ T ) + f(S ∪ T ) for S, T ⊆ N . For a subset S ⊆ N , the cost of S, say c(S),
is

∑
j∈S cj .

By these f , c and N , the submodular set cover problem is formulated as
follows: [Minimum Submodular Set Cover (SSC)]

min

∑
j∈S

cj : f(S) = f(N)

 .

It is known that the greedy algorithm of SSC has approximation ratio H(maxj∈N

f(j)) where H(i) is the i-th harmonic number if f is integer-valued and f(∅) =
0 [12]. Note that H(i) < ln i + 1.

We here claim that our problem can be cast as a submodular set cover
problem. Let N =

∪
u∈V {xe,u | e ∈ E}. Intuitively, xe,u ∈ S ⊆ N represents
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that the local dispersal of u contains e ∈ E in S, i.e., e ∈ Du. For S ⊆ N ,
we define dS(u, v) as the distance from u to v under the setting that each
edge e ∈ Du ∪ Dv of S has length 0 otherwise 1. That is, if all edges are
included in Du ∪ Dv of S, then dS(u, v) = 0. If no edge is included in Du ∪ Dv

of S, then dS(u, v) is the length of a shortest path from u to v of G. Let
f(S) =

∑
(u,v)∈R(d∅(u, v) − dS(u, v)). This f is integer-valued and f(∅) = 0.

In the problem setting of MCD, we can assume that for any (u, v) ∈ R, G has
a (directed) path from u to v. (Otherwise, we have no solution). Then the
condition f(N) = f(S) means that all the requests are satisfied. Also cost c
reflects the cost of MCD.

Then we have the following lemma:

Lemma 7. Function f defined as above is a non-decreasing submodular func-
tion.

Proof. Since it is obvious that f is non-decreasing, we only show the sub-
modularity of f . By the inductive property, it is sufficient to show that f(S ∪
{xe,u}) + f(S ∪ {xe′,v}) ≥ f(S) + f(S ∪ {xe,u, xe′,v}).

f(S ∪ {xe,u}) − f(S) =
∑

(i,j)∈R(dS(i, j) − dS∪{xe,u}(i, j))
=

∑
(u,j)∈R(dS(u, j) − dS∪{xe,u}(u, j))

+
∑

(i,u)∈R(dS(i, u) − dS∪{xe,u}(i, u))
(1)

f(S ∪ {xe′,v}) − f(S ∪ {xe,u, xe′,v}) =
∑

(i,j)∈R(dS∪{xe,u,xe′,v}(i, j)
−dS∪{xe′,v}(i, j))
=

∑
(u,j)∈R

j ̸=v
(dS∪{xe,u}(u, j) − dS(u, j))

+
∑

(i,u)∈R
i ̸=v

(dS∪{xe,u}(i, u) − dS(i, u))

+dS∪{xe,u,xe′,v}(v, u) − dS∪{xe′,v}(v, u)
+dS∪{xe,u,xe′,v}(u, v) − dS∪{xe′,v}(u, v)

(2)
By summing (1) and (2) up, we obtain f(S ∪{xe,u}) + f(S ∪{xe′,v})− (f(S) +
f(S ∪ {xe,u, xe′,v})) =

∑
(i,j)=(u,v),(v,u)(dS∪{xe,u,xe′,v}(i, j) − dS∪{xe′,v}(i, j) −

dS∪{xe,u}(i, j) + dS(i, j)). Since dS ’s are defined by shortest path lengths, we
can see that dS(u, v) − 2 ≤ dS∪{xe,u,xe′,v}(u, v) ≤ dS(u, v) and dS(u, v) − 1 ≤
dS∪{xe,u}(u, v), dS∪{xe′,v}(u, v) ≤ dS(u, v). If dS∪{xe,u,xe′,v}(u, v) = dS(u, v)− 2,
then both dS∪{xe,u}(u, v) and dS∪{xe,u}(u, v) are dS(u, v)−1. Also, if dS∪{xe,u,xe′,v}
(u, v) = dS(u, v) − 1, then dS∪{xe,u}(u, v) or dS∪{xe′,v}(u, v) is dS(u, v) − 1.
In any case, we have dS∪{xe,u,xe′,v}(u, v) − dS∪{xe′,v}(u, v) − dS∪{xe,u}(u, v) +
dS(u, v) ≥ 0. Since we similarly have dS∪{xe,u,xe′,v}(v, u) − dS∪{xe′,v}(v, u) −
dS∪{xe,u}(v, u) + dS(v, u) ≥ 0, f(S ∪ {xe,u}) + f(S ∪ {xe′,v}) ≥ f(S) + f(S ∪
{xe,u, xe′,v}) holds. 2

Notice that f can be computed in polynomial time.
By these, MCD is formulated as a submodular set cover problem. Since we

have maxxe,u∈N f({xe,u}) ≤ |R|maxu,v d∅(u, v) ≤ n3, the approximation ratio
of the greedy algorithm is O(log n). We obtain the following.
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Theorem 8. There is a polynomial time algorithm with approximation factor
O(log n) for MCD.

5. Approximation Algorithm for Subset-Full

Zheng et al. have proposed a polynomial-time algorithm for MCD, called
MinPivot, which achieves approximation ratio 2 for strongly connected graphs
when a set R of requests is full. In this section, we show that even when R
is subset-full, MinPivot achieves approximation ratio 2 for strongly connected
graphs. Moreover, we show that MinPivot is a 3/2-approximation algorithm for
MCD of the undirected variant with subset-full requests.

5.1. Algorithm MinPivot

A pseudo-code of the algorithm MinPivot is shown in Algorithm1 1. For the
explanation of the algorithm, we define P(u, v) as the minimum-cardinality set
of edges that constitute a round-trip path between u and v on G.

In a dispersal returned by MinPivot , one vertex is selected as a pivot. Each
request is satisfied by a path via the selected pivot. The algorithm works as
follows: It picks up a vertex u as a candidate of the pivot. Then, for vertices
v, w in each request (v, w) ∈ R, MinPivot stores a round-trip path between v
and the pivot u in Dv such that the sum of edges included in the round-trip
path is minimum. For the vertex w, the round-trip path between w and the
pivot u is also stored in Dw in the same way. Since there is a path from v to
w via the pivot u in Dv ∪ Dw for each request (v, w), the dispersal satisfies R.
For every pivot candidate, the algorithm MinPivot computes the corresponding
dispersal as stated above. Finally, the minimum-cost one among all computed
dispersals is chosen and returned.

In [7], the following theorem is proved.

Theorem 9. For a strongly connected graph G, MinPivot is a 2-approximation
algorithm for MCD on G with the full request. It completes in O(n7) time 2 for
a strongly connected graph and in O(nm) time for an undirected graph.

5.2. Proof of 2-approximation for Strongly Connected Graphs
In this subsection, we prove the following theorem.

Theorem 10. For a strongly connected graph G and a subset-full request R,
MinPivot is a 2-approximation algorithm.

1Although the original MinPivot is designed to work for any set of requests, we here show
a simplified one because we focus on the case when R is subset-full.

2Since for directed graphs, |P(u, v)| ≤ d(u, v) + d(v, u) holds in general, it is insufficient to
simply compute the shortest paths.

12



Algorithm 1 MinPivot (G = (V,E), R)
1: VR := {v, w ∈ V |(v, w) ∈ R}
2: for all u ∈ V do
3: for all v ∈ V do
4: if v ∈ VR then
5: Dv := P(u, v)
6: else
7: Dv := ∅
8: end if
9: end for

10: D(u) := {Dv | v ∈ V }
11: end for
12: output D(u) such that c(D(u)) = minu∈V {c(D(u))}.

We first introduce several notations used in the proof: The set of vertices
included in requests in R is denoted by VR, that is, VR = {u, v | (u, v) ∈ R}. Let
x be a vertex in VR with the minimum local dispersal in DOpt (i.e., |DOpt

x | =
min{|DOpt

v | | v ∈ VR}). When there is more than one vertex with the minimum
local dispersal, x is defined as one of them chosen arbitrarily. In the following
argument, it is sufficient to consider only the case of |DOpt

x | > 0: If |DOpt
x | is zero,

any vertex in VR must have two paths from/to x in its local dispersal to satisfy
the requests for x. Then, the optimal solution is equivalent to that computed
by MinPivot whose pivot candidate is x, which implies that MinPivot returns an
optimal solution. Let DMP denote an output of the algorithm MinPivot. The
following proposition clearly holds.

Proposition 11. For a dispersal D, if there exists a vertex u such that the local
dispersal Dv of any vertex v in VR contains a round-trip path between v and u,
then c(DMP ) ≤ c(D).

The idea of the proof is that we construct a feasible dispersal D with cost
at most 2 · c(DOpt), which satisfies the condition shown in Proposition 11. It
follows that the cost of the solution by MinPivot is bounded by 2 · c(DOpt). We
construct the dispersal D from DOpt by additionally giving the minimum-size
local dispersal to all vertices in VR. More precisely, the local dispersal Dv of
every vertex v ∈ VR is the union of DOpt

v and DOpt
x (i.e., Dv = DOpt

v ∪ DOpt
x ).

Theorem 10 is easily proved from the following lemma and Proposition 11.

Lemma 12. In the dispersal D constructed in the above way, every vertex v in
VR has a round-trip path between v and x in its local dispersal Dv. In addition,
c(D) ≤ 2 · c(DOpt) is satisfied.

Proof. Every local dispersal Dv contains paths from v to x and from x to v
since DOpt

v ∪ DOpt
x contains the paths to satisfy the requests (x, v) and (v, x).

From the construction of the dispersal D, we obtain c(D) ≤ c(DOpt) + |DOpt
x | ·
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|VR|. Now, the size of the local dispersal DOpt
x is the minimum of all local

dispersals in DOpt, and the local dispersal of the vertex not included in VR is
empty in DOpt. Therefore, we obtain |DOpt

x | · |VR| ≤ c(DOpt). It implies that
c(D) ≤ 2 · c(DOpt). 2

5.3. Proof of 3/2-approximation for Undirected Graphs
In this subsection, we prove that the approximation ratio of MinPivot is

improved for MCD of the undirected variant. That is, we prove the following
theorem.

Theorem 13. For an undirected graph G and a subset-full request R, MinPivot
is a 3/2- approximation algorithm.

In the proof, we take the same approach as the one of Theorem 10: We con-
struct a dispersal D with cost at most 3

2 · c(DOpt), which satisfies the condition
in Proposition 11. Since Proposition 11 also clearly holds in undirected graphs,
it follows that the cost of the solution by MinPivot is bounded by 3

2 · c(DOpt).
In the proof of Theorem 10, we show that when all the edges in DOpt

x are added
to the local dispersal of every vertex in VR, the cost of the dispersal D is at
most twice as much as that of the optimal dispersal. Our proof of Theorem 13
is based on the idea that we construct a dispersal D by adding each edge in
DOpt

x to at most |VR|/2 local dispersals.
In what follows, we show the construction of D. We define a rooted tree T

from an optimal dispersal DOpt. To define T , we first assign a weight to each
edge: To any edge in DOpt

x , the weight zero is assigned. All the other edges are
assigned the weight one. A rooted tree T = (V,ET ) (ET ⊆ E) is defined as a
shortest path tree with root x (in terms of weighted graphs) that spans all the
vertices in VR. Let pT (u, v) be the shortest path from a vertex u to v on the
tree T . The weight of a path p(u, v) is defined by the total weight of the edges
on the path and denoted by w(p(u, v)). For each vertex v, let pT (v, v) = ∅ and
w(pT (v, v)) = 0.

Lemma 14. On T = (V, ET ) for an optimal dispersal DOpt,
∑

v∈VR
w(pT (x, v))

< c(DOpt).

Proof. For the vertex x, w(pT (x, x)) < |DOpt
x | clearly holds, since |DOpt

x | >
0. For any other vertex v in VR, the set R of requests necessarily includes
(x, v) (remind that R is subset-full). To satisfy (x, v), in the optimal dispersal,
DOpt

x ∪ DOpt
v includes a path p(x, v), and thus, p(x, v) \ DOpt

x ⊆ DOpt
v . This

implies |p(x, v) \ DOpt
x | ≤ |DOpt

v |. Since any edge in DOpt
x has weight zero and

all other edges have weight one, the weight of p(x, v) is equal to |p(x, v)\DOpt
x |.

From the definition of pT (x, v), we obtain w(pT (x, v)) ≤ w(p(x, v)) ≤ |DOpt
v |.

In an optimal dispersal DOpt, the local dispersal DOpt
v of each vertex v in

V \ VR has no edges since there is no request for v in R. Thus, it follows∑
v∈VR

w(pT (x, v)) <
∑

v∈VR
|DOpt

v | = c(DOpt). 2
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Figure 3: Examples of the proposed dispersals. The dotted edges represent edges included in

DOpt
x and the heavy dotted edges represent edges included in D̂Opt

x

For each edge e in DOpt
x , let C(e) be the number of vertices from which path

to the vertex x on T includes the edge e: C(e) = |{v ∈ VR | e ∈ pT (x, v)}|. The
construction of the desired dispersal depends on whether any edge e in DOpt

x

satisfies C(e) ≤ |VR|/2 or not.
In the case that C(e) ≤ |VR|/2 holds for any edge e in DOpt

x , the dispersal
D′ is constructed in the following way: D′ = {D′

v|v ∈ V }, where

• for the vertex v in VR, D′
v = pT (x, v),

• for the vertex v in V \ VR, D′
v = ∅.

Figure 3(a) shows one example of the dispersal D′. In the figure, the dotted
edges represent edges included in DOpt

x and the thick curves represent the local
dispersal of each vertex.

Lemma 15. c(DMP ) ≤ c(D′) ≤ 3
2 · c(DOpt)

Proof. From the definitions of T and C(e), we obtain |pT (x, v)| = w(pT (x, v))+
|pT (x, v)∩DOpt

x | and
∑

v∈VR
|pT (x, v)∩DOpt

x | =
∑

e∈DOpt
x

C(e). Thus, c(D′) =∑
v∈VR

w(pT (x, v)) +
∑

e∈DOpt
x

C(e). From Lemma 14 and the assumption that

C(e) ≤ |VR|/2, it follows that c(D′) ≤ c(DOpt) + |DOpt
x | · |VR|

2 . Since |DOpt
x | ·

|VR| ≤ c(DOpt) holds, we obtain c(D′) ≤ 3
2 · c(DOpt). The local dispersal D′

v of
v in VR includes a path from x to v, thus, c(DMP ) ≤ c(D′) holds by Proposition
11. 2

We consider the case that there is an edge such that C(e) > |VR|/2. Let Tv

be the subtree of T induced by vertex v and all of v’s descendants, and V (Tv)
be the set of vertices in Tv. The set of edges in DOpt

x such that C(e) > |VR|/2
is denoted by D̂Opt

x . Let y be the vertex farthest from x of those adjacent to
some edge in D̂Opt

x .

Lemma 16. All edges in D̂Opt
x are on the path pT (x, y).
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Proof. If a path pT (x,w) from x to a vertex w ∈ VR contains an edge (u, v),
then vertex w is a descendant of u and v. That is, w ∈ V (Tv)∩VR holds. Thus,
from the definition of C(e), we have C((u, v)) = |V (Tv) ∩ VR| for each edge
(u, v) ∈ DOpt

x where u is the parent of v. Therefore, the edge (u, v) satisfies
C((u, v)) > |VR|/2 iff |V (Tv) ∩ VR| > |VR|/2.

We prove the lemma by contradiction. Suppose for contradiction that there
is an edge (u, v) such that (u, v) ∈ D̂Opt

x and (u, v) ̸∈ pT (x, y). Let v be a child
of u on T . From (u, v) ̸∈ pT (x, y), it follows that vertex v is not an ancestor
of the vertex y on T . Since vertex y is the farthest vertex from x, from which
the edge to its parent is contained in D̂Opt

x , vertex v is not a descendant of y.
Thus, we obtain V (Tv) ∩ V (Ty) = ∅. In addition, C((u, v)) = |V (Tv) ∩ VR| >
|VR|/2 holds. From V (Tv) ∩ V (Ty) = ∅ and |V (Tv) ∩ VR| > |VR|/2, we obtain
|V (Ty) ∩ VR| ≤ |VR|/2. It contradicts the definition of the vertex y. 2

In the case that there is an edge such that C(e) > |VR|/2, a dispersal D′′ is
constructed so that every vertex in VR has the path from itself to vertex y on
T : D′′ = {D′′

v |v ∈ V }, where

• for the vertex v in VR ∩ V (Ty), D′′
v = pT (y, v),

• for the vertex v in VR \ V (Ty), D′′
v = pT (x, v) ∪ pT (x, y),

• for the vertex v in V \ VR, D′′
v = ∅.

Figure 3(b) shows one example of the dispersal D′′. The heavy dotted edges
represent edges included in D̂Opt

x . We can see that local dispersal of each vertex
contains a path from itself to the vertex y.

Lemma 17. c(DMP ) ≤ c(D′′) ≤ 3
2 · c(DOpt)

Proof. From the definition of the dispersal D′′, we obtain c(D′′) ≤
∑

v∈VR∩V (Ty)

|pT (y, v)|+
∑

v∈VR\V (Ty)(|pT (x, v)|+|pT (x, y)|). Lemma 16 implies that the edge

in D̂Opt
x is contained by only vertices in VR\V (Ty). Moreover, it implies that for

each edge e ∈ DOpt
x that is not on pT (x, y), e ∈ DOpt

x \ D̂Opt
x and C(e) ≤ |VR|/2

hold. Since |VR \V (Ty)| ≤ |VR|/2 < |VR ∩V (Ty)|, the following inequalities can
be obtained in the same way as the proof of Lemma 15:

c(D′′) ≤
∑

v∈VR∩V (Ty)

|pT (y, v)| +
∑

v∈VR\V (Ty)

(|pT (x, v)| + |pT (x, y)|)

≤
∑

v∈VR∩V (Ty)

w(pT (y, v)) +
∑

v∈VR\V (Ty)

(w(pT (x, v)) + w(pT (x, y)))

+
∑

e∈DOpt
x \D̂Opt

x

C(e) +
∑

e∈D̂Opt
x

|VR \ V (Ty)|

≤
∑

v∈VR∩V (Ty)

w(pT (y, v)) + |VR \ V (Ty)| · w(pT (x, y))
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+
∑

v∈VR\V (Ty)

w(pT (x, v)) +
|VR|
2

· |DOpt
x \ D̂Opt

x | + |VR|
2

· |D̂Opt
x |

≤
∑

v∈VR∩V (Ty)

(w(pT (y, v)) + w(pT (x, y))) +
∑

v∈VR\V (Ty)

w(pT (x, v))

+
|VR|
2

· |DOpt
x |

=
∑

v∈VR

w(pT (x, v)) +
1
2
· c(DOpt) ≤ 3

2
· c(DOpt)

Since the local dispersal D′′
v of every vertex v in VR includes a path from v to

y, c(DMP ) ≤ c(D′′) holds by Proposition 11. 2

From Lemmas 15 and 17, Theorem 13 is proved.

6. Concluding remarks

In this paper, we investigate the (in)approximability of MCD from a per-
spective of how topological structures of R affect the complexity of MCD.
While the approximability bound of MCD for a general setting of R is eval-
uated as Θ(log n) under the assumption P ̸= NP , MCD for Subset-Full is
2-approximable though it is still inapproximable within a small constant fac-
tor unless P = NP . Moreover, in the undirected version of MCD, MCD for
Subset-Full is 3/2-approximable.

The complexity of MCD for Full, which is a special case of Subset-Full, is
still open. We have shown that MCD for Subset-Full is NP-hard, but it does
not imply the hardness of MCD for Full. Recall that the Minimum Steiner Tree
problem is NP-hard whereas the Minimum Spanning Tree has a polynomial time
algorithm [13]. Since the relationship between the Minimum Steiner Tree and
the Minimum Spanning Tree is similar to the one between MCD for Subset-Full
and MCD for Full, it is not strange that MCD for Full is to be polynomially
solvable. We actually conjecture that MinPivot returns an optimal solution for
MCD with Full; if it is correct, we will obtain an interesting contrast similar to
the relation between Minimum Steiner Tree and Minimum Spanning Tree.

Another open issue is the consideration of fault-tolerant property for MCD
problem, which can be defined as the problem of establishing multipath con-
nection between sources and destinations. This problem can be related to the
minimum k-connected spanning subgraph problem, and several approaches can
be imported from its previous literature[16].
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