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Impact of Lead-time Decision in a Decentralized Supply Chain
under Price and Lead-time Sensitive Demand
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Abstract: This paper studies the effect of lead-time decision on the performance of a decentralized supply
chain that consists of one supplier, one retailer, and wherein the demand is sensitive to both retail price and
lead-time. Three different scenarios based on lead-time decision making are studied and compared
analytically and numerically. The lead-time is decided by the retailer and the supplier in the first and second
scenarios, respectively, and it is centralized in the third scenario. The modeling considers holding and
tardiness costs incurred by the difference between promised and realized delivery lead-times. The supply
chain is analyzed using a power distribution function. This distribution is a parametric function that models
the lead-time in general environment and has the same properties as exponential distribution for specific
parameters. The optimal decision variables and expected profits are characterized and compared for the three
scenarios. The relative decrease of total expected profits in the decentralized chains from that in the
centralized model is observed and discussed. Furthermore, the effect of own price and lead-time sensitivity

demand factors are studied numerically.
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1 INTRODUCTION

In this paper, we study the impact of centralized and
decentralized lead-time decision in a two-level supply
chain management system, consisting of one supplier, one
retailer, and wherein the demand is sensitive to both lead-
time and retail price. In this study, the lead-time is defined
as the interval from the moment a consumer places an
order to the moment the order is received, including the
time required for the intermediary process between the
retailer and the supplier. When a consumer places an order
to the retailer, a promised time to receive the order will be
announced. Such time is defined as the promised delivery
lead-time (PDL), which is also expressed in literature as
quoted lead time or planned lead time. However, this PDL
can be smaller or greater than the realized delivery lead-
time (RDL), which is the exact interval of time to deliver
the order of the consumer. The RDL corresponds to the
response time or cycle time in literature. It is a stochastic
variable and may deviate from the PDL due to many rea-
sons such as high demand. As a consequence, the actor of
the chain who decides the lead-time is faced with holding
and tardiness costs incurred by the difference between the
PDL and RDL.

We aim to evaluate and discuss the effect of decision
leadership on the PDL in the decentralized chains. This
problem is a Stackelberg game in which the supplier or the
retailer can decide the PDL. However, the effect depend-
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ing on who decides the PDL on the profitability of the
players and the chain is not clear. Hence, by formulating
the decentralized decision problem as a Stackelberg games
with the supplier or the retailer as the leader, we can an-
swer the following question: which leadership decision is
more effective in achieving more profits for the players
and for the chain? After answering this question, we will
compare the results of the decentralized chains to a refer-
ence, the centralized chain. An indicator of deviation of
decentralized performances, called the inefficiency of
decentralized chain, is used. It gives the relative decrease
of the entire expected profit of the decentralized models
from that in a centralized chain. In addition, as the demand
function depends on price and lead-time, we will numeri-
cally study the effect of own price and lead-time sensitivi-
ty demand factors on the different performances of the
chains.

In actual global and competitive markets, the consumer
benefits from a variety of choices. Therefore, it is not
sufficient to consider the selling price as a unique competi-
tion factor in a supply chain. In this respect, the market
actors have been investigating new competition criteria
based on the consumers’ attention. Sterling et al. [1] and
Ballou et al. [2] reported that the rapidity and the regular-
ity of delivery time have a particular importance in cus-
tomer service. Such delivery time is related to the so called
“lead-time™ factor. Generally, lead-time depends on the
efficiency and the capacity of the selling system. For ex-
ample, So [3] reported that a retailer needs to provide
sufficient capacity and guarantees the efficiency of his
delivery system to achieve desired lead-time performances.
This competition factor is widely discussed in supply
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chain management literature such as in Yano [4-6], Li [7],
Hopp and Spearman [8], Li and Lee [9], Lederer and Li
[10], Palaka et al. [11], So and Song [12], Song et al. [13],
Cachon and Harker [14], Boyaci and Ray [15]. Recently,
Liu et al. [16] have studied pricing and lead-time decisions
in a two level decentralized supply chain consisting of one
supplier and one retailer, in which the supplier decides the
lead-time and faces related costs. Furthermore, Pekgun et
al. [17] have compared centralized and decentralized
supply chains under price and lead-time sensitive de-
mand. In most of these studies, the supplier is a lead-
time decision maker. However, consumers place their
order to the retailer and obtain information from that re-
tailer about the time of delivery. The retailer must inform
the consumer owing to their direct relationship. On the
other hand, this also raises a question regarding the an-
nouncement of delivery lead-time. The retailer and the
supplier can share the lead-time information if they repre-
sent the same company and/or if they have the same eco-
nomic orientation. However, the retail supply chain is not
usually this case. From these reasons, it seems to be more
suitable for the retailer to set the lead-time. Therefore, the
scenario in which the retailer is a lead-time decision maker
should be considered and studied. In industrial manage-
ment related literature, this scenario has not been deeply
studied. For that reason, we will focus on effect of lead-
time decision on the performances of a retail supply chain.
Furthermore, we will compare the optimal decision vari-
ables and expected profits in this scenario with those when
the supplier is a lead-time decision maker.

The decentralized chain is based on a leader-follower
model. However, in the centralized chain a single decision
maker exists and the lead-time information is shared.
Three different scenarios based on lead-time decision are
studied and compared. In the first scenario, called Scena-
rio 1, the retailer decides the PDL and the retail price to be
quoted to the consumer, but the supplier determines the
wholesale price. In a retail supply chain, this scenario is
frequently used in practice when the supplier and the re-
tailer are from different companies. For example, when a
consumer places an order for furniture, the retailer quotes
him a PDL and a.price based on standard settings. The
second scenario (Scenario 2) describes a supply chain in
which the supplier is a leader and the retailer is a follower.
The supplier determines the PDL and the wholesale price,
but the retailer quotes the retail price. This scenario was
studied in [16], where the authors consider the PDL as
information provided by the supplier to the retailer. How-
ever, as mentioned above, it is more suitable for the re-
tailer to announce the PDL to the consumer. The decen-
tralization of lead-time decision in these two scenarios is
considered because the supplier and the retailer may repre-
sent two different companies with no shared internal in-
formation. The performances of the decentralized lead-
time decision will be compared to that of a centralized
supply chain, which will be studied in the third scenario
(called Scenario 3). The PDL may be considered as inter-
nal information between the supplier and the retailer,
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which was decided preliminary. Scenario 3 will be used as
a benchmark for comparison. On the other hand, the prob-
lem cannot be solved under an exponential distribution.
Instead, a new parametric distribution function of lead-
time, called power distribution, is used. Under certain
specific parameters, it has the same properties of an expo-
nential distribution and allows us to derive different solu-
tions analytically.

The paper is organized as follow: the second section
formulates the models in the three scenarios. The third
section describes the modeling of lead-time using expo-
nential distribution. In last section, the power distribution
of lead-time is modeled and the different scenarios are
studied and compared. Furthermore, the impact of own
price and lead-time sensitivity demand factors on the per-
formances of the chain are discussed theoretically and
numerically.

2 FORMULATION OF THE MODELS

Three different scenarios are studied to determine the
optimal decision variables and expected profits in a two
level supply chain, consisting of one supplier and one
retailer. In Scenario 1, the retailer decides the lead-time,
and this decision is taken by the supplier in Scenario 2 and
it is centralized in Scenario 3. The supplier produces
products at a constant production cost rate (c¢) including
the transportation cost to the retailer or to the consumer.
The supplier has ample capacity to satisfy any received
demand. The retailer faces an administrative cost per unit
(c,). The actor of the chain who decides the lead-time
faces lead-time costs incurred by the difference between
the PDL and the RDL. If the RDL is less than the PDL, the
product is kept in stock and a holding cost (k) per unit per
unit time is introduced; however, he faces a tardiness cost
(b) per unit per unit time, when the RDL exceeds the PDL.
We assume a demand rate 1 dependent cumulative
distribution function (cdf) R; and a probability distribution
function (pdf) r; for lead-time. The lead-time costs are
defined as in [16] and [21], where they are expressed, for a
given A, by
CULRY) = h [ = Or(®)dt + b [t = Dry(o)dt, (1)
where the demand function A is deterministic and linear in
retail price and lead-time. It is expressed as
A, D) =2y —ap — B, @
where 4,5, @ and f are the base market potential, own price
sensitivity demand factor, and own lead-time sensitivity
demand factor, respectively. We define the standard
waiting cost as ¢, = -g— per unit of the PDL and the

maximum retail price as p™®* = %’ The demand function

is similar to that reported by Boyaci and Ray [15], Pekgun
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el al. [17], Tsay and Agrawal [18], and Balasubramanian
and Bhardwaj [19].

In Scenario 1, to maximize their profits, the supplier
decides his wholesale price wy,; however, the retailer
decides his lead-time I;; and retail price pg; . The
optimization problem of the supplier is given by
maxy,, Ts1 (Wd1:17d1 (Wa1), ld1(Wd1)) = (wg1 —
©)a1(Pas Wa1), las (Wa1)),
where pg,(w;,) and [z, (wy,) are the optimal solutions
for the following retailer’s optimization problem. The
index d1 refers to the decentralized chain in Scenariol.
Then, for a given w,,, the optimization problem of the
retailer is expressed as

MaX p 1,00, T (Par, lgr) = (Pm — Wy — 6 —

C(ldlr Ram )) Aa1(Par Wa1), Lo (Wgq))-

The supplier decides his wholesale price w,, and lead-time
l42. The problem is expressed as

MmaXy,, Ts2 (WdZt ldz) =
(Wdz —Cc- C(ldz» Rldz)) Aa2(PazWa2), laz Wa2)),
where the index d, refers to the decentralized chain in
Scenario 2. The optimization of the retailer for a given
Wy, is expressed as
Max p .14, T2 (Pazs laz) =
(Paz — Waz — ¢-) a2 (Paz, laz)-

In the third scenario, one of the chain’ actors is a
decision maker and the other one is a follower. The
wholesale price is excluded from the optimization problem
as an internal variable. The total profit function of the
centralized chain is given as
. (A:(p, D)) =
(pmax - % —cple—c—c, — C(lc'l R/'lc)) A, D),
where the index c refers to the centralized chain.

In all these scenarios, we assume that the right hand-
sides of the optimization problems are positive.

3 EXPONENTIAL DISTRIBUTION

In the M/M/1 system, the are
independent and identically exponentially distributed. As
reported by Boyaci and Ray [15], the exponential
distribution gives an important approximation of waiting
times. Its cdf and pdf of lead-time are given by
Ry, (t) =1—e 0%t and
Thg, (8 = (v — Agi)e~W7adt for 0 < t < oo,
respectively, where y is the mean service rate.

Here, only Scenario 1 will be studied using the
exponential distribution of lead-time. The other scenarios

service times
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were studied by Liu et al. [16]. For a given wholesale price
Wy, , the retailer profit function depends on three
dependent parameters; the price, the lead-time, and the
demand. To solve this technical problem, the retail price is
expressed as a function of lead-time and the demand
function. Then the optimal lead-time solution can be

obtained for a given demand. Using Eq. (2), we obtain

2 :
Par =™ — ‘f‘ — Cwlas 3)
The optimization problem of the retailer can be rewritten
as

1
—_ max
max 3, 14, Tr1( gy la) = (P — Cwlay —

war — ¢ — C(las, R}td1)) Ag1-

Lemma 1 For a given wholesale price w,, and demand
241, there is a unique optimal lead-time I3, (14,), which
depends on 1,4, and is expressed by

* — p-1 b-c¢

l31(la1) = Ry, ( b+l‘:])’
where R,{dll is the inverse of the distribution function R; .

Proof: By differentiating m,,( 144, 1ly,) for the lead-time
141, we obtain

a”m(}vdlrldﬂ: —c. —
w
dlgy

ac(lasRay, )
di1
P A4¢ and

PrriQaalan) 226(lavkag,)

—a1

ﬂld12 ﬁldlz ?
ac(li4,R
with -—C-(—-g-;-[-i—idl—) =—=b+ (b +hR; () and
1
22¢(1g4,
—% = (b + By, (Igz) > O for all Iy,. Thus, the
1

retailer profit function is strictly concave in [;, and the
unique optimal lead-time I3,(14,) is given by I, (A41) =

-1 b—cy
Rig ( b+h )

The ratio (%) reflects the cost parameter [21]. The

optimal lead-time is dependent on retail price through A,4;.
Note that if b — c,, < 0, the optimal lead-time is zero.
Using the exponential distribution, the optimal lead-time

can be expressed if b > ¢, as I3, (A4,) = ———
—Ad1
d = —In (252). Substituting I}, (A1) in (1), gives
hd+c,,
(ldl’ Rlzﬁ) =

. v=das
given by
1 (Agy) = (pmax _Aar_ (ewth)dtow w

where

Thus, the retailer profit function is

Lemma 2 For a given wholesale price wy,, a unique
optimal demand 13, and retail price pj, exist. The unique
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optimal demand is given by A3, = y — ¢, where ¢"is the
solution of the cube equation ¢*> + A¢p™* + B¢p* + C = 0,

with 4= Wae) . poy and C =
= - , B=0 , =
_ a((cw+h)d+cyw)y

N

Proof: By differentiating the retailer profit function on the

demand function Ay,

e
we obtain omralias) pmaxr —

g1

22 1 pl
241 ((cw +h)d + ) (Hdl + -———(y_;;)z) —Wa =y
Para) _ 2 1
and SrTwiil ((cw + W)d + ¢) (————-—(y_ 5t
Agity

=y 1)3) < 0 for all A4,. Thus, the retailer profit function

is strictly concave in A4, and the unique optimal demand

function is given by A5, =y —¢*, where ¢* is the

solution of the third order equation ¢*3 + A¢p*™% + Bd* +
max_ e

C=0, with A=2E""¥a1=%) _ o, B=0 and C=

2
a((cyw+h)d+ow)y
> .

The cube equation on A3, has three possible solutions.
However, the retailer profit function is concave in Ay, ,
which guarantees
solution. This solution cannot be obtained analytically or
numerically because it depends on the wholesale price w4,
which is an unknown decision variable. Liu et al. [16]
discussed nearly the same cube equation, where the
constants depend on chain and distribution parameters
only and can be solved numerically using the formulas
reported in Spiegel and Liu [20]. They introduced some
approximations to model the lead-time as function of

the existence of a unique positive

demand. In this paper, a new approach based on the so
called power distribution function is used to solve the
problem analytically. Such a distribution has, under some
conditions, the properties of exponential distribution of
lead-time in the M/M/1 system. Its advantages will be
discussed in detail in the next section.

4 POWER DISTRIBUTION

As mentioned in the previous section, the problem
cannot be solved using an exponential distribution. Thus, a
new approach based on the power distribution function is
used. This distribution function of lead-time was
introduced by Zhengping et al. in [21]. It is a parametric
function which models a wide variety of distributions such
as uniform and triangular distributions. In addition, we
will show that the power distribution is more suitable in
the context of modelling lead-time in a general industrial
management environment. It has the same properties as
the exponential distribution for specific parameters. The
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advantages of this distribution will be discussed after its
definition. The cdf and the pdf of lead-time are expressed

_{ t\® d _ wt@ f 0<t<
by R;,, (£) = (;j:d-_i) and 1, (t) = PPN or 0<t<

pAg,, respectively, where > 0 and p > 0 are the shape
and the scale parameters, respectively. The interval
pAqr = T represents the longest possible lead-time for a

job in the system, when the demand rate is A;,. The
properties of the power distribution function of lead-times
are summarized in the following points:

- The service mean rate and the demand are 1/p and A4,,
respectively. They are analogous to y and A4 ,
respectively, in the exponential distribution.

- Infinite lead-time is not allowed as in practice.

- It can be used in a different situation by varying the
shape parameter w. As shown in Fig. 1, the pdf of lead-
time under various w has different behaviors. For w = 0
or @ = o, the optimal lead-time is deterministic and equal
to 0. For 0 < w < 1, the pdf drops in lead-time as in the
M/M/1 system. In this case, short lead-times have high
probability, indicating a rapid delivery of the order. The
cases where @ = 1 and 2 correspond to the uniform and
the triangular distributions, respectively. Forw > 1, the
pdf increases with lead-time, which indicates that long
lead-time has high probability, in contrast to the
exponential distribution. The order that the supplier
receives from the retailer tends to remain in the system,
which is consistent with common practice where deliveries
normally take place near end of promised lead-time (PDL)
or even beyond in some cases.

T

0.25 | w=02

\

pdf lead-time
S o o o
& 35 & 8
S
Al
)

S
S

lead-time

Fig. 1 Probability distribution function of lead-time
for various shape parameters w.
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4.1 Retailer Decides the Lead-time
Using results of Lemma 1 and the expression of the
power distribution function, the optimal lead-time can be

expressed as 13, (141) = pAg;T, where 7= m’%‘ﬁ. The
lead-time costs can be expressed by (141) = nplas ,

w+1 w+1 .
where n = = h+b(rm+1+w J m). Thus, the retailer profit

function can be rewritten as m,,(A41) = (pm“" -

Aar
a

CwPAa T — Wy — Cr — nplm) Ag1-

Lemma 3 For given wholesale price wy, , a unique

optimal demand function 1" and retail price p* exist. They
a(@™ -wg;—cr) . _
and pg, =p

max __
2(1+acwpr+anp)

are expressed as Ay, =

&;ii- (1 + ac,1p).

Proof: By differentiating the retailer profit function on the

dmr (Age) — pmax

demand 24, , we obtain ) p — Wy — G —

22 82w (A, 2

__‘i.l__zcwp}ldl-[_anldl and del)z___
3a1 a

2¢,pT — 2np < 0. Thus, the retailer profit function is
strictly concave in 1;; and the unique optimal demand

2@ mwaimer) g petitutin
2(1+acyprtanp) g

I3, and A3, in Eq. (3), the unique optimal retail price is

function is given by Ay, =

given by py, = p™* — %(1 + Brp) .

Inserting the optimal demand in the supplier profit

. . a(p™M*—wgq—c
function, we obtain 7, (Wy) = (Wg; — €) p d1=cr)

2(1+acypr+anp)

Lemma 4 There is a unique optimal wholesale price wy,,

given by

Wgy = ﬂ%—fr_ﬂ'- @

Proof: By differentiating the supplier profit function on

the wholesale price wy; , we obtain ézﬂwﬂd—‘l =

—awgy —p™*+cp—c) and 8%ms (way) — - -
2(1+acypr+anp) awgy 1+acypt+anp

Thus, the supplier profit function is strictly concave in w;

and the unique optimal wholesale price is given by
pMe*—c +c

* j—
Wg1 = P

The optimal decision variables and expected profits
are expressed by

«  _ pra(pM¥F—c—cy)
Al 7 4(1+pprtonp) ®)
« _ a@"—c—c,)
41 T 41+Bprranp)’ ()
* lx
Pa = p™* — = (1 + prp), @)
Vol.62 No.3E (2011)

* a(pmax_c_cr)z — fl& max __ -
ST g(1+Bpr+anp) T2 (p ¢ CT) > (8)
o 8@ e A pmax _ o _
Ty = 16(1+BpT+anp) 4 (p c CT)' (9)
The sum of the supplier and retailer profits is given by
. s 4 e _ 34
Mgy = Mpy 75 = 'fl(pmax —Cc- Cr)~ (10)

4.2 Supplier Decides the Lead-time
Using Lemma 1 in Liu et al. [16]; for a given w,, and

lead-time l,,, the optimal retail price is given by p3, =

P o —cwlia tWaa
2

expressing the wholesale price as a function of demand,

Substituting p3, in Eq. (2) and

we obtain

War (Aaz) = 0™ = cylas — 2202 /0t — .

Using the same methodology as in §4.1; for a given
demand function A4, there is a unique optimal lead-time
I:,(A42) , which depends on 14, and is given by
15,(A42) = pAgot. Then, the supplier profit function is
rewritten  as 7y, (Agy) = (P™ — ¢ — ¢ — A2 (cyyp7 +
2/a+1p))2qz.

Lemma 5 Under power distribution, there is a unique

optimal demand function A7, expressed by
max_c_c

Aaz = %EEW’ (11)

Proof: By differentiating the supplier profit function for

the demand 1,4,, we obtain a—nsazﬂii%ﬁ =p"* —c—¢c,.—
8% m35(Aaz) _

2245(copt +2/a +np) and —2(c,pT +

3daz"
2/a+mnp) < 0. Thus, the supplier profit function is
strictly concave in A;, and the unique optimal demand

max _ ...
function is given by 13, = %ﬁﬁ .

The unique optimal lead-time is expressed as
* pfa(pmax_c"cT) (12
42 7 “a(24Bpr+anp) )
Substituting [;, and Ay, in wy, , the unique optimal
wholesale price can be given by
_ 0™ =) (2+B8p7)

Waz =P = o 2(2+Bpr+anp) (13)
From this, we obtain the unique optimal retail price as

Do = P — 242 (Bpt + 1), (14)
Finally, the retailer and supplier profit functions are given,
respectively by

R e (15)

. Ao
5 = (2 + Bpt + anp) =2 = (2 + Bpt + anp)m,,. (16)
The sum of the supplier and retailer profits is given by
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o v _ a@+Bprranp)(p™F—c—cp)?
Mgy = Mpy + Mgy = PYCRV — 17

4.3 Centralized Scenario

In this case, one of the chain’ actors is a decision maker
and the other one is a follower. The wholesale price is
excluded from the optimization problem because it is an
endogenous variable. This scenario is considered as a
benchmark to be compared with the decentralized
scenarios. As calculated in § 4.1, the optimal lead-time
and lead-time cost are given by [*(1) = pArand C(1) =
npA, respectively. The profit function of the centralized
chain is given by
() = (pm“" - g — CwpPAT—C—Cp — npll) A
Using the same methodology as in Lemma 2, we obtain the
optimal demand function, optimal price, optimal lead-time,
and expected profit as

v _ (@™ —c—cr) _ 544
- 2(1+Bpr+anp) =2 d1> (18)
pt=pmtt %; (1 + Brp), 19)
sray _ o @M —c—cy)
F@)=pr 2(1+Bpr+anp) (20)
. _ A2 _ a(p™ P —c—c;)?
== 1+ Bpt + anp) = G iorrans) @n

4.4 Comparison between the Scenarios

In this sub-section, the optimal decision variables and
expected profits are compared for the three scenarios.
First, the decentralized models will be compared to the
reference centralized model. This comparison was
reported in [16] and [22], in which the inefficiency of
decentralized supply chain from the centralized one was
used. This inefficiency is expressed by

gy = 1 —"Zfor i =1,2, (22)

Note that the inefficiency of centralized model is zero.
Equation 22 quantifies the regression of the performances
in decentralized chain from that in the centralized one.
Second, the performances of scenario 1 and 2 will be
compared to quantify and discuss the impact of lead-time
decision on the performances of the model.

4.4.1 Inefficiency of Decentralized Chain in Scenario 1
From the results of §4.1 and §4.3, the optimal demand
function and the optimal lead-time in the centralized chain
are double those in Scenario 1, where the retailer decides
the lead-time, that is A" = 213, and I* = 2I3;. However,
the 6ptimal retail price in Scenario 1 is higher than that of
chain, that is pg, = ety >pt .

the centralized hed
Concerning the comparison of total profits, we have

2

Ty = 37"* and q,, = 0.25. Therefore, when the retailer
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sets the lead-time, the total profits of both the retailer and
supplier regress constantly 1/4 from that of an integrated
system. The inefficiency of the decentralized model in
Scenario 1 is independent of chain and distribution
parameters.

4.4.2 Inefficiency of Decentralized Chain in Scenario 2
From the results of §4.2 and §4.3, the optimal demand
function, the optimal lead-time, and the optima retail price
in the centralized chain are higher than that in the case of
Scenario 2, where the supplier decides the lead-time, and ‘

the following equation is satisfied.
Ags _ +Bprranp _ i

A* 2+Bpr+anp I*
Concerning the comparison of total profits, we have

_ pmax__p:iz < 1
pmax_.p* "

0.75 < Mz = j‘5[1 — ——1—————2- < 1, which results in
T 3 (Bpr+anp+2)
an inefficiency of decentralized supply chain in scenario 1
1

< 0.25 . When the

of Gry, = 4+4(Bpr+anp)+(Bpr+anp)?
supplier sets the lead-time, the entire total profits of both
retailer and supplier drops for a maximum of 1/4 of that of
the integrated chain. This result depends on chain and
distribution parameters; however, it is often less than that
in the case when the retailer decides the lead-time.

4.4.3 Comparison between Scenarios 1 and 2

From results of §4.2 and §4.3, we have
Lo _ L _ 204Bprrang) _ o
Ay, I 24 Bpr+anp
Thus, the retailer orders a higher quantity when the
supplier decides the lead-time. It can be explained by the
retailer not having to be responsible to compensate for the
waiting cost for the consumer. As a consequence of high
demand, long lead-time is required to complete the job.
Concerning the retail prices, we have
Pl —p™ax _ .)12_2. >1
Pa—p™* Ay, ’
which gives p3, < p3,. From Egs. (9) and (15), we have
Tiyp _ M1+Bpr+anp) 1
Ty (2+fpr+anp)?
This means that the retailer achieves more profits when he
decides lead-time. The same result is found for the

supplier, where

msy _ 2(1+Bpr+anp)(2+Bpr+anp)
gy (2+Bpr+anp)?
Therefore, the chain actor who decides the lead-time
achieves more profits. Concerning the total profits in the
two scenarios, we have

Tgs - 4(3+4(Bpr+anp)+(Bpr+anp)?)
Ty, 3(4+4(Bpr+anp)+(Bpr+anp)?)

> 1.

> 1.
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4.5 Numerical Results

In this section, we numerically compute the optimal
decision variables and expected profits under the power
distribution function. Two different values of shape
parameter will be used. The first one is set to w = 0.2,
where the pdf of lead-time drops as lead-time increases.
This case imitates the properties of the exponential
distribution. However, the second value is setto w = 1.2,
where the pdf of lead-time increases as lead-time
increases. For all our simulations, the numerical values of
chain parameters are set as 4, = 100, o = 1 if B is varied,
B=1ifais varied, b=2,h=03,c, =5, c =20,
we{0.2,1.2} , and p = 10 . The decision variables and
expected profits that can be discussed theoretically will
not be presented in the numerical results.

4.5.1 Effect of Own Price Sensitivity a

1-w
. ot __ B b-B/a
First, we have P m( Tk ) “ >0 ,
Ba(@M P —c—c)) a _ 1
” =—c—c <0, == ——-wﬂa[(w +1)(b+
h)'r“’—b(m+1)]=—-§-<0 , and __(Hﬁgzwz

at an ot _ e .
Bp . +np+ap T30 = NP > 0. From this, it is easy to
. . any; am’;
see in Scenarios 1 and 2 that T“:‘ <0, —;Z—‘ <0, and

am; . . . .
;;S‘ < O for i =1,2. Therefore, increasing the own price

sensitivity demand factor adecreases the demand function
and the expected profits. The sensitivity of the other
decisions variables to a will be discussed numerically. In
all figures, the solid, the dashed and the dot-dashed lines
correspond to Scenarios 1, 2 and 3, respectively.

4.5.1.1 Case of Shape Parameter @ = 0.2

For w = 0.2, the pdf decreases as the lead-time increases
as in the M/M/1 system. As shown in Fig. 2 (a), for low
values of &, the wholesale price in Scenario 2 is higher

than in Scenario 1. However, it converges in the two cases
g
ey

to the product cost rate ¢ for a, = In addition, as

plotted in Fig. 2 (b), the retail price decreases as «
increases. Its sensitivity to lead-time decision is weak. For
such o, the optimal price is equal to ¢ + ¢, and the others
decision variables are zero. Furthermore, an important
finding is that the lead-time is a non-monotone function
for . As shown in Fig. 2(c), it reaches its maximum for
O = Qynqy, Which depends on the setting of chain and
distribution parameters. It is worth noting that the non-
monotony of lead-time disappears for high tardiness cost b.
Further, it is easy to see numerically that in contrast to the

Vol.62 No.3E (2011)

other parameters, @y, shifts right as own lead-time
sensitive demand factor 8 increases. Finally, an infinity
lead-time is not allowed in the chain, which is in
accordance with the conditions in practice.

4.5.1.2 Case of Shape Parameter @ = 1.2
For w = 1.2, the pdf increases as the lead-time in-

creases. This means that long lead-times have high proba-
bilities. This case is in contrast to the behavior of the pdf
in the M/M/1 system. The dependence of the wholesale,
the retail price, and the lead-time to the own price sensitiv-
ity demand factor « is plotted in Figs. 3 (a), (b), and (c),
respectively. At low values of , the gap between the retail
price in the centralized and decentralized decisions are
bigger than in the case where @ = 0.2 . In addition, a4,

shifts to low values of « as the shape parameter increases.

10 15 2.0 23 3.0 X
&
Fig. 2 Own price sensitive demand dependence of
wholesale, retail price, and lead-time for a
shape parameter @ = 0.2 .
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Fig. 3 Own price sensitive demand dependence of
wholesale, retail price, and lead-time for a
shape parameter o = 1.2 .

4.5.2 Effect of Own Lead-time Sensitivity

1—ar
. T _ _ 1 b-B/a\ @
First, we have Frie ———am(b+h)( s ) <0,
on _ 1 @ _ -8
P a3 [(Bw + 1))(b + )t ab(m + £1)]a -<0 ,
1+Bpr+anp) __ at 9n 9T _
and 8 —pr+ﬁpaﬁ+aparaﬁ pt>0
Thus, it is easy to see in Scenarios 1 and 2 that %—g—" <0
T#<0, %5 <0, and Z5 < 0 for i = 1,2. Therefore,

increasing the own lead-time sensitivity demand factor
reduces the lead-time, the demand function, and the
expected profits. We will discuss the behavior of the
wholesale and retail prices with B numerically. In all
figures, the solid, the dashed and the dot-dash lines
correspond to Scenarios 1, 2 and 3, respectively.
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Fig. 4 Own lead-time sensitive demand dependence of
wholesale and retail price for a shape parameter
©=02.

4.5.2.1 Case of Shape Parameter @ = 0.2

The wholesale price in Scenario 1 is independent of the
own lead-time sensitivity demand factor 8. However, as
shown in Fig. 4 (a), it is not monotone in Scenario 2 and is
limited by a minimum wholesale price value w,,;,,. Further,
as shown in Fig. 4 (b), the retail price in the three
scenarios is also not monotone and is limited by a
minimum price Py, . The value of own lead-time
sensitivity demand factor f = B, that corresponds to
Wnin and Pp,i,is not the same and it depends on the chain
and distribution parameters. This value depends strongly
on the tardiness cost b and the own price sensitivity
demand factor . It is worth noting that the non-monotony
of wholesale and retail price disappears for high tardiness
cost b. In addition, in contrast to the other parameters,
Bmin shifts to high values as & increases. An important
finding is that the wholesale and retail prices are limited
with minimum values, under which the supplier and
retailer cannot sell their products.
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Fig. 5 Own lead-time sensitive demand dependence
of lead-time for a shape parameter w = 1.2 .

4.5.2.2 Case of Shape Parameter &= = 1.2

In contrast to the wholesale and retail prices,
increasing the shape parameter increases the lead-time for
all values of f. The optimal demand and profits start with
high values for high shape parameter, however they drop
rapidly with increasing £ more than in the case of low .
Furthermore, as shown in Figs. 5 (a) and (b), By shifts
to high values with increasing @.

5 CONCLUSIONS

In a supply chain consisting of one supplier and one
retailer and wherein the demand is sensitive to retail price
and lead-time, three different scenarios based on lead-time
decision are studied and compared theoretically and
numerically. Using the power distribution function, when
the retailer decides the lead-time, the entire expected profit
regresses constantly 1/4 from that of the centralized model
and the inefficiency of the decentralized chain is
independent of chain and distribution parameters.
However, when the supplier decides the lead-time, the
inefficiency of the decentralized chain is less than 1/4, it
depends on chain and distribution parameters, and it is
often less than that when the retailer decides the lead-time.
We also found that the chain actor who decides the lead-
time achieves more profits than the other one,

independently of chain and distribution parameters.

Vol.62 No.3E (2011)

Numerically, the consumers are found to be sensitive to
the own price sensitive demand factor, where infinity lead-
time is not allowed. The retailer is found to be sensitive to
the own lead-time sensitive demand factor, where he
cannot decrease his retail price under a minimum value.
The two limits of lead-time and retail price are sensitive to
the tardiness cost.
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