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Abstract

We develop a theory of fluctuating hydrodynamics based on extended thermodynamics through studying the 13-variable theory for
a monatomic rarefied gas as a representative case. After analyzing the relationship between the present theory and the Landau-
Lifshitz theory, we discuss the hierarchy structure of the hydrodynamic fluctuations.
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1. Introduction

More than fifty years ago, Landau and Lifshitz [1, 2, 3] devel-
oped the theory of fluctuating hydrodynamics for viscous, heat-
conducting fluids with constitutive equations of Navier-Stokes
and Fourier type basing on thermodynamics of irreversible pro-
cesses (TIP) [4, 5]. In order to incorporate thermal fluctuations
into hydrodynamics, they introduced additional stochastic flux
terms into the constitutive equations of the viscous stress and
the heat flux by applying the fluctuation-dissipation theorem
[6, 7, 8]. See also reviews [9, 10, 11].

Nowadays the Landau-Lifshitz (LL) theory attracts much
attention, especially, as the basic theory for microflows and
nanoflows, which may play an important role, for example, in
the fields of nano-technology [12, 13] and molecular biology
[14, 15]. Numerical analyses of the fluctuations by using the
theory have been made extensively [16, 17, 18, 19, 20, 21, 22].
The fluctuating-hydrodynamic approach can also contribute to
the study of fluctuations in nonequilibrium states [11, 23, 24].

It is well known that TIP rests on the local equilibrium as-
sumption [4, 5]. Strictly speaking, it is highly probable that this
assumption may no longer be valid, in particular, in the cases
where nanoflows are involved, or in the cases where rarefied
gases play a role. Actually, in small systems for example, phys-
ical quantities undergo evident changes in a spatio-temporal
scale which is even smaller than the scale necessary for the lo-
cal equilibrium assumption to be valid. As for the discussion on
the validity criterion of the assumption, see, for example, Ref.
[25]. Extended thermodynamics (ET) [26] is a generalized the-
ory being applicable to such cases. ET for rarefied gases has a
counterpart in the kinetic theory of gases. For example, ET of
13 variables (ET-13) coincides with the moment theory of the
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Boltzmann equation within the Grad’s 13-moment approxima-
tion [27].

The purpose of this paper is to develop a theory of fluctuating
hydrodynamics based on ET through studying the 13-variable
theory as a representative case. After establishing the relation-
ship between the present theory and the LL theory, the hierarchy
structure of the hydrodynamic fluctuations will be discussed.

2. Theory of fluctuating hydrodynamics based on ET

The basic equations in the present study are the linearized
equations of ET-13 for a monatomic rarefied gas [26] around
an equilibrium state. The independent variables are the mass
densityρ, velocityvi , temperatureT, shear stresst⟨i j ⟩ (angular
brackets stand for the symmetric traceless part with respect to
the suffixes inside), and heat fluxqi , wherei = 1,2,3. Note that
the dynamic pressure vanishes identically in this case.
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wherea ≡ kB/m with kB being the Boltzmann constant andm
the mass of a molecule, ands⟨i j ⟩ andsppi are the source terms.
The quantities with and without the suffix 0 are, respectively,
the quantities at the equilibrium state and the deviations from
the equilibrium state. The first three equations represent, re-
spectively, the mass, momentum and energy conservation laws,
and the last two are the equations of balance type for the irre-
versible fluxest⟨i j ⟩ andqi . Owing to the existence of the second
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part, rapidly changing (deterministic) modes, which have been
neglected in the traditional hydrodynamic analysis, can be taken
into account. The specific entropy productionΣ is obtained as
follows:

Σ = λ⟨i j ⟩s⟨i j ⟩ +λppisqqi ≥ 0, (2)

whereλ⟨i j ⟩ andλppi are so-called the Lagrange multipliers.
Within the linear constitutive equations, we have

s⟨i j ⟩ = bλ⟨i j ⟩, sppi = cλppi, (3)

whereb andc are positive phenomenological coefficients. Fur-
thermore we can prove the following relations [26]:

λ⟨i j ⟩ =
1

2aρ0T2
0

t⟨i j ⟩, λppi = − 1

5a2ρ0T3
0

qi . (4)

For later analysis, we summarize briefly the fluctuation-
dissipation theorem. In the generic case [28] where the specific
entropy production is given by

Σ = −ẋaXa (5)

and where we assume the linear constitutive equation between
ẋa andXa with the phenomenological coefficientCab, we can
introduce the Gaussian white random forcefa into the constitu-
tive equation in such a way that

ẋa = −CabXb + fa, (6)

where the mean offa vanishes and its correlation is given by⟨
fa(xxx, t)fb(xxx′, t ′)

⟩
= kB(Cab+Cba)δ (xxx−xxx′)δ (t − t ′). (7)

Now we easily notice the following correspondence relation-
ship between the generic case above and the present case:

ẋa →{s⟨i j ⟩, sppi}, Xa →{−λ⟨i j ⟩, −λppi}. (8)

And we can introduce the Gaussian white random forcesr⟨i j ⟩
andsi into Eq. (3) as follows:

s⟨i j ⟩ = bλ⟨i j ⟩ + r⟨i j ⟩, sppi = cλppi + si , (9)

where the means ofr⟨i j ⟩ andsi vanish, and their correlations are
given by

⟨r⟨i j ⟩(xxx, t)r⟨mn⟩(xxx
′, t ′)⟩ = kBb

×(δimδ jn +δinδ jm− 2
3

δi j δmn)δ (xxx−xxx′)δ (t − t ′),

⟨si(xxx, t)s j(xxx′, t ′)⟩ = 2kBcδi j δ (xxx−xxx′)δ (t − t ′),
⟨r⟨i j ⟩(xxx, t)sm(xxx′, t ′)⟩ = 0.

(10)
At last, taking the relations (4) into account and introducing

the new phenomenological coefficients (relaxation times)α and
β instead ofb andc, whose relationships are evident from the
equations below, we obtain the expressions fors⟨i j ⟩ andsppi in
terms oft⟨i j ⟩, qi and the random forcesr⟨i j ⟩, si :

s⟨i j ⟩ =
1
α

t⟨i j ⟩ + r⟨i j ⟩,

sppi = − 2
β

qi + si .
(11)

The correlations (10) are rewritten by

⟨r⟨i j ⟩(xxx, t)r⟨mn⟩(xxx
′, t ′)⟩ = kB

2aρ0T2
0

α
×(δimδ jn +δinδ jm− 2

3
δi j δmn)δ (xxx−xxx′)δ (t − t ′),

⟨si(xxx, t)s j(xxx′, t ′)⟩ = kB
20a2ρ0T3

0

β
δi j δ (xxx−xxx′)δ (t − t ′),

⟨r⟨i j ⟩(xxx, t)sm(xxx′, t ′)⟩ = 0.
(12)

Equations (1) with (11) and (12) constitutethe basic system of
equations for fluctuating hydrodynamics based on ET (ET-
13).

The relaxation timesα and β can be evaluated by ex-
periments or kinetic-theoretical analysis. For gases with
Maxwellian interatomic potential we have the relation 3α = 2β
[26]. Other realistic monatomic gases satisfy this relation ap-
proximately.

3. Two subsystems of the stochastic field equations

The basic system of equations obtained above may be de-
composed into two uncoupled subsystems, that is, the subsys-
tem composed of longitudinal modes (System-L) and the sub-
system of transverse modes (System-T).

System-L:The relevant quantities of the system are given by
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∂xi

)
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≡

∂ 2t⟨i j ⟩
∂xi∂x j
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)
,
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≡−

∂ 2r⟨i j ⟩
∂xi∂x j

)
and w

(
≡ 1

2
∂si

∂xi

)
.

(13)

The spatial Fourier transform of the system is the system
of the rate-type differential equations in the space of the wave
numberkkk and timet (kkkt-representation) as follows:

∂ρ(kkk, t)
∂ t

+ρ0ψ(kkk, t) = 0,
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∂ t

− aT0k2

ρ0
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a
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∂ t
+

2
3
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2

3ρ0
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∂ t

+
8
15
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4
3
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α

τ(kkk, t)+v(kkk, t),
∂ϕ(kkk, t)

∂ t
−aT0τ(kkk, t)− 5

2
a2ρ0T0k2T(kkk, t) = − 1

β
ϕ(kkk, t)+w(kkk, t),

(14)
whereρ(kkk, t) is the spatial Fourier transform ofρ(xxx, t) defined
as

ρ(kkk, t) ≡ 1
(2π)3

∫
ρ(xxx, t)exp(−ikkk ·xxx)dxxx, (15)

and so on.
From Eq. (12), the quantitiesv(kkk, t) andw(kkk, t) are the Gaus-

sian white random forces with null means and correlations:

⟨v(kkk, t)v(kkk′, t ′)⟩ = kB
aρ0T2

0

3π3α
k4δ (kkk+kkk′)δ (t − t ′),

⟨w(kkk, t)w(kkk′, t ′)⟩ = kB
5a2ρ0T3

0

8π3β
k2δ (kkk+kkk′)δ (t − t ′),

⟨v(kkk, t)w(kkk′, t ′)⟩ = 0.

(16)
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System-T:The relevant quantities of the system are given by

ωi (≡ (curlvvv)i) , σi

(
≡ εi jk

∂ 2t⟨kn⟩
∂x j∂xn

)
, πi(≡ (curlqqq)i),

xi

(
≡−εi jk

∂ 2r⟨kn⟩
∂x j∂xn

)
and yi

(
≡ 1

2
(curls)i

)
.

(17)
The field equations in thekkkt-representation are as follows:

∂ωi(kkk, t)
∂ t

− 1
ρ0

σi(kkk, t) = 0,

∂σi(kkk, t)
∂ t

+
2
5

k2πi(kkk, t)+aρ0T0k2ωi(kkk, t) = − 1
α

σi(kkk, t)+ xi(kkk, t),
∂πi(kkk, t)

∂ t
−aT0σi(kkk, t) = − 1

β
πi(kkk, t)+yi(kkk, t).

(18)
Note that, for givenxi andyi , the equations for the set of vari-
ables (ωi ,σi ,πi) with the same suffixi can be solved separately
from those with the different suffixj(, i). In view of Eq. (12),
xi andyi are the Gaussian white random forces with null means
and correlations:

⟨xi(kkk, t)xm(kkk′, t ′)⟩ = kB
aρ0T2

0

4π3α
k4
(

δim− kikm

k2

)
×δ (kkk+kkk′)δ (t − t ′),

⟨yi(kkk, t)ym(kkk′, t ′)⟩ = kB
5a2ρ0T3

0

8π3β
k2
(

δim− kikm

k2

)
×δ (kkk+kkk′)δ (t − t ′),

⟨xi(kkk, t)ym(kkk′, t ′)⟩ = 0.

(19)

4. Relationship to the Landau-Lifshitz theory

In the successive approximation explained below, it is nec-
essary to express the shear stress and the heat flux in terms of
the other quantities. We therefore solve the last two equations
of (14) and (18) with respect to (τ, ϕ) and (σi , πi), respectively,
assuming, for the moment, that the other 3 variables (or 1 vari-
able) are some given functions of (kkk, t). The solutions can be
expressed in a generic way because the last two equations of
both systems can be written in the following matrix form:

dyyy(kkk, t)
dt

+MMM(kkk) ·yyy(kkk, t) = ddd(kkk, t)+a(kkk, t), (20)

whereyyy(kkk, t), MMM(kkk), ddd(kkk, t) anda(kkk, t) are given explicitly in
Eq. (30) or (34) below.a(kkk, t) is a Gaussian white random
force vector with 2 components. As is well known, the gen-
eral solution for the variableyyy can be easily obtained explicitly
by using the eigenvaluesλ1 andλ2 of the matrixMMM, and the
corresponding eigenvectors[u1,1]T and[u2,1]T :

yyy(kkk, t) = ỹyy(kkk, t)+yyy∗(kkk, t), (21)

where

ỹyy(kkk, t) =
[
u1 u2

1 1

]
·
[
C1e−λ1t

C2e−λ2t

]
(22)

with integration constantsC1 andC2 that are determined by the
initial condition att = 0, and

yyy∗(kkk, t) =
[
u1 u2

1 1

]
·


∫ t

0
e−λ1(t−t ′) f1(kkk, t ′)dt′∫ t

0
e−λ2(t−t ′) f2(kkk, t ′)dt′

 , (23)

where f1(kkk, t) and f2(kkk, t) are given by[
f1(kkk, t)
f2(kkk, t)

]
=

1
u1−u2

[
1 −u2

−1 u1

]
·
[
d1(kkk, t)+a1(kkk, t)
d2(kkk, t)+a2(kkk, t)

]
(24)

with d1(kkk, t), d2(kkk, t) anda1(kkk, t), a2(kkk, t) being the components
of the vectorsddd(kkk, t) anda(kkk, t), respectively.

Let us now adopt the coarse graining approximation by elimi-
nating the rapidly changing modes in ET expressed by Eqs. (14)
and (18). In comparison with the conserved quatities (mass,
momentum and energy), the rapidly changing modes usually
have much smaller relaxation times, and decay quickly. There-
fore the elimination can be done by retaining one or a few terms
in the expansion of the general solution with respect to the char-
acteristic times of the rapidly changing modes,λ−1

1 and λ−1
2

[29, 30, 31]. More explicitly, we apply to (23) the following
kind of approximation obtained by successive integrations by
parts and by neglecting transient terms:∫ t

0
e−λ (t−t ′) f (t ′)dt′ ∼ 1

λ
f (t)− 1

λ 2

d f(t)
dt

+
1

λ 3

d2 f (t)
dt2

−· · ·.
(25)

If we retain only the leading term in the approximation (25)
and discard also the transient termỹyy(kkk, t), we obtain the follow-
ing contracted solution from Eq. (21):

yyy(kkk, t) = YYY(kkk) ···ddd(kkk, t)+b(kkk, t), (26)

where

YYY =
1

u1−u2


u1

λ1
− u2

λ2
−u1u2

λ1
+

u1u2

λ2
1
λ1

− 1
λ2

−u2

λ1
+

u1

λ2

 . (27)

The quantityb(kkk, t) is the random force vector introduced by
the relation:

b(kkk, t) = YYY(kkk) ·a(kkk, t). (28)

Thenb is again Gaussian and white with null mean and corre-
lation:⟨

b(kkk, t)bT(kkk′, t ′)
⟩

= YYY(kkk) ·
⟨
a(kkk, t)aT(kkk′, t ′)

⟩
·YYYT(kkk′). (29)

In what follows, we show explicitly the contracted solutions
for the System-L and System-T:

System-L:The quantities in Eq. (20) are given by

yyy(kkk, t) =
[

τ(kkk, t)
ϕ(kkk, t)

]
, MMM(kkk) =

 1
α

8
15

k2

−aT0
1
β

 ,

ddd(kkk, t) =

−4
3

aρ0T0k2ψ(kkk, t)
5
2

a2ρ0T0k2T(kkk, t)

 , a(kkk, t) =
[
v(kkk, t)
w(kkk, t)

]
,

(30)

3



and then we obtain the eigenvalues and the components of the
corresponding eigenvectors of the matrixMMM as follows:

λ1,2 =
α +β ∓

√
(α −β )2− 32

15aT0k2α2β 2

2αβ
,

u1,2 =
α −β ±

√
(α −β )2− 32

15aT0k2α2β 2

2aT0αβ
.

(31)

It is noticeable that the order of magnitude ofλ−1
1 andλ−1

2 is
the same as that of the relaxation timesα andβ .

Denotingb = [g, h]T , we have the following relation up to
the leading term with respect toα andβ :

[
τ(kkk, t)
ϕ(kkk, t)

]
=

−4
3

aρ0T0k2αψ(kkk, t)+g(kkk, t)
5
2

a2ρ0T0k2βT(kkk, t)+h(kkk, t)

 . (32)

The random forcesg andh have null means and correlations:⟨
g(kkk, t)g(kkk′, t ′)

⟩
=

1
3π3 kBaρ0T2

0 k4αδ (kkk+kkk′)δ (t − t ′),⟨
h(kkk, t)h(kkk′, t ′)

⟩
=

5
8π3 kBa2ρ0T3

0 k2βδ (kkk+kkk′)δ (t − t ′),⟨
g(kkk, t)h(kkk′, t ′)

⟩
= 0.

(33)

System-T:The quantities in Eq. (20) are given by

yyy(kkk, t) =
[

σi(kkk, t)
πi(kkk, t)

]
, MMM(kkk) =

 1
α

2
5

k2

−aT0
1
β

 ,

ddd(kkk, t) =
[
−aρ0T0k2ωi(kkk, t)

0

]
, a(kkk, t) =

[
xi(kkk, t)
yi(kkk, t)

]
.

(34)

Then we obtain

λ1,2 =
α +β ∓

√
(α −β )2− 8

5aT0k2α2β 2

2αβ
,

u1,2 =
α −β ±

√
(α −β )2− 8

5aT0k2α2β 2

2aT0αβ
.

(35)

Denotingb = [ki , li ]T , we obtain the following relations in a
similar way as above:[

σi(kkk, t)
πi(kkk, t)

]
=
[
−aρ0T0k2αωi(kkk, t)+ ki(kkk, t)

li(kkk, t)

]
. (36)

Note that there is no deterministic part inπi(kkk, t), therefore,
only the random force plays a role. The correlations between
the zero-mean random forces are given by⟨

ki(kkk, t)km(kkk′, t ′)
⟩

=
1

4π3 kBaρ0T2
0 k4α

(
δim− kikm

k2

)
×δ (kkk+kkk′)δ (t − t ′),⟨

li(kkk, t)lm(kkk′, t ′)
⟩

=
5

8π3 kBa2ρ0T3
0 k2β

(
δim− kikm

k2

)
×δ (kkk+kkk′)δ (t − t ′),⟨

ki(kkk, t)lm(kkk′, t ′)
⟩

= 0.

(37)

The relationship between the present theory and the LL
theory: We can now confirm that the expressions in Eqs. (32),
(33), (36) and (37) are exactly the same as those derived from
the LL theory where the shear viscosityµ and the heat conduc-
tivity κ are identified by the relations [26]:

µ = aρ0T0α, κ =
5
2

a2ρ0T0β . (38)

Thus we have proved that the LL theory can be derived from
the present theory by using the coarse graining approximation.

Two theories belong to the two different levels of description
of fluctuating hydrodynamics. The rapidly changing determin-
istic modes in ET have been consistently renormalized into the
random forces in the LL theory. Therefore, from a physical
point of view, the delta-functions appeared in the correlations
have their own validity range depending on the spatio-temporal
resolution of their description level.

5. Discussion and concluding remarks

In the present paper, we have made clear the link between the
two levels of description of fluctuating hydrodynamics, that is,
the theory based on ET-13 and the LL theory. Generally speak-
ing, there are many such levels. Boillat and Ruggeri [26, 32]
found the hierarchy structure of ET and the important concept
called the “main subsystem” of field equations. Each main sub-
system gives us one level of description with different resolu-
tion from each other. And, in a similar way as above, we can de-
velop the corresponding fluctuating hydrodynamics basing on
such a main subsystem. Details of the hierarchy structure in the
hydrodynamic fluctuations will be presented in the next paper.

Lastly we summarize the concluding remarks:
(i) In ET, Navier-Stokes and Fourier constitutive equations

are obtained as its limit case by using an iterative scheme called
the Maxwellian iteration [26]. If we apply this scheme formally
to the present basic system with random forces, we can also ob-
tain the results of the LL theory. The successive approximation
scheme adopted in this letter is, in our opinion, easier to un-
derstand the physical meaning of the approximation process. In
this respect, it is interesting, as a next study, to study the second-
order approximation in the successive scheme and to compare
it with that of the second-order Maxwellian iteration.

(ii) In the present paper, we have studied a monatomic rar-
efied gas only. Fluctuating hydrodynamics can also be estab-
lished in a similar way by using recently-developed ET for a
polyatomic rarefied gas and for a real gas [33] where the dy-
namic pressure exists.

(iii) As the basic system of equations in ET is of hyper-
bolic type, the propagation speed of information is finite. In
this respect, ET is in sharp contrast to the traditional theory of
Navier-Stokes and Fourier type that predicts infinite speeds for
the propagation of heat and shear stress. It is, therefore, quite
reasonable to adopt ET in order to develop the relativistic fluc-
tuating hydrodynamics. See the pioneering work by Calzetta
[34].

(iv) Numerical analyses based on the present theory in vari-
ous situations are highly expected. We can expect qualitatively

4



different effects between the LL theory and the present theory,
especially, in a small spatio-temporal scale.
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[24] P. Espãnol, Physica A248 (1998) 77.
[25] N. Pottier, Nonequilibrium Statistical Physics, Chap.2, Oxford University

Press, Oxford (2010).
[26] I. Müller, T. Ruggeri, Rational Extended Thermodynamics, Second Edi-

tion, Springer, New York (1998).
[27] H. Grad, Commun. Pure Appl. Math. 2 (1949) 331.
[28] E. M. Lifshitz, L. P. Pitaevskii, Statistical Physics, 3rd Edition Part 1,

Pergamon Press, Oxford (1980).
[29] M. S. Miguel, J. M. Sancho, J. Stat. Phys. 22 (1980) 605.
[30] J. M. Sancho, M. S. Miguel, D. D̈urr, J. Stat. Phys. 28 (1982) 291.
[31] K. Sekimoto, J. Phys. Soc. Japan 68 (1999) 1448.
[32] G. Boillat, T. Ruggeri, Arch. Rational Mech. Anal. 137 (1997) 305.
[33] T. Arima, S. Taniguchi, T. Ruggeri, M. Sugiyama, in preparation.
[34] E. Calzetta, Class. Quantum Grav. 15 (1998) 653.

5


