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PAPER

Multiple View Geometry for Curvilinear Motion Cameras

Cheng WAN†a) and Jun SATO††b), Members

SUMMARY This paper introduces a tensorial representation of mul-
tiple cameras with arbitrary curvilinear motions. It enables us to define
a multilinear relationship among image points derived from non-rigid ob-
ject motions viewed from multiple cameras with arbitrary curvilinear mo-
tions. We show the new multilinear relationship is useful for generating
images and reconstructing 3D non-rigid object motions viewed from cam-
eras with arbitrary curvilinear motions. The method is tested in real image
sequences.
key words: multiple view geometry, curvilinear motion, spline curve, mul-
tifocal tensor, multiple cameras, camera calibration

1. Introduction

The structure from motion problem (SFM) is to extract the
3D shape of the scene as well as the camera motion from a
set of images taken by a camera undergoing unknown mo-
tion. The traditional methods in SFM provide us solutions
if a moving camera observes a static scene or a set of static
cameras observe a dynamic scene [1], [2]. In this paper, we
consider SFM problem under dynamic environments, where
both the set of cameras and the scene change non-rigidly. In
particular, we consider multiple view geometry under non-
rigid object motions viewed from multiple moving cameras.

Multiple view geometry can be used to describe the re-
lationship among images taken from multiple cameras and
to recover 3D geometry from images. From stationary con-
figurations [2]–[5] to dynamic configurations [6]–[10], mul-
tiple view geometry has been extensively developed. How-
ever, previous multiple view geometry involving dynamic
scenes are constrained from the translational motions of the
cameras [9], [10] or a configuration of points in which each
point can move independently along some restricted tra-
jectory, i.e., straight line path and in some cases second-
order [6]–[8]. In this research, we consider the case where
non-rigid object motions are viewed from curvilinear mo-
tion cameras as shown in Fig. 1. The curvilinear motion
means a curved trajectory without rotation.

A degree-n B-Spline curve is a set of piecewise smooth
curves [11]. It is differentiable in high order at the joint of
piecewise curves. Even if piecewise curves are low degree,
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B-Spline curve can represent a complex curve. Therefore, in
this paper we use B-Spline curve to model the trajectory of
the camera and adopt the widely used cubic B-Spline curve
to describe the camera motion. We show that arbitrary non-
rigid motions viewed from multiple cubic B-spline curve
motion cameras could be represented by the multiple view
geometry from 6D to 2D.

To do this, we assume affine cameras as a camera
model. We analyze multiple view geometry under the pro-
jection from 6D to 2D, and show that we have multilinear
relationships for up to 7 views. The four-view, five-view,
six-view and seven-view geometries are studied extensively,
and new quadrilinear, quintilinear, sextilinear and septilin-
ear relationships from 6D space to 2D space are presented.
The results from experiments show that the defined 6D to 2D
multiple view geometry can be used to describe the relation-
ship among images taken from non-rigid motions viewed
from multiple curvilinear motion cameras, and it is also use-
ful for view transfer among curvilinear motion cameras and
3D reconstruction.

2. Non-rigid Object Motions Viewed from Curvilinear
Motion Cameras

Let us consider a single moving point in the 3D space. If

Fig. 1 A moving point in 3D space and its projections in seven curvilin-
ear motion cameras. The multifocal tensor defined under projections from
P6 to P2 can describe the relationship among these image projections.
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the multiple cameras are stationary or translational, we can
compute the multifocal tensors with known methods [2], [9]
to figure out multiple view geometry. However, if these
cameras have independent curvilinear motions, the tradi-
tional multifocal tensors cannot be computed from the tra-
jectory of the point. Nonetheless, we in this section show
that if the camera motions are curvilinear as shown in Fig. 1,
the multiple view geometry under extended projections can
be computed from the trajectory of the point, and they can
be used to, for example, generate point motions viewed from
arbitrary curvilinear motion cameras.

Consider a usual affine camera which projects points in
3D to 2D images. The position of a point in the 3D space
can be represented by homogeneous coordinate, X(T ) =
[X(T ),Y(T ),Z(T ), 1]�, where T denotes time. The trajec-
tory of the point is projected to images, and can be observed
as a set of points [x(T ), y(T ), 1]�. As we know, in the mathe-
matical field of numerical analysis, B-spline curves are very
useful for representing arbitrary 3D shapes with small num-
ber of control points. Hence, we make use of cubic B-spline
curves [11] to describe the arbitrary 3D motions of cameras
ΔV = [ΔX,ΔY,ΔZ,ΔW]� in homogeneous coordinates in
this paper. The camera motion is relative to the camera ini-
tial position, and hence its fourth entry is equal to 0, and thus
represented as ΔV = [ΔX,ΔY,ΔZ, 0]�. The ith segment of
a B-spline curve is defined using four control points, Qi−1,
Qi, Qi+1, Qi+2 and a parameter t as follows:

ΔVi = [Qi−1,Qi,Qi+1,Qi+2] B

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t3

t2

t
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, (1)

(t ∈ [0, 1], i = 1, 2, 3, · · · )
where, the fourth entries of Qi−1, Qi, Qi+1, Qi+2 are equal to
0, since the forth entry of ΔVi is equal to 0. B denotes the
following 4 × 4 matrix:

B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−1 3 −3 1
3 −6 0 4
−3 3 3 1
1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
/6,

Assume each motion segment ΔVi spends time Ta.
Then t = T/Ta − i + 1. Thus, the parameter vector can
be written as:
⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

t3

t2

t
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Ci

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T 3

T 2

T
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(2)

where

Ci =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1/Ta
3 −3(i − 1)/Ta

2 3(i − 1)2/Ta −(i − 1)3

0 1/Ta
2 −2(i − 1)/Ta (i − 1)2

0 0 1/Ta −i + 1
0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let Gi = [Qi−1,Qi,Qi+1,Qi+2]. Then, ΔVi can be rewritten
as follows:

ΔVi(T ) = GiBCi

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T 3

T 2

T
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3)

Thus, point motions X(T ) are projected to an affine
camera with cubic B-spline curvilinear motion ΔVi(T ) as
follows:
⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x(T )
y(T )

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= Pa(X(T ) − ΔVi(T )) (4)

where Pa denotes a 3 × 4 affine camera matrix, whose third
row is [0, 0, 0, 1], and (X(T ) − ΔVi(T )) is the position of a
3D point at time T relative to the camera. By substituting
(3) into (4), we have the following equation:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x(T )
y(T )

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= Pa[I,−GiBCi]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X(T )
T 3

T 2

T
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5)

Suppose Di = Pa[I,−GiBCi]. Then

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x(T )
y(T )

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= Di

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X(T )
Y(T )
Z(T )

1
T 3

T 2

T
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(6)

Let us consider the following 8 × 7 matrix L:

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 0 0 0 1
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0
0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(7)

Then, (6) can be described as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x(T )
y(T )

1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
= Pi

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X(T )
Y(T )
Z(T )
T 3

T 2

T
1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8)

where, Pi = DiL. Di represents a 3 × 8 matrix, and Pi de-
notes a 3 × 7 extended affine camera matrix, whose third
row is [0, 0, 0, 0, 0, 0, 1]. Pi depends on the choice of control
points. We therefore find that, from (8), the projections of
point motions to the image plane of a camera with a single
segment B-spline curve motion can be described by the pro-
jection from 6D to 2D. In the next sections, the geometry of
such projection will be given in more detail.
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3. Projection from 6D to 2D

We first consider a projection from 6D space to 2D space.
Let W = [W1,W2,W3,W4,W5,W6,W7]� be the homoge-
neous coordinates of a 6D space point projected to a point
in the 2D space, whose homogeneous coordinates are repre-
sented by x = [x1, x2, x3]�. Then, the extended affine pro-
jection from W to x can be described as follows:

x ∼ PW (9)

where (∼) denotes equality up to a scale, and P denotes the
following 3 × 7 matrix:

P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

p11 p12 p13 p14 p15 p16 p17

p21 p22 p23 p24 p25 p26 p27

0 0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(10)

From (10), we find that the extended affine camera, P, has
14 DOF. In the next section, we consider the multiple view
geometry of the extended affine cameras.

4. Multiple View Geometry from 6D to 2D

From (9), we have the following equation for N extended
affine cameras:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

P x 0 0 · · · 0
P′ 0 x′ 0 · · · 0
P′′ 0 0 x′′ · · · 0
...

...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

W
λ
λ′
λ′′
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
...

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(11)

where, the leftmost matrix, M, in (11) is 3N × (7 + N). By
deriving a (7 + N) × (7 + N) minor R of M, we have a mul-
tilinear relationship under the extended affine projection as
follows:

det R = 0

We can choose any 7 + N rows from M to constitute R, but
we have to take at least 2 rows from each camera for deriv-
ing meaningful N view relationships (note, each camera has
3 rows in M). Thus, 7+N ≥ 2N must hold for defining mul-
tilinear relationships for N view geometry in the 6D space.
Thus, we find that, the multilinear relationship for 7 views
is the maximal linear relationship in the 6D space.

4.1 Four-View Geometry

We next introduce multiple view geometry of four extended
cameras. For four views, the sub square matrix R is 11 ×
11. From det R = 0, we have the following quadrilinear
relationship under extended camera projections:

xix′ j x′′k x′′′hεhvdQv
i jk = 0d (12)

where εhvd (or its contravariant counterpart, εhvd) denotes a
tensor, which represents a sign based on permutation from

{h, v, d} to {1, 2, 3}, and equals 0 when index is repeated. In
this paper we use Einstein’s summation convention for rep-
resenting tensor equations. Qv

i jk is the quadrifocal tensor for
the extended cameras and has the following form:

Qv
i jk = εipqε jrsεktu det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ap

aq

br

bs

ct

cu

dv

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(13)

where ai denotes the ith row of P, bi denotes the ith row of
P′, ci denotes the ith row of P′′ and di denotes the ith row of
P′′′ respectively. The quadrifocal tensor Qv

i jk is 3× 3× 3× 3
and has 81 entries. Since all the third rows of the extended
affine camera matrices are [0, 0, 0, 0, 0, 0, 1], many zero en-
tries arise in Qv

i jk. As a result, Q1
133, Q2

133, Q1
233, Q2

233, Q1
313,

Q2
313, Q1

323, Q2
323, Q1

331, Q2
331, Q1

332, Q2
332, Q1

333, Q2
333, Q3

333 are
non-zero entries and thus we have only 14 free parameters in
Qv

i jk except a scale ambiguity. On the other hand, (12) pro-
vides us 3 linear equations on Qv

i jk, but only 2 of them are
linearly independent. Thus, at least 7 corresponding points
are required to compute Qv

i jk from images linearly.
Since corresponding points at each time induce linear

constraints, for computing quadrifocal tensor, we reformu-
late (12) as follows:

E(t)q = 0 (14)

where q = [Q1
133,Q2

133,Q1
233,Q2

233,Q1
313,Q2

313,Q1
323,Q2

323,

Q1
331,Q2

331,Q1
332,Q2

332,Q1
333,Q2

333,Q3
333]�, and E(t) is a 3×15

matrix whose elements are calculated from the correspond-
ing points x(t), x′(t), x′′(t) and x′′′(t). Although (14) has 3
equations, only 2 of them are linearly independent. Then,
if we have N corresponding points, q can be computed by
solving the following linear equations.

Uq = 0 (15)

U = [E(t1)�, · · · ,E(tN)�]�

where N ≥ 7. The solution on q is the eigenvector corre-
sponding to the smallest eigenvalue of U�U.

Since two points x′′′d and x′′′h in the forth view can be
used to represent a line l′′′v which goes through x′′′d and x′′′h
as: x′′′hx′′′dεhvd = l′′′v , (12) becomes

xix′ j x′′k x′′′hx′′′dεhvdQv
i jk = xix′ j x′′kl′′′v Qv

i jk = 0 (16)

by multiplying x′′′d on both sides. Then, (16) shows the
connection of the quadrifocal tensor with three points and
one line. Furthermore, if multiplying x′′u, a point in the
third view, to (16), we can derive:

xix′ j x′′k x′′ul′′′v Qv
i jk =

1
6

xix′ j x′′k x′′uεrkuε
rkul′′′v Qv

i jk

=
1
6

xix′ jl′′r l′′′v ε
rkuQv

i jk = 0u (17)
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Table 1 Quadrilinear relations between point and line coordinates in
four views. The final column denotes the number of linearly independent
equations.

correspondence relation eq.

four points xi x′ j x′′k x′′′hεhvdQv
i jk = 0d 2

three points, one line xi x′ j x′′kl′′′v Qv
i jk = 0 1

two points, two lines xi x′ jl′′r l′′′v ε
rkuQv

i jk = 0u 2

one point, three lines xil′ql′′r l′′′v ε
q jtεrkuQv

i jk = 0tu 4

four lines lpl′ql′′r l′′′v ε
pisεqktεrkuQv

i jk = 0stu 8

where l′′r is a line in the third view going through x′′k and
x′′u. (17) is the correspondence on point-point-line-line.
The other correspondences may be obtained in the same
manner.

A complete set of the quadrilinear equations involving
the quadrifocal tensor are given in Table 1. All of these
equations are linear in the entries of the quadrifocal tensor
Qv

i jk.
As described in Sect. 2, this multiple view geometry

can be applied to multiple affine cameras with curvilinear
motions. Meanwhile, since the position of points in our re-
search includes the information of time, we can derive the
multiple view geometry from fewer time instants t if we ob-
serve more than one point. For example, in the case of four
views, we need 7 time instants, if we observe a single point
in the space. However, if we observe 2 point motions in 3D,
we only need to observe them 4 time instants to figure out
multiple view geometry.

4.2 Five-View, Six-View and Seven-View Geometry

Similarly, the five-view, six-view and seven-view geometry
can also be derived for the extended cameras. The quintilin-
ear relationship under extended projection is:

xix′ j x′′k x′′′hx′′′′mεktcεhudεmveRtuv
i j = 0cde (18)

Rtuv
i j is the quintifocal tensor whose form is described as:

Rtuv
i j = εipqε jrs det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ap

aq

br

bs

ct

du

ev

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(19)

where ai, bi, ci, di and ei denote the ith row of five cam-
era matrices. The quintifocal tensor Rtuv

i j has 243 entries.
Excluding 191 zero entries and a scale ambiguity, it has 51
free parameters. And 27 linear equations are given from
(18) but only 8 of them are linearly independent. Therefore,
minimum of 7 corresponding points are required to compute
Rtuv

i j from images linearly. The quintilinear relationships in-
volving the quintifocal tensor are summerized in Table 2.

We next introduce the multiple view geometry of six
extended cameras. The sextilinear constraint is expressed as
follows:

Table 2 Quintilinear relations between point and line coordinates in five
views. The final column denotes the number of linearly independent equa-
tions.

relation # of eq.

xi x′ j x′′k x′′′h x′′′′mεktcεhudεmveRtuv
i j = 0cde 8

xi x′ j x′′k x′′′hl′′′′v εktcεhudRtuv
i j = 0cd 4

xi x′ j x′′kl′′′u l′′′′v εktcRtuv
i j = 0c 2

xi x′ jl′′t l′′′u l′′′′v Rtuv
i j = 0 1

xil′ql′′t l′′′u l′′′′v ε
q jnRtuv

i j = 0n 2
lpl′ql′′t l′′′u l′′′′v ε

pimεq jnRtuv
i j = 0mn 4

Table 3 Sextilinear relations between point and line coordinates in six
views. The final column denotes the number of linearly independent equa-
tions.

relation eq.

xi x′ j x′′k x′′′h x′′′′m x′′′′′nε jrbεkscεhtdεmueεnv fSrstuv
i = 0bcde f 32

xi x′ j x′′k x′′′h x′′′′ml′′′′′v ε jrbεkscεhtdεmueSrstuv
i = 0bcde 16

xi x′ j x′′k x′′′hl′′′′u l′′′′′v ε jrbεkscεhtdSrstuv
i = 0bcd 8

xi x′ j x′′kl′′′t l′′′′u l′′′′′v ε jrbεkscSrstuv
i = 0bc 4

xi x′ jl′′s l′′′t l′′′′u l′′′′′v ε jrbSrstuv
i = 0b 2

xil′rl′′s l′′′t l′′′′u l′′′′′v Srstuv
i = 0 1

lml′rl′′s l′′′t l′′′′u l′′′′′v εmiwSrstuv
i = 0w 2

xix′ j x′′k x′′′hx′′′′mx′′′′′nε jrbεkscεhtdεmueεnv fSrstuv
i = 0bcde f

(20)

where Srstuv
i is the sextifocal tensor (six view tensor) whose

form is represented as follows:

Srstuv
i = εipq det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ap

aq

br

cs

dt

eu

fv

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

where ai, bi, ci, di, ei and fi denote the ith row of six cam-
era matrices. The sextifocal tensor Srstuv

i has 729 entries.
If the extended cameras are affine as shown in (9), we have
only 175 free parameters in Srstuv

i except zero entries and
a scale. On the other hand, (20) shows one set of corre-
sponding points provides us 243 linear equations on Srstuv

i ,
but only 32 of them are linearly independent. Furthermore,
the constraints between multiple sets of points are not in-
dependent. As a result, at least 7 corresponding points are
required to compute Srstuv

i from images linearly. The sexti-
linear relationships are given in Table 3.

Finally, let us have a look at the multiple view geome-
try of seven extended cameras. The septilinear constraint is
described as:

xix′ j x′′k x′′′hx′′′′mx′′′′′nx′′′′′′oεipaε jqbεkrcεhsdεmte

εnu f εovgH pqrstuv = 0abcde f g (22)

where H pqrstuv is the septifocal tensor (seven view tensor)
whose form is represented as follows:
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Table 4 Septilinear relations between point and line coordinates in seven
views. The final column denotes the number of linearly independent equa-
tions.

relation # of eq.

xi x′ j x′′k x′′′h x′′′′m x′′′′′n x′′′′′′oεipaε jqbεkrcεhsd

εmteεnu f εovgH pqrstuv = 0abcde f g 128
xi x′ j x′′k x′′′h x′′′′m x′′′′′nl′′′′′′v εipaε jqbεkrc

εhsdεmteεnu fH pqrstuv = 0abcde f 64
xi x′ j x′′k x′′′h x′′′′ml′′′′′u l′′′′′′v εipaε jqb

εkrcεhsdεmteH pqrstuv = 0abcde 32
xi x′ j x′′k x′′′hl′′′′t l′′′′′u l′′′′′′v εipaε jqb

εkrcεhsdH pqrstuv = 0abcd 16
xi x′ j x′′kl′′′s l′′′′t l′′′′′u l′′′′′′v εipaε jqbεkrcH pqrstuv = 0abc 8

xi x′ jl′′r l′′′s l′′′′t l′′′′′u l′′′′′′v εipaε jqbH pqrstuv = 0ab 4
xil′ql′′r l′′′s l′′′′t l′′′′′u l′′′′′′v εipaH pqrstuv = 0a 2

lpl′ql′′r l′′′s l′′′′t l′′′′′u l′′′′′v H pqrstuv = 0 1

H pqrstuv = det

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ap

bq

cr

ds

et

fu

gv

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(23)

where ai, bi, ci, di, ei, fi and gi denote the ith row of seven
camera matrices. The septifocal tensor H pqrstuv has 2187
entries, including 576 non-zero entries. Then we have 575
free parameters in H pqrstuv except a scale. On the other
hand, (22) provides us 2187 linear equations on H pqrstuv,
but only 128 of them are linearly independent. Excluding
the dependences between the corresponding points, 7 sets of
corresponding points are enough to compute H pqrstuv from
images linearly. The septilinear relationships are given in
Table 4.

4.3 Minimum Number of Points for Computing Multifo-
cal Tensors

We next consider the minimum number of points required
for computing the multifocal tensors. The 6D affine trans-
formation has 42 DOF, since it is represented by a 7 × 7
matrix whose last row is [0 0 0 0 0 0 1]. Even if a set of N
cameras are transformed by a single 6D affine transforma-
tion, their relative geometry does not change in a 6D affine
space. Thus, the geometric DOF of N extended affine cam-
eras is 14N−42. Meanwhile, if we are given M points in the
6D space, and let them be projected to N cameras defined
in (9). Then, we derive 2MN measurements from images,
while we have to compute 14N − 42 + 6M components for
fixing all the geometry in the 6D space. Thus, the following
condition must hold for computing the multifocal tensors
from images: 2MN ≥ 14N − 42 + 6M. We find that mini-
mum of 7 points are required to compute multifocal tensors
in four, five, six and seven views.

5. Applications on Multiple View Geometry of Curvi-
linear Motion Cameras

5.1 View Transfer

The constraints between corresponding points and multifo-
cal tensors have been derived (see (12), (18), (20), (22)),
and multifocal tensors can be computed by 7 corresponding
points in 4 to 7 views. Thus, if we have the point trajecto-
ries in N − 1 images, the trajectories in the remaining image
can be calculated from N view tensor. It realizes the view
transfer from N − 1 views to the other view.

5.2 3D Reconstruction

From (9), if image points and extended camera matrix are
given, the coordinates of points in 3D can be obtained.
Therefore, computing the extended camera matrix is very
important.

Assuming that the first viewpoint is at the origin, the
camera matrices may now be written as:

P′1 = [I | 0]

P′n = [H1n | en1]

where H1n denotes the 3×3 homography from the first view
to the nth view, and en1 denotes a 3 × 4 matrix which repre-
sents the epipole. Here, the epipole en1 is not the traditional
epipole which represents the projection of a 3D viewpoint
to the 2D image, but the projection from 6D to 2D which is
a 3D space, and the four column vectors in en1 are four basis
points of this 3D space [8]. The third rows of P′1 and P′n are
[0 0 1 0 0 0 0], and the extended affine camera matrices, P′1,
P′n, can be derived as follows:

P1 = P′1L′

Pn = P′nL′

where, L′ is the following 7 × 7 matrix:

L′ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 0 0 0 0 1
0 0 1 0 0 0 0
0 0 0 1 0 0 0
0 0 0 0 1 0 0
0 0 0 0 0 1 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Let us consider four views for instance. In (16),
xix′ j x′′kQv

i jk can be considered as a point, p′′′v. Then p′′′v

and l′′′v have the following relation:

p′′′vl′′′v = 0. (24)

That is, p′′′v is a point on the line l′′′v in the fourth view. If
xi, x′ j and x′′k are corresponding points, then p′′′v is also a
corresponding point x′′′v in the fourth view. Thus, (16) may
be rewritten as:
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xix′ j x′′kQv
i jk = x′′′v. (25)

Then, the following equations can be derived:

x′′′v = Hv
14i x

i (26)

Hv
14i = x′ j x′′kQv

i jk (27)

Hv
14i denotes a homography from the first view to the fourth

view. If we have two pairs of x′ j and x′′k, two Hv
14i can be

obtained:

Hv
14i = x′ j1 x′′k1 Qv

i jk (28)

H′v14i = x′ j2 x′′k2 Qv
i jk (29)

Thus, we have the following constraints:

e41 = H14e14 (30)

e41 = H′14e14 (31)

If H14 and H′14 are independent, we can obtain:

(H14 −H′14)e14 = 0 (32)

Since H14 and H′14 have been figured out, epipole e14 can
also be derived. However, here we only can derive one col-
umn vector in e14. For obtaining the other three column
vectors, we need other three homography pairs. Once e14

and H14 are known, e41 can be calculated from (30). Thus,
the camera matrix P4 can be computed from H14 and e41. P2

and P3 can also be derived in the same manner. Then, us-
ing P1, P2, P3, P4 and a set of corresponding points in these
camera images, we can reconstruct X in (9), and hence the
point in 3D space and time T .

6. Experiments

We next show the results of some experiments. We first
show that the quadrifocal tensor for extended affine cameras
can be computed from point trajectories viewed from arbi-
trary curvilinear motion cameras, and can be used for gen-
erating one view from the others and for recovering 3D mo-
tions. We next evaluate the stability of extracted quadrifocal
tensors for extended affine cameras. We also discuss the ap-
proximate relationship between affine cameras and projec-
tive cameras. We finally show the results from real images
taken from moving cameras.

6.1 Synthetic Image Experiment

6.1.1 View Transfer

We firstly show view transfer experiment by using synthetic
images.

Figure 2 shows a 3D configuration of 4 moving cam-
eras and a moving point. The black points show the view-
points of four cameras, C1, C2, C3 and C4, with B-spline
motions which consist of two B-spline segments. The curvi-
linear motions of these four cameras are different and un-
known. The black curve shows a locus of a moving point

Fig. 2 Four curvilinear motion cameras and a moving point in the 3D
space. Each camera motion consists of two B-spline segments.

(a) (b)

(c) (d)

(e)

Fig. 3 View transfer. Figure (a), (b), (c) and (d) show four views of
the motion in camera 1, 2, 3 and 4. The black curves represent the point
trajectories when the cameras undergo the first curvilinear motions. The
white curves correspond to the second camera motions. The 7 black points
on each black loci and the 7 white points on each white loci in Fig. 3 (a),
(b), (c) and (d) are used to compute the two quadrifocal tensors. The white
curve in (e) shows point trajectories computed by the extended quadrifocal
tensors in the image plane of camera 1. The black curve is the true value.

S. Figure 3 (a), (b), (c) and (d) show point trajectories of S
viewed from C1, C2, C3 and C4 respectively. Note, the orig-
inal locus of S is closed in the 3D space as shown in Fig. 2,
but its loci in images are not closed as shown in Fig. 3 be-
cause of the camera motions. We added Gaussian image
noises with the standard deviation of 1 pixel to all the points
on the loci in images. The 7 black points on the black loci
and the 7 white points on the white loci in Fig. 3 (a), (b), (c)
and (d) are used to compute the two quadrifocal tensors on
these four moving cameras with two B-spline motions. The
quadrifocal tensors are used to recover the point trajectories
in C1 from C2, C3 and C4. Figure 3 (e) shows the recovered
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(a) (b)

Fig. 4 3D reconstruction. Figure (a) shows the real 3D motion. Figure
(b) shows the result of 3D reconstruction.

Fig. 5 The relationship between the noise level and the average error in
3D reconstruction.

result. The black curve shows the real trajectory, and the
white curve shows the computed motion. The average error
of the recovered point trajectories is 6.03 pixels.

6.1.2 3D Reconstruction

We next show the results of 3D reconstruction using the 3D
configurations shown in Fig. 2 to verify another application,
3D reconstruction. However, for convenience, we assumed
camera C1 a static camera in this experiment. Figure 4 (a)
shows the real 3D motion trajectory whose range is from
−2 to 2 in X, Y, Z axes respectively. The corresponding
points with Gaussian noise of standard deviation 1 pixel in
the four images were used to figure out the coordinates of
each point in 3D space. The reconstructed result is shown in
Fig. 4 (b). The average error is 0.21. We can see the shape
of the 3D motion is recovered properly. Figure 5 shows the
relationship between the noise level and the average error.

6.2 Stability Evaluation

We next show the stability of extracted quadrifocal tensors
under extended projections. For evaluating the extracted
quadrifocal tensors, we computed reprojection errors de-
rived from the quadrifocal tensors. The reprojection error is
defined as: 1

N

∑N
i=1 d(mi, m̂i), where d(mi, m̂i) denotes a dis-

tance between a true point mi and a point m̂i recovered from
the quadrifocal tensor. We increased the number of corre-
sponding points used for computing quadrifocal tensors in
four views from 7 to 20, and evaluated the reprojection er-
rors. The camera motions are represented by single B-spline
curve segments. Camera trajectories and 3D point motions
are generated for 1000 times by changing the control points

Fig. 6 The relationship between the number of corresponding points
used for computing quadrifocal tensors and the reprojection errors. Camera
trajectories and 3D point motions are generated for 1000 times by changing
the control points of the B-spline curves.

Fig. 7 The relationship between the distance ratio and the reprojection
errors under the projective camera model.

of the B-spline curves. Each camera trajectory and 3D point
are added Gaussian noise 100 times with the standard devia-
tion of 1 pixel. Figure 6 shows the relationship between the
number of corresponding points and the reprojection errors.
As we can see, the stability is obviously improved by using
a few more points than the minimum number of correspond-
ing points.

6.3 Approximate Relationship between Affine Camera
and Projective Camera

Affine camera is an ideal model whose optical center is at
infinity. It does not exist in the real world. Therefore, we
here desire to find some clue to the approximate relationship
between affine camera and the most general camera model,
projective camera.

We consider a ratio between the “radius” of the 3D mo-
tion (the average distance between the center and the bound-
ary of the motion) and the distance between motion’s center
and projective camera, which we call distance ratio. The re-
lationship between distance ratio and reprojection error (its
definition is same to stability evaluation) is shown in Fig. 7.
The image size is 640 × 480. As we can see, when distance
ratio ≤ 0.4, reprojection error is less than 10.

6.4 Real Image Experiment

In the first experiment, we used four usual cameras, all of
which have different one segment B-spline curve motions,
and computed quadrifocal tensors among these 4 cameras
by using two moving points in the 3D space. Figure 8 (a),
(b), (c) and (d) show trajectories of two points viewed from
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(a) (b)

(c) (d)

(e)

Fig. 8 Multiple point motion experiment. Figures (a), (b), (c) and (d)
show four views of the motion in camera 1, 2, 3 and 4. The white curves
show two different point trajectories in each view. The 7 white points on
the two curves in each image are corresponding points used for computing
the quadrifocal tensor. Note that all the cameras have one segment B-spline
curve motion. The black curves in (e) show trajectories computed by the
extended quadrifocal tensor in camera 3. The white curve shows the real
point motion.

camera 1, 2, 3 and 4. Here, distance ratio is about 0.25.
Such configuration could be considered approximating with
affine camera models as addressed. The white curves repre-
sent two different point trajectories. The 7 white points on
the two curves in each image are corresponding points used
for computing the quadrifocal tensor. The black curves in
(e) show trajectories computed from the extended quadrifo-
cal tensor in camera 3. The average error of the recovered
trajectories is 7.5 pixels. The error is caused by the follow-
ing reasons according to our analysis: (1) camera motion
error. It is difficult for controlling four cameras to do rigor-
ous spline curve motions; (2) approximate error. We used
projective cameras to approximate affine cameras; (3) se-
lection of corresponding points. Since coplanar correspond-
ing points may arise degeneration, correct results are derived
from non-coplanar corresponding points.

We next show the result from the case when cameras
undergo two segment B-spline curve motions. We still ob-
served two moving points and computed quadrifocal tensors
among four cameras. Figure 9 (a), (b), (c) and (d) show tra-
jectories of two points viewed from camera 1, 2, 3 and 4.
Here, distance ratio is about 0.20. Since the camera tra-
jectories are two segment B-spline curves, we calculated
two quadrifocal tensors to realize view transfer from cam-
era 2, 3 and 4 to camera 1. The result is shown as Fig. 9 (e).

(a) (b)

(c) (d)

(e)

Fig. 9 Multiple point motion experiment. Figures (a), (b), (c) and (d)
show four views of the motions in camera 1, 2, 3 and 4. The cameras
undergo two segment B-spline curve motions. The black curves show two
different point trajectories in each view. The white points on the two curves
in each image are corresponding points used for computing the quadrifo-
cal tensor. The curves in (e) show trajectories computed by the extended
quadrifocal tensors in camera 1. The 7 white points and 7 black points are
corresponding points to be used to figure out the quadrifocal tensor respec-
tively.

White curves are derived from the first quadrifocal tensor,
and black curves are computed from the second quadrifo-
cal tensor. The 7 white points and 7 black points are cor-
responding points to be used to figure out the quadrifocal
tensor respectively. The average error is 6.2 pixels.

From the experiments, we can see that the quadrifo-
cal tensor defined under extended projection can be derived
from multiple point motions viewed from the 4 cameras with
curvilinear motions, and they are practical for generating
images of multiple point motions viewed from curvilinear
motion camera.

7. Conclusion

In this paper, we showed that a multilinear relationship un-
der the projection from 6D to 2D can represent the geo-
metric relationship of multiple curvilinear motion cameras
whose motions are represented by cubic B-spline curves.
The multifocal tensors defined under 6D to 2D multilinear
relationships can be computed from non-rigid object mo-
tions viewed from multiple cameras with arbitrary curvi-
linear motions. We also showed that the multilinear rela-
tionships are very useful for generating images and recon-
structing 3D non-rigid motions viewed from cameras with
arbitrary curvilinear motions. The method was implemented
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and tested by using real image sequences. The stability of
extracted quadrifocal tensors was also evaluated. The recov-
ered extended affine camera matrices include camera motion
information. However, the decomposition of the camera ma-
trices is our future work.
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