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Abstract

The Trisentis game consists of a rectangular array of lights each of which
also functions as a toggle switch for its (up to eight) neighboring lights. The
lights are OFF at the start, and the object is to turn them all ON. We give
explicit formulas for the dimension of the kernel of the Laplacian associated
to this game as well as some variants, in some cases, by counting rational
points of the singular quartic curve (x + x−1 + 1)(y + y−1 + 1) = 1 over
finite fields. As a corollary, we have an affirmative answer to a question of
Clausing whether the n×n Trisentis game has a unique solution if n = 2·4k

or n = 2 · 4k − 2.
Keywords: σ-game; σ+-game; graph Laplacian; Lights Out; strong

product; Kronecker product; Chebyshev polynomials.
MSC2010: 05C50, 11G20, 14G15, 31C20, 91A46.

1 Introduction
The m × n Trisentis game [2] consists of an m × n array of lights each of which
also functions as a toggle switch for its (up to eight) neighboring lights. The lights
are OFF at the start, and the object of this solitaire game is to turn them all ON,
by switching some of the lights.
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Theorem 1 (Clausing [2]). (i) The n×n Trisentis game has no solution if n is
odd.

(ii) It has a solution if n = 2 · 4k or n = 2 · 4k − 2 for some integer k ≥ 1.

Conjecture 2 (ibid.). (i) The n × n Trisentis game has a solution if n is even.

(ii) The solution is unique if n = 2 · 4k or 2 · 4k − 2.

In this note, we give a proof of Conjecture 2(ii), thereby providing an alter-
native proof of Theorem 1(ii), by counting rational points of the singular quartic
curve

(x + x−1 + 1)(y + y−1 + 1) = 1 (1)

over finite fields. Actually, we do more. We consider this game and its torus
version, both with p colors where p is a prime number; each light can assume one
of p colors instead of an ON/OFF state. The game has a unique solution if and only
if the associated Laplacian is injective. For given m,n, and p, we can compute
the kernel of the Laplacian by Gaussian elimination. But the numerical table of
the dimension of the kernel gives very few indications as to the dependence on
m, n, and p. We obtain explicit formulas for the dimension in some cases. See
subsection 2.3 for precise statements.

It is known that the elliptic curve

x + x−1 + y + y−1 + 1 = 0 (2)

plays an important role in the arithmetic of Lights Out puzzle, a similar solitaire
game (cf. [4],[12]). In [4], we observed interesting patterns in the table of the
dimension of the kernel of the Laplacian for Lights Out puzzle, and proved one
of them by using the multiplication by 2 map on this elliptic curve. In the present
note, the curve (1) plays a similar role as this elliptic curve.

In fact, these two games are just particular cases of the same scheme as follows
(see [13] for the details). Let Λ = Z2 and let K be a field of positive characteristic.
For a function a : Λ → K with finite support, consider the Laplacian (convolution
operator) f 7→ ∆a(f) = f ∗ a acting on the space of functions on Λ with values
in K. A function is called a-harmonic if ∆a(f) = 0. If m and n are prime to
the characteristic of K, then the dimension of the space of a-harmonic functions
with period (m,n) is equal to the number of bi-torsion points of order (m,n) of
an affine curve called the symbolic variety of a. The Lights Out game (on a torus,
to be precise) is the case where K = F2 (the field with two elements) and the
support of a is

{(x, y) ∈ Z2 | |x| + |y| ≤ 1}.
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The elliptic curve (2) is nothing but the symbolic variety for this a. The Trisentis
game is the case where K = F2 and the support of a is

{(x, y) ∈ Z2 | max{|x|, |y|} = 1},

for which the quartic curve (1) is the symbolic variety. This scheme works as well
for higher dimensional lattices and for systems of convolution equations, where
general affine varieties naturally appear.

The organization of this paper is as follows. In section 2, we begin with
Sutner’s σ-game and σ+ game on a graph, and define the Laplacian. We then
formulate the Trisentis game as well as some variants, and give statements of re-
sults. Section 3 is devoted to the proofs. After preparing about basic properties
of Kronecker products, Chebyshev polynomials, and eigenstructure of adjacency
matrices of some graphs, we are naturally lead to the quartic curve (1). We count
rational points of this curve over an arbitrary finite field, and finally give proofs of
the results.

We use the following notation.

• I is an identity matrix, whose degree will be clear from the context.

• p is a prime number.

• Fq is the finite field with q elements.

• Pn is a path graph with n vertices (n ≥ 2), and Cn is a cycle graph with n
vertices (n ≥ 3).

•
(

a

q

)
is the Jacobi symbol. We use this notation only for q = pf where p

is an odd prime and f ≥ 1. In this case
(

a

q

)
=

(
a

p

)f

where
(

a

p

)
is the

Legendre symbol, hence we have

(
a

q

)
=


0 if a ≡ 0 (mod p),

1 if gcd(a, p) = 1 and
√

a ∈ Fq,

−1 if gcd(a, p) = 1 and
√

a 6∈ Fq.

• #S is the cardinality of a set S.
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2 Trisentis game

2.1 σ-game and σ+-game on a graph
The σ-game and the σ+-game were introduced by Sutner [10]. The following
formulation is different from [10] in two respect. First, we only consider undi-
rected graphs. Second, we allow p states instead of ON/OFF states. Let G =
(V (G), E(G)) be a finite simple undirected graph, and p a prime number. A map
from V (G) to Fp is called a configuration. The set ConfG,p of all configurations
is a vector space over Fp. Define the Fp-linear map σG,p : ConfG,p → ConfG,p by

σG,p(f)(v) =
∑
u∼v

f(v),

where we write u ∼ v if there exists an edge joining u and v. Given a pair of con-
figurations (fs, ft) (source configuration and target configuration, respectively),
the goal of the σ-game on G with p colors is to find a configuration f , which we
call a solution to (fs, ft), such that

fs + σG,p(f) = ft.

If f is a solution, then f + ker(σG,p) is the set of all solutions. Define

d(G; p) = dimFp ker(σG,p).

A configuration fs is said to be solvable if (fs, 0) has a solution. Since the set
of solvable configurations coincides with the image of σG,p, the ratio of solv-
able configurations to all configurations is 1/pd(G;p). Thus d(G; p) measures non-
solvability of this game.

Likewise, we define

σ+
G,p(f)(v) = f(v) +

∑
u∼v

f(v),

d+(G; p) = dimFp ker(σ+
G,p).

The maps σG,p and σ+
G,p are analogues of the Laplacian.

Fix an order in V (G), and let Adj(G) be the adjacency matrix of G. Under an
obvious identification ConfG,p

∼= F#V (G)
p , we have

σG,p(f) = Adj(G)f, σ+
G,p(f) = (Adj(G) + I)f,

and hence

d(G; p) = corankFp Adj(G), d+(G; p) = corankFp(Adj(G) + I).
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Example 3. (i) Orbix is the σ-game on an icosahedron with two colors. All
configurations are solvable; d(G; 2) = 0.

(ii) The Lights Out puzzle is the σ+-game on the Cartesian product P5×P5 with
two colors. Exactly 1/4 of the configurations are solvable; d+(P5×P5; 2) =
2.

(iii) More generally, the σ-game and the σ+-game on Pm×Pn, Pm×Cn, Cm×Cn

etc. have been extensively investigated. See, for example, [1], [3], [4], [6],
[9], [10], [11], [12], [13], [14]. For these graphs, the σ+-game is mathemat-
ically much deeper than the σ-game.

See [7, 6.3] for detailed descriptions of (i) and (ii), as well as more examples
which have been patented and marketed.

2.2 Trisentis game
The strong product G � H of graphs G,H is defined by:

V (G � H) = V (G) × V (H),

(v, w) ∼ (v′, w′) ⇐⇒


v ∼ v′, w ∼ w′ or
v = v′, w ∼ w′ or
v ∼ v′, w = w′.

Here is an example.

u u u u u u
u u u u u u
u u u u u u
u u u u u u
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Figure 1: P6 � P4

We can then rephrase that the m×n Trisentis game is the σ-game on Pm �Pn

with two colors for the particular pair of configurations

fs = t(0 0 . . . 0), ft = t(1 1 . . . 1).
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n 2 3 4 5 6 7 8 9 10
dn 0 3 4 1 0 7 0 9 0
n 11 12 13 14 15 16 17 18 19 20
dn 3 0 1 12 15 16 1 0 19 0
n 21 22 23 24 25 26 27 28 29 30
dn 1 0 7 4 1 0 3 0 25 0
n 31 32 33 34 35 36 37 38 39 40
dn 31 0 33 4 3 0 1 0 39 0
n 41 42 43 44 45 46 47 48 49 50
dn 1 0 3 12 1 0 15 0 9 16

Table 1: dn = d(Pn � Pn; 2)

We are concerned about the dimension d(Pm �Pn; p), especially its arithmetic
behavior when we vary m,n, and p. Here is a table of dn = d(Pn � Pn; 2) for
2 ≤ n ≤ 50.

We also consider the following variants.

(i) The σ-game on Cm � Cn.

(ii) The σ+-game on Pm � Pn and Cm � Cn.

We might also consider the σ-game and σ+-game on Pn1 � Pn2 � · · · � Pnr and
Cn1 � Cn2 � · · ·� Cnr . Some of the following results can be generalized to these
cases, but we omit a description.

2.3 Statements of the results
Theorem 4. Let q = 2f .

(i)

d(Pq−2 � Pq−2; 2) =

{
0 if is odd, f ≥ 3,

q − 4 if is even, f ≥ 2.

(ii)

d(Pq � Pq; 2) =

{
0 if is odd, f ≥ 1,

q if is even, f ≥ 2.

(iii)

d(Cq−1 � Cq−1; 2) =

{
1 if is odd, f ≥ 3,

2q − 7 if is even, f ≥ 2.
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(iv)

d(Cq+1 � Cq+1; 2) =

{
1 if is odd, f ≥ 1,

2q + 1 if is even, f ≥ 2.

Since d(G; p) = 0 if and only if all configurations are solvable in the σ-game
on G with p colors, Theorem 4 implies Conjecture 2(ii), and hence gives an alter-
native proof of Theorem 1(ii).

Combining Theorem 4 with Lemma 14 and Lemma 15 below, we obtain the
following.

Corollary 5. If lcm(m,n) divides 2f ± 1 where f is odd, then we have

d(Pm−1 � Pn−1; 2) = 0, d(Cm � Cn; 2) = 1.

For example, this corollary applies to n = 2, 6, 8, 10, 18, 22, 26, 30, 32, 42, 46, 48
in Table 1.

Theorem 6. Let q = pf .

(i) If p = 3, then for f ≥ 2,

d(P(q−3)/2 � P(q−3)/2; 3) =
1

4

(
q − (−1)f − 4

)
.

(ii) If p ≥ 5, q ≥ 7, then

d(P(q−3)/2 � P(q−3)/2; p) =
1

4

(
q −

(
−1

q

)
− 2

(
−2

q

)
− 4

(
−3

q

)
− 6

)
.

(iii) If p ≥ 3, q ≥ 5, then

d(Cq−1 � Cq−1; p) = q −
(
−1

q

)
− 4

(
−3

q

)
− 3.

For the σ+-game on Pm � Pn and Cm � Cn, we have a general result. A
remarkable fact is that the result is almost independent of the prime p. Another
observation is that the σ+-game is mathematically easier than the σ-game in the
case of strong products Pm �Pn, Cm �Cn. This presents a striking contrast to the
case of Cartesian products Pm × Pn, Cm × Cn, for which the σ+-game is deeper
than the σ-game.

7



Theorem 7. (i)

d+(Pm�Pn; p) =


m + n − 1 if m + 1 ≡ n + 1 ≡ 0 (mod 3),

n if m + 1 ≡ 0 (mod 3), n + 1 6≡ 0 (mod 3),

m if m + 1 6≡ 0 (mod 3), n + 1 ≡ 0 (mod 3),

0 if (m + 1)(n + 1) 6≡ 0 (mod 3).

(ii)

d+(Cm�Cn; 3) =


2m + 2n − 4 if m ≡ n ≡ 0 (mod 3),

m + 2n − 2 if m ≡ 0 (mod 3), n 6≡ 0 (mod 3),

2m + n − 2 if m 6≡ 0 (mod 3), n ≡ 0 (mod 3),

m + n − 1 if mn 6≡ 0 (mod 3).

If p 6= 3, then

d+(Cm�Cn; p) =


2m + 2n − 4 if m ≡ n ≡ 0 (mod 3),

2n if m ≡ 0 (mod 3), n 6≡ 0 (mod 3),

2m if m 6≡ 0 (mod 3), n ≡ 0 (mod 3),

0 if mn 6≡ 0 (mod 3).

3 Proofs

3.1 Kronecker products
For two graphs G,H , we have

Adj(G � H) = (Adj(G) + I) ⊗ (Adj(H) + I) − I,

where the Kronecker product of matrices

X =

x11 · · · x1n
... . . . ...

xm1 · · · xmn


and Y is defined by

X ⊗ Y =

x11Y · · · x1nY
... . . . ...

xm1Y · · · xmnY

 .

Here are some properties of Kronecker products. We omit the proof.
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Lemma 8. (i) (A⊗B)(X ⊗Y ) = (AX)⊗ (BY ) if the right hand side makes
sense (i.e., the products AX and BY are defined).

(ii) Let A and B be square matrices of size m and n respectively. Let λ1, λ2, . . . , λm

be the eigenvalues of A and µ1, µ2, . . . , µn those of B, counting multiplici-
ties. Then the eigenvalues of A ⊗ B are

λiµj i = 1, 2, . . . ,m, j = 1, 2, . . . , n.

(iii) rank(A ⊗ B) = (rank A)(rank B).

3.2 Chebyshev polynomials
The normalized Chebyshev polynomials of the first, respectively, second kind are
defined by

C0(x) = 2, C1(x) = x, Cn(x) = xCn−1(x) − Cn−2(x) (n ≥ 2),

S0(x) = 1, S1(x) = x, Sn(x) = xSn−1(x) − Sn−2(x) (n ≥ 2).

We follow the notation in [8], which is slightly different from that in [12]. We
believe that there is no fear of confusion between the cycle graph Cn and the
Chebyshev polynomial Cn(x). Except for C0(x) = 2, the polynomials Cn(x) and
Sn(x) are monic of degree n with integer coefficients, and have the same parity as
n in the sense that

Cn(−x) = (−1)nCn(x), Sn(−x) = (−1)nSn(x).

These polynomials are characterized by the identities

Cn(2 cos θ) = 2 cos nθ, Sn(2 cos θ) =
sin(n + 1)θ

sin θ
(3)

for any θ.

Lemma 9. (i) The characteristic polynomial of Adj(Pn) (n ≥ 2) is

|xI − Adj(Pn)| =

∣∣∣∣∣∣∣∣∣∣∣

x −1
−1 x −1

. . . . . . . . .
−1 x −1

−1 x

∣∣∣∣∣∣∣∣∣∣∣
= Sn(x),

9



and that of Adj(Cn) (n ≥ 3) is

|xI − Adj(Cn)| =

∣∣∣∣∣∣∣∣∣∣∣

x −1 −1
−1 x −1

. . . . . . . . .
−1 x −1

−1 −1 x

∣∣∣∣∣∣∣∣∣∣∣
= Cn(x) − 2.

(ii) Cn(1) =

{
(−1)n2 if n ≡ 0 (mod 3),

(−1)n−1 otherwise.

(iii) Sn(1) =


(−1)n if n ≡ 0 (mod 3),

(−1)n−1 if n ≡ 1 (mod 3),

0 if n ≡ 2 (mod 3).

3.3 Eigenstructure of adjacency matrices
In the following, ζn denotes a primitive nth root of unity in a field whose charac-
teristic is either 0 or prime to n. Let K be an algebraically closed field.

Lemma 10. (i) If the characteristic of K is either 0 or prime to 2(n + 1), then
the eigenvalues of Adj(Pn) over K are

ζk
2(n+1) + ζ−k

2(n+1), k = 1, 2, . . . , n,

and Adj(Pn) is diagonalizable by(
ζ ij
2(n+1) − ζ−ij

2(n+1)

ζj
2(n+1) − ζ−j

2(n+1)

)
1≤i,j≤n

.

(ii) If the characteristic of K is 0 or is prime to n, then the eigenvalues of
Adj(Cn) over K are

ζk
n + ζ−k

n , k = 0, 1, 2, . . . , n − 1,

and Adj(Cn) is diagonalizable by(
ζ(i−1)(j−1)
n

)
1≤i,j≤n

.

Proof. In both cases, the first part follows from Lemma 9(i) and the property (3)
of Chebyshev polynomials. The verification of the second part is then straightfor-
ward.
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Noting that, in characteristic zero, −ζ2(n+1) is a primitive (n + 1)st root of
unity if n is even, we obtain the following.

Lemma 11. If K has characteristic 2 and n is even, then the eigenvalues of
Adj(Pn) over K are

ζk
n+1 + ζ−k

n+1, k = 1, 2, . . . , n/2,

each with multiplicity 2.

Lemma 12. The eigenspace of Adj(Pn) for each eigenvalue has dimension 1.

Proof. This follows from the fact that the minimal polynomial of Adj(Pn) coin-
cides with the characteristic polynomial Sn(x). This fact is proved in [11, Lemma
4.1] when K has characteristic 2, but the proof is valid for arbitrary K. For the
convenience of the reader, we reproduce the proof. Put A = Adj(Pn). It suffices
to show that f(A) 6= O for any nonzero polynomial f of degree d < n. Consider
the column vector

v = t(1 0 . . . 0)

of degree n, and let
Aiv = t(a

(i)
1 a

(i)
2 . . . a(i)

n ).

If 0 ≤ i < n, then a
(i)
i+1 = 1 and a

(i)
j = 0 for j > i+1. It follows that the (d+1)st

entry of f(A)v is equal to the leading coefficient of f , which is nonzero. Hence
f(A) 6= O.

Lemma 13. If p 6= 2 and (m + 1)(n + 1) 6≡ 0 (mod p), then

d(Pm � Pn; p) =
1

4
#{(x, y) ∈ F̄×

p × F̄×
p ; (x + x−1 + 1)(y + y−1 + 1) = 1,

x2(m+1) = y2(n+1) = 1, x 6= ±1, y 6= ±1}.

Proof. By definition, d(G; p) is the dimension over Fp of the eigenspace of Adj(G)
for the eigenvalue zero. By extension of scalars, we may replace Fp by F̄p. By
Lemma 8 and Lemma 10(i),

Adj(Pm � Pn) = (Adj(Pm) + I) ⊗ (Adj(Pn) + I) − I

is diagonalizable over F̄p and the eigenvalue are, multiplicities taken into account,(
ζk
2(m+1) + ζ−k

2(m+1) + 1
)(

ζ l
2(n+1) + ζ−l

2(n+1) + 1
)
− 1, 1 ≤ k ≤ m, 1 ≤ l ≤ n.

Considering the range of k and l, we obtain the result.
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Lemma 14. If m and n are even, then we have

d(Pm � Pn; 2) =
1

2
#{(x, y) ∈ F̄×

2 × F̄×
2 ; (x + x−1 + 1)(y + y−1 + 1) = 1,

xm+1 = yn+1 = 1, x 6= 1, y 6= 1}.

Proof. It suffices to count the dimension over F̄2 of the eigenspace of

Adj(Pm � Pn) + I = (Adj(Pm) + I) ⊗ (Adj(Pn) + I)

for the eigenvalue 1. By Lemma 11 and Lemma 12, Adj(Pn) + I is similar to the
Jordan canonical form

Adj(Pn) + I ∼


J2(α

(1)
n+1)

J2(α
(2)
n+1)

. . .
J2(α

(n/2)
n+1 )


over F̄2, where we put α

(k)
n+1 = ζk

n+1 + ζ−k
n+1 + 1 and

J2(α) =

(
α 1
0 α

)
denotes a Jordan cell of degree 2. We have then

Adj(Pm � Pn) + I ∼


. . .

J2(α
(k)
m+1) ⊗ J2(α

(l)
n+1)

. . .


1≤k≤m/2,1≤l≤n/2

.

We note that if α, β ∈ F̄2, α 6= 0, then

P−1(J2(α) ⊗ J2(β))P =

(
J2(αβ)

J2(αβ)

)
holds for

P =


1 0 0 0
0 α−1 β α−1

0 0 α 0
0 0 0 1

 .

It follows that d(Pm � Pn; 2) is equal to two times the number of pairs (k, l) such
that α

(k)
m+1α

(l)
n+1 = 1, i.e.,(

ζk
m+1 + ζ−k

m+1 + 1
) (

ζ l
n+1 + ζ−l

n+1 + 1
)

= 1

and 1 ≤ k ≤ m/2, 1 ≤ l ≤ n/2. Considering the range of k and l, we obtain the
result.
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Lemma 15. If mn 6≡ 0 (mod p), then

d(Cm�Cn; p) = #{(x, y) ∈ F̄×
p ×F̄×

p ; (x+x−1+1)(y+y−1+1) = 1, xm = yn = 1}.

Proof. By Lemma 8 and Lemma 10(ii), Adj(Cm � Cn) is diagonalizable over F̄p

and the eigenvalues are(
ζk
m + ζ−k

m + 1
) (

ζ l
n + ζ−l

n + 1
)
− 1, 0 ≤ k ≤ m − 1, 0 ≤ l ≤ n − 1.

Corollary 16. (i) If m,n are even, then

d(Cm+1 � Cn+1; 2) = 2d(Pm � Pn; 2) + 1.

(ii) If 2(m + 1)(n + 1) 6≡ 0 (mod p), then

d(C2(m+1)�C2(n+1); p) = 4d(Pm�Pn; p)+ap(2(m+1))+ap(2(n+1))+1,

where
ap(N) = #{x ∈ F̄×

p ; 3(x + x−1 + 1) = 1, xN = 1}.

Proof. We give a proof of (ii). That of (i) is easier. Consider the set

S = {(x, y) ∈ F̄×
p × F̄×

p ; (x + x−1 + 1)(y + y−1 + 1) = 1,

x2(m+1) = y2(n+1) = 1},

whose cardinality is d(C2(m+1) � C2(n+1); p) by Lemma 15. By Lemma 13, we
have

d(Pm � Pn; p) =
1

4
#
(
S ∩

(
(F̄×

p \ {±1}) × (F̄×
p \ {±1})

))
,

so that

d(C2(m+1) � C2(n+1); p) = 4d(Pm � Pn; p)

+#
(
S ∩ ({±1} × F̄×

p )
)

+ #
(
S ∩ (F̄×

p × {±1})
)

−# (S ∩ ({±1} × {±1})) .

Since
#
(
S ∩ ({1} × F̄×

p )
)

= ap(2(n + 1)),

#
(
S ∩ (F̄×

p × {1})
)

= ap(2(m + 1)),

and

S ∩ ({−1} × F̄×
p ) = S ∩ (F̄×

p × {−1}) = S ∩ ({±1} × {±1}) = {(−1,−1)},

we complete the proof.
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Remark 17. Clearly, a3(N) = 0. For p ≥ 5, let bp be the order of (−1±2
√
−2)/3

in F̄×
p , which is well-defined since

−1 + 2
√
−2

3
· −1 − 2

√
−2

3
= 1.

Then we have

ap(N) =

{
2 if bp|N,

0 otherwise.

In particular, for q = pf , p ≥ 5, we have

ap(q − 1) =

(
−2

q

)
+ 1.

3.4 A quartic curve
It has thus turned out that counting the solutions of the equation

(x + x−1 + 1)(y + y−1 + 1) = 1

in a finite field is of significant importance. Let us consider the projective curve

C : (x2 + xz + z2)(y2 + yz + z2) = xyz2.

Whatever the base field is, C has exactly two points (0 : 1 : 0), (1 : 0 : 0) at
infinity, both of which are singular, and has a unique singular point (−1 : −1 : 1)
in the affine part z 6= 0. Let C(Fq) denote the set of Fq-rational points of C. In this
subsection, we give a formula for #C(Fq).

First we treat the case of characteristic two. The curve C is reducible over F̄2

as
C = C1 ∪ C2,

where
Ci : xy + ζ i

3(x + y)z + z2 = 0, i = 1, 2,

are non-singular conics intersecting at the three singular points of C.

Lemma 18. Consider the curve C over F̄2.

(i) The points (x : y : 1) ∈ C with xy = 0 are (ζ2
3 : 0 : 1), (0 : ζ2

3 : 1) ∈ C1 and
(ζ3 : 0 : 1), (0 : ζ3 : 1) ∈ C2.

(ii) Let Frobq be the qth power Frobenius map, where q = 2f . We have Frobq(Ci) ⊂
Ci if f is even, Frobq(Ci) ⊂ C3−i if f is odd.

14



(iii) If (x : y : 1) ∈ Ci with xy 6= 0, then (x−1 : y−1 : 1) ∈ Ci.

Proof. Straightforward.

Proposition 19. For q = 2f , we have

#C(Fq) =

{
3 if f is odd,

2q − 1 if f is even.

Proof. Suppose f is odd, and let G = Gal(F̄2/Fq) = 〈Frobq〉 be the Galois group.
We have

C(Fq) = C(F̄2)
G = C1 ∩ C2

by Lemma 18(ii), so that #C(Fq) = 3.
If f is even, then C1, C2 are defined over Fq, so that we have

#C(Fq) = #C1(Fq) + #C2(Fq) − #(C1 ∩ C2) = 2(q + 1) − 3 = 2q − 1.

Proposition 20. For q = pf , p ≥ 3, we have

#C(Fq) = q −
(
−1

q

)
− 2

(
−3

q

)
+ 1.

Proof. Consider two rational maps

C → Q, (x : y : z) 7→ ((x + y)z : xy : z2),

Q → P1, (X : Y : Z) 7→ (Y − Z : X + 2Z),

where
Q : X2 + XY + Y 2 + XZ − 2Y Z + Z2 = 0

is a non-singular conic, and P1 is the projective line. By composition, we obtain a
rational map

π : C → P1, (x : y : z) 7→ (xy − z2 : (x + y + 2z)z),

which is defined outside the set of singular points of C. If follows from

C(Fq) = {singular points} ∪
∪

P∈P1(Fq)

π−1(P) ∩ C(Fq),

that
#C(Fq) = ν0 +

∑
P∈P1(Fq)

ν(P),

where we put
ν0 = 3, ν(P) = #

(
π−1(P) ∩ C(Fq)

)
.

In most cases, π−1(P) consists of two points {(x, y), (y, x)}. We have six cases
to examine.
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(i) ν1 = ν((1 : 0)) =

(
−2

q

)
+ 1, as

π−1((1 : 0)) = {±(−1 +
√
−2,−1 −

√
−2)}.

(ii) It is readily verified that ν((−1 : 1)) = 0.

Now we suppose that P = (t : 1), t 6= −1. If (x : y : 1) ∈ π−1(P), then a little
computation shows

(t2 + t + 1)x2 + 2t2x + 3t2 + 3t + 1 = 0. (4)

(iii) If t2 + t+1 = 0, then (4) reduces to x = t. If follows from π((x : y : 1)) =
(t : 1) that t = −1, which is impossible. We have thus ν((t : 1)) = 0 in this
case. The number of such t is

ν3 =

(
−3

q

)
+ 1.

If t2 + t + 1 6= 0, then (4) yields

x =
−t2 ± (t + 1)

√
D

t2 + t + 1
,

where
D = −(2t2 + 2t + 1).

(iv) If
√

D 6∈ Fq, then ν(P) = 0. We shall show below that the number of such
t ∈ Fq, t 6= −1 is

ν4 =
1

2

(
q +

(
−2

q

)
− 2

)
.

There is no overlap between cases (iii) and (iv), for if t2 + t + 1 = 0, then√
D = 1 ∈ Fq.

(v) ν((t : 1)) = 1 if and only if D = 0 if and only if t =
−1 ±

√
−1

2
. The

number of such t is

ν5 =

(
−1

q

)
+ 1.

(vi) In the remaining cases, we have ν((t : 1)) = 2. The number of such t is

ν6 = (q − 1) − ν3 − ν4 − ν5.
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Putting all together, we have

#C(Fq) = ν0 + ν1 + ν5 + 2ν6 = q −
(
−1

q

)
− 2

(
−3

q

)
+ 1.

It remains to prove the formula for ν4. Since t = −1 satisfies
√

D ∈ Fq if

and only if
(
−1

q

)
= 1, it suffices to show that the number of t ∈ Fq (including

t = −1) such that
√

D ∈ Fq is

1

2

(
q +

(
−1

q

)
−
(
−2

q

)
+ 1

)
.

D is a square in Fq if and only if

(2t + 1)2 + 2u2 + 1 = 0

holds for some u ∈ Fq. There is a one-to-one correspondence between such t and
X ∈ Fq such that (X : Y : 1) ∈ C0(Fq), where

C0 : X2 + 2Y 2 + Z2 = 0.

By looking at the Hilbert symbol (−1,−2)p = 1, we see that C0(Fp) is non-empty,
and hence #C0(Fq) = q + 1. The correspondence between X and (X : Y : 1)
is one-to-one if Y = 0, one-to-two otherwise. The number of affine Fq-rational
points with Y = 0 is

µ0 =

(
−1

q

)
+ 1,

and that of Fq-rational points at infinity is

µ∞ =

(
−2

q

)
+ 1,

so that the number in question is

µ0 +
1

2
(q + 1 − µ0 − µ∞) =

1

2

(
q +

(
−1

q

)
−
(
−2

q

)
+ 1

)
.

The congruence zeta function of C over Fq is defined by

Z(C/Fq, t) = exp
∞∑

n=1

#C(Fqn)

n
tn.
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Corollary 21. For q = 2f , we have

Z(C/Fq, t) =


(1 + t)2

(1 − t)(1 − (qt)2)
if f is odd,

1 − t

(1 − qt)2
if f is even.

For q = pf , p ≥ 3, we have

Z(C/Fq, t) =

(
1 −

(
−1

q

)
t

)(
1 −

(
−3

q

)
t

)2

(1 − t)(1 − qt)
.

3.5 Proof of Theorem 6
Put q = pf , p ≥ 3. By Lemma 15, d(Cq−1 � Cq−1; p) is equal to the number of
Fq-rational points of the curve C except for the following two types of points.

(i) Points at infinity; there are two such points.

(ii) Points (x : y : 1) with xy = 0; (1 : 0 : 1), (0 : 1 : 1) if p = 3, (ζ±1
3 : 0 :

1), (0 : ζ±1
3 : 1) if

√
−3 ∈ Fq. The number of such points is 2 + 2

(
−3

q

)
.

By Proposition 20 we obtain Theorem 6(iii). By Corollary 16 and Remark 17, the
assertions (i) and (ii) then follow from (iii).

3.6 Proof of Theorem 4
Put q = 2f . The proof of (iii) is similar to that of Theorem 6(iii); d(Cq−1�Cq−1; 2)
is equal to the cardinality of C(Fq) minus the number of points at infinity minus
the number of points (x : y : 1) with xy = 0. By Corollary 16, the assertions (i)
and (ii) follow from (iii) and (iv), respectively.

It remains to prove (iv). By Lemma 15, we need to count the number of
(x : y : 1) ∈ C(F̄2) such that xq+1 = yq+1 = 1, i.e.,

(x : y : 1)Frobq = (x−1 : y−1 : 1). (5)

Recall that C = C1 ∪ C2 over F̄2. If f is odd, then there is no point satisfying (5)
other than (1 : 1 : 1) by Lemma 18, so that we have

d(Cq+1 � Cq+1; 2) = 1.
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Suppose f is even and define a rational map ϕ : C1 → C1 by

ϕ((x : y : z)) = (ζ3y(x2 + z2) + xyz : ζ3x(y2 + z2) + xyz : xyz),

which is defined outside {(1 : 0 : 0), (0 : 1 : 0)}. It is readily verified that

ϕ−1((1 : 0 : 0)) = (0 : ζ2
3 : 1),

ϕ−1((0 : 1 : 0)) = (ζ2
3 : 0 : 1),

ϕ−1((1 : 1 : 1)) = (1 : 1 : 1).

Let P ∈ C1(Fq) be a non-singular point. We have

ϕ−1(P) = {(x : y : 1), (x−1y−1 : 1)}

for some (x : y : 1) ∈ C1(Fq2) with xy 6= 0. This is the reason that we defined the
map ϕ. Since ϕ commutes with the action of the Galois group G = Gal(F̄2/Fq) =
〈Frobq〉 and P is invariant under G, the set ϕ−1(P) is also invariant under G. This
means that either (x : y : 1) ∈ C1(Fq) or (5) holds. Conversely, any such point
(x : y : 1) appears in this way. Since #C1(Fq) = q + 1 and since the three
singular points and (0 : ζ2

3 : 1), (ζ2
3 : 0 : 1) are excluded, the number of points

(x : y : 1) ∈ C1(F̄2) \ {(1 : 1 : 1)} satisfying (5) is

2(q + 1 − 3) − (q + 1 − 5) = q.

Likewise, the number of points (x : y : 1) ∈ C2(F̄2) \ {(1 : 1 : 1)} satisfying (5)
is q. Together with (1 : 1 : 1), the number of points (x : y : 1) ∈ C(F̄2) satisfying
(5) is 2q + 1. This completes the proof.

3.7 Proof of Theorem 7
By definition, d+(G; p) is the dimension over Fp of the eigenspace of Adj(G) + I
for the eigenvalue zero. Let G,H be graphs with m,n vertices respectively. We
have

d+(G � H; p) = mn − rank((Adj(G) + I) ⊗ (Adj(H) + I))

= mn − rank(Adj(G) + I) rank(Adj(H) + I)

= mn − (m − d+(G; p))(n − d+(H; p)).

Theorem 7 then follows from the following Lemma.

Lemma 22. (i) d+(Pn; p) =

{
1 if n + 1 ≡ 0 (mod 3),

0 if n + 1 6≡ 0 (mod 3).

19



(ii) d+(Cn; p) =


2 if n ≡ 0 (mod 3),

1 if p = 3, n 6≡ 0 (mod 3),

0 if p 6= 3, n 6≡ 0 (mod 3).

Proof. (i) This is proved in [5, Corollary 5]. See also [14, Proposition 2.1]. We
give an alternative proof using Chebyshev polynomials. By Lemma 9, we
have |Adj(Pn) + I| = (−1)nSn(−1) = Sn(1). If n + 1 6≡ 0 (mod 3), then
Sn(1) 6≡ 0 (mod p), so that d+(Pn; p) = 0. Suppose n + 1 ≡ 0 (mod 3).
We have d+(Pn; p) > 0 since Sn(1) = 0. Any principal minor of degree
(n − 1) of Adj(Pn) + I is

Sn−1(1) = (−1)n 6≡ 0 (mod p).

Thus we have rankFp(Adj(Pn) + I) = n − 1, so that d+(Pn; p) = 1. Ex-
plicitly,

t
(
−1 1 0 −1 1 0 . . . −1 1

)
is a basis for the kernel.

(ii) We have similarly

|Adj(Cn) + I| = Cn(1) − (−1)n2 =

{
0 if n ≡ 0 (mod 3),

(−1)n−13 otherwise,

so that d+(Cn; p) = 0 if p 6= 3, n 6≡ 0 (mod 3). If p = 3, n 6≡ 0 (mod 3),
then d+(Cn; p) > 0, and any principal minor of degree (n−1) of Adj(Cn)+
I is Sn−1(1) 6≡ 0 (mod 3). Thus we have d+(Cn; 3) = 1. Explicitly,

t
(
1 1 1 . . . 1

)
is a basis for the kernel. Finally, if n ≡ 0 (mod 3), then any principal
minor of degree (n − 2) of Adj(Cn) + I is Sn−2(1) 6≡ 0 (mod 3), so that
d+(Cn; p) ≤ 2. Since Adj(Cn) + I has linearly independent eigenvectors

t
(
−1 1 0 −1 1 0 . . . −1 1 0

)
,

t
(
−1 0 1 −1 0 1 . . . −1 0 1

)
for the eigenvalue 0, we have d+(Cn; p) = 2.
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