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Abstract 

 

 A phase-field model has been developed to simulate the evolution of both ( + ’) 

microstructure and inelastic strain between ’ phases (i.e.,  channel) during high-temperature 

creep in nickel-based superalloys. Inelastic strain is defined as the sum of time-independent 

and time-dependent components. Previously reported mechanical properties of single-phase  

alloys are considered in the calculation of inelastic strain evolution. A two-dimensional 

phase-field simulation is performed, and the results of microstructure evolution and creep rate 

versus time curve are fitted to the experimental data of the high-temperature creep of 

CMSX-4. The slope of the creep rate versus time curve in the initial stage of transient creep, 

plasticity preference in different types of  channels, and rafting phenomenon are reproduced 

well by the simulation. Furthermore, it is demonstrated that the creep rate increases locally at 

/’ interfaces when the rafted structure is formed. 

 

Keywords: Phase-field method; Nickel-based superalloys; Plasticity; Creep; Directional 

coarsening 
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1. Introduction 

 

Nickel-based single-crystal superalloys exhibit superior creep strength at high 

temperatures and are used as gas turbine materials. The excellent mechanical properties of 

these alloys are attributed to the ’ strengthening phase (L12 structure) that precipitates 

coherently in the  phase having a face-centered cubic lattice. During heat treatment for 

precipitation without external stress, the cuboidal ’ phase is arranged along 100 

crystallographic directions in the  matrix. On the other hand, directional coarsening of the ’ 

phase occurs in high-temperature creep under [001] tensile stress; the ’ phase coarsens in a 

direction normal to the external stress axis, resulting in the formation of the so-called rafted 

structure [1], in which the ’ phase becomes lamellar. The rafted structure collapses under 

long-term creep at high temperatures. It has been reported that the lamellar thickness of the 

rafted structure increases [2], or the lamellar structure develops a wavelike shape [35]. The 

creep rupture life of superalloys strongly depends on such morphological stability of the ( + 

’) two-phase microstructure. Miura et al. confirmed that the creep rate in the accelerating 

creep stage of CMSX-4 is correlated with increase in the -channel width [2]. Hence, 

quantitative prediction of microstructure evolution during creep is one important subject in 

material development of superalloys. 

The initial stage of creep deformation, arising from plastic deformation of the  

channels, strongly affects the rafting phenomenon. It has been demonstrated by a finite 

element analysis that the rafting phenomenon needs to be treated in the elasto-plastic regime 

and that creep flow in the  matrix should be considered [6]. Simulation studies using the 

phase-field method also indicate that the -channel plasticity results in a large driving force 

for rafting [710], and affects the morphological stability of the rafted structure [11,12]. 

These phase-field simulations simultaneously model both ( + ’) coherent microstructure 

evolution and plastic deformation in the  phase. In addition, some phase-field simulations 
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have revealed the role of elastic inhomogeneity (the elastic modulus mismatch between the 

precipitate and matrix phases) in microstructure evolution [8,9,1214]. This inhomogeneity 

affects particle-size distribution, coarsening rate of the ’ phase in precipitation aging [12,14], 

and rafting kinetics during creep [8,9]. Although these parametric studies, using the 

phase-field method, have led to fundamental understanding of the effect of material 

parameters on morphological evolution, a quantitative simulation of microstructure evolution 

correlated with creep strength is still desired. 

For the quantitative simulation, high-temperature creep properties of Ni20 mass% 

Cr single crystals, a model alloy for the  matrix of nickel-based superalloys, are available 

[1517]. This alloy shows (i) negligible decrease in creep rate during the transient stage and 

(ii) a five-power-law relationship at a strain of 0.01 under low stresses [16,17]. On the other 

hand, in an elasto-plastic phase-field model [1820], the evolution of plastic strain fields is 

described by an equation similar to that of classical flow theory. This model can incorporate 

experimental mechanical properties in the phase-field method, and serve as a basis for the 

quantitative simulation of rafting phenomenon during high-temperature creep. 

The aim of this study is to develop a model that simultaneously treats the evolution 

of both ( + ’) microstructure and inelastic strain in the  phase. Inelastic strain in the  

matrix is defined as the sum of time-independent and time-dependent components. The 

evolution of each strain is described on the basis of the classical flow and creep theories that 

incorporate the previously reported mechanical properties of -phase alloys. The results of 

this simulation are fitted to the experimental data of high-temperature creep of CMSX-4 as a 

practical alloy. The validity of the developed model is also discussed. In particular, we focus 

on reproducibility of a creep rate versus time curve and the corresponding microstructure 

evolution of the practical alloy. 

 

2. Calculation method 
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2.1. Phase-field model 

 

 To describe the ( + ’) two-phase microstructure, the ’ volume fraction field 

),( tf r , and four artificial order parameter fields ),( ti r , (i = 1, 2, 3, 4), are employed. 

),( ti r  describes the four ordered domains in the ’ phase, and is equal to 0 within the  

phase and 1 within the ith ’ domain [21]. These field variables change spatially (r) and 

temporally (t), and are continuous across the /’ interfacial regions. In general, the 

composition field ( ),( tc r ) is used as a field variable. In this study, the ’ volume fraction field 

is assumed to be related to the composition field as 
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where 0
mc  and 0

pc  are the equilibrium compositions of the  and ’ phases, respectively. 

Hence, ),( tf r  is treated as a conserved field variable in the subsequent description. The 

temporal evolution of the field variables is given by the following CahnHilliard and 
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where G  is the total free energy of the microstructure, M  is the diffusion mobility, and L  

is the structural relaxation coefficient. The total free energy is given by 
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where m
chemG  and 

p

chemG  are the chemical free-energy densities of the  and ’ phases, 

respectively, )( ih   is a continuous function having values between 0 and 1, )( ig   is the 

double-well potential, w  is the double-well potential height [21,23],   is the gradient 

energy coefficient [24], and strE  is the elastic strain energy density. 

The Gibbs free energy of each phase is calculated as a function of both composition 

and temperature by using the thermodynamic database of the equilibrium phase diagram. In 

this study, free-energy densities are approximated as quadratic functions of the ’ volume 

fraction field: 
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where mW  and pW  are coefficients determined by fitting the calculated Gibbs energy 

curves of both phases. The functions )( ih   and )( ig   in Eq. (4) are selected as [21] 
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By using the description proposed by Kim et al. [25], the interface region is regarded as a 

mixture of the  and ’ phases having different ’ volume fractions, mf  and pf , but equal 

chemical potentials: 
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From Eqs. (9) and (10), we obtain a single solution pair of mf  and pf . 

According to the diffuse-interface description, excess free energy exists at interfaces 

because of the inhomogeneity of field variables, and the excess energy is related to the 

interfacial energy between the /’ interfaces [22]. The parameters w  and   in Eq. (4) are 

determined using 23/s  w  and w/22   , where s  is the interfacial 

energy per area and 2  is the interfacial thickness.   is a coefficient that depends on the 

definition of interfacial thickness and is set to 2  [24]. 

 The elastic strain energy density is calculated by the general equation [26,27]: 
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where ijklC  is the elastic constant, 
el
ij  is the elastic strain, and 

appl
ij  is the applied stress. 

The elastic strain is expressed as 
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where kl  is the total strain and 0
kl  is the eigenstrain. This eigenstrain is defined as the sum 

of three terms: 

 

)()()()( cp
0

0 rrr klkliklkl h   ,     (13) 

 

where kl  is the Kronecker delta function, p
kl  is the plastic strain, and c

kl  is the creep 

strain. The first term in Eq. (13) is the lattice misfit strain between the  and ’ phases, and is 

defined as a linear function of )( ih  . 0  is the lattice misfit given by mmp0 /)( aaa  , 

where ma  and pa  are the lattice parameters of the  and ’ phases, respectively. p
kl  and 

c
kl  cannot be strictly separated from each other. As mentioned in Sections 2.2 and 2.3, p

kl  

is defined as “time-independent inelastic strain” while c
kl  is defined as “time-dependent 

inelastic strain.” The total strain kl  in Eq. (12) is represented as the sum of the 

homogeneous strain ( kl ) and the heterogeneous strain ( kl ): 
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where ku  represents the kth component of the elastic displacement. Hooke’s law gives the 

local elastic stress as )()()( elel rrr klijklij C   . By considering elastic inhomogeneity, the local 

elastic constant is assumed to be 
pm )()}(1{)( ijkliijkliijkl ChChC  r , where 

m
ijklC  and 
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ijklC  
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represent the elastic constants of the and ’ phases, respectively. Using the local equilibrium 

equation ( 0/el  jij r ), we calculate the local displacement field (u ) in Fourier space. 

Because inhomogeneity is introduced in the elastic constant, an iterative approach is adopted 

for solving the inhomogeneous elasticity equation [28]. 

 

2.2. Evolution of plastic strain 

 

 The plastic strain p
kl  in Eq. (13) is defined as time-independent plasticity that is 

primarily introduced in a material as a part of instantaneous strain in a creep test. The 

evolution of plastic strain is described by the following equation [1820]: 
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where   is the dimensionless time, shearE  is the shear strain energy, and ijklK  is a kinetic 

coefficient characterizing the evolution of plastic deformation. shearE  is given by 
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where ije  and ijs  are the deviatoric strain and stress, respectively. Eq. (16) can be written 

as klijklij sK  /p
. This equation is similar to that of the classical flow theory proposed by 

Reuss in which the principal axis of stress coincides with that of plastic strain increment [29]. 

It has been reported that dislocation activity is generally confined in the  channels in the 

initial stage of high-temperature creep [1]. Hence, the shear of the ’ phase is not considered 

in this study. In our simulation, the von Mises yield criterion is assumed at each location in 
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the  matrix, and an elasticperfectly plastic relationship is assumed for simplicity. When the 

von Mises criterion is exceeded at any location in the  phase ( pr ), the plastic strain value is 

determined by solving Eq. (16). 

 

2.3. Evolution of creep strain 

 

 The creep strain c
kl  in Eq. (13) is defined as time-dependent plasticity (creep 

plasticity). On the basis of the von Mises-type creep theory [30], which is applicable to 

isotropic materials, the evolution of creep strain is given by 
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where ijs  is the deviatoric stress,   is the equivalent stress, and c  is the equivalent 

creep strain. According to a previous report on creep in the [001]-oriented Ni20 mass% Cr 

single crystal [17], the creep rate barely decreases in the early stage of transient creep, and a 

five-power-law behavior is observed at strains up to 0.01. In other words, in transient creep 

with low strains, the -phase alloy exhibits creep behavior similar to that observed in 

steady-state creep. Accordingly, at constant temperature, the creep rate can be given by the 

following equation similar to Norton’s law: 
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where C  is a material constant. We assume that Eq. (19) is applicable to a multiaxial stress 

condition. By substituting Eq. (19) in Eq. (18), the evolution of creep strain is described by 
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the following equation: 
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Not only the plastic strain but also the creep strain is confined in the  matrix phase; hence, Eq. 

(20) is solved only in the -phase region. 

 

2.4. Simulation conditions 

 

 A two-dimensional (2D) phase-field simulation is performed using generalized plane 

strain approximation. Eqs. (2) and (3) are solved numerically by the difference method under 

the assumption of periodic boundary conditions. We used a 3232   computational cell 

having a unit grid size of 8 nm, leading to a system size of 256256   nm
2
. The simulation 

parameters used in this study are listed in Table 1. The Gibbs energy coefficients are 

determined on the basis of the Gibbs energy calculations following the free energy model for 

a NiAl system [31]. The double-well potential height and gradient energy coefficient are 

fitted to the interfacial energy per area, 0142.0s   J m
2

, in the NiAl alloys [32]. The 

elastic constants and the lattice misfit of the practical alloy, CMSX-4, are employed [33,34]. A 

proof stress of 0.5% for the single crystal of a single-phase  alloy [35] is used as the yield 

stress. 

The physical parameters are converted to dimensionless quantities by using the 

scaling factors of RT for energy and l for length, where R is the gas constant, T is the absolute 

temperature, and l is the unit grid size. The time scale is transformed to dimensionless time by 

using )/( 2lMRTtt  , where the asterisk denotes a dimensionless quantity. Here, M  

is the diffusion mobility as shown previously in Eq. (2). In Eqs. (2) and (3), the diffusion 
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mobility, M , and the structural relaxation coefficient, L , are set as 2M  and 5L , 

respectively, to ensure that the process of microstructure evolution is diffusion-controlled [21]. 

The kinetic coefficient in Eq. (16) is assumed to be jlikijkl KK  , where K  is 

002.0K  in dimensionless unit. The material constant, C, in Eq. (20), is set as 3.0C ; 

this constant is determined such that the simulation reproduces the curve of creep rate versus 

time of CMSX-4 at 1273 K under an external tensile stress of 160 MPa along the [001] 

direction. The unit time steps are selected as 2.0 t  and 0002.0  to maintain 

numerical accuracy and stability. 

 

3. Results 

 

3.1. Initial microstructure 

 

The initial microstructure is prepared by the simulation based on Eqs. (2) and (3). 

First, we place a square ’ phase at the center of the 3232   computational cell. The edge 

length of the ’ particle is 208 nm and the volume fraction of the ’ phase is 66%. Next, the 

simulation of microstructure evolution is performed without considering the external stress 

and calculation of both plastic and creep strains. This simulation relaxes the coherent strain 

energy and gradient energy, and smoothens both sharp edges and corners of the square ’ 

phase [8]. As a result, an equilibrium shape of the ’ phase is obtained, as shown in the white 

area of Fig. 1. In the figure, the  phase is shown in black. As mentioned earlier, the periodic 

boundary conditions are assumed in this simulation; hence, the initial microstructure has the 

periodic array of the ’ particles aligned along <10> crystallographic directions. Furthermore, 

we consider only one particle and different domains in the ’ phase are not considered. In this 

simulation, order parameter fields, ),( ti r  (i = 1, 2, 3, 4), are simply replaced by ),( tr . 
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3.2. Distribution of equivalent plastic strain and equivalent stress immediately after loading 

 

 Figure 2 shows the simulation results of the spatial distribution of (a) equivalent 

plastic strain and (b) equivalent stress, immediately after loading an external tensile stress of 

160 MPa along the [01] direction. The evolution of the plastic strain is calculated by solving 

Eq. (16) iteratively until the equivalent stress becomes less than the yield stress in the entire 

-phase region. It is found that the plastic strain is concentrated in the  channels that are 

normal to the applied stress; conversely, the stress state is almost uniform in the entire -phase 

region. Although this result is obtained from 2D analysis, it is qualitatively consistent with the 

analysis on dislocation channel preference by N. Zhou et al. [7], i.e., for a negative lattice 

misfit ( 00  ), dislocations exist in the  channels normal to the loading direction under 

external tensile stress. In addition, it is seen that the ’ phase is under a high-stress state 

because the shear of the ’ phase is not considered in this calculation. The macroscopic elastic 

and plastic strains along the external stress are calculated as 0.199% and 0.076%, respectively. 

The instantaneous strain is calculated as 0.275% if it is regarded as the sum of the elastic and 

plastic strains, whereas the experimental instantaneous strain is measured as 0.186% [36]. It is 

difficult to compare the absolute value of the calculated strain with the experimental result 

because it is hard to measure strictly the instantaneous strain in creep tests. 

 

3.3. Creep deformation and ’ rafting 

 

Figure 3 (a) shows the simulation result of the microstructure evolution during creep 

at 1273 K under a tensile stress of 160 MPa along the [01] direction. Time 
t  in Fig. 3 is the 

dimensionless time, as mentioned in Section 2.4. The spatial distribution of equivalent 

inelastic strain 
cp    and equivalent inelastic strain rate 

cp     in the  phase at the 

times corresponding to those of the evolving microstructure are also shown in Figs. 3 (b) and 
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(c), respectively. Here, inelastic strain is defined as the sum of the plastic and creep strains. 

The ’ phase begins to evolve gradually toward the direction normal to the applied stress, as 

shown in Fig. 3 (a) at   s6000t . This microstructure evolution originates from the 

chemical potential difference in different types of  channels; as reported previously, the 

-channel plasticity has a dominant role in this phenomenon [610]. At   s6000t , 

internal stress is greatly relaxed not only by the creep strain introduced in the  phase but also 

by the microstructure evolution of the ’ phase. Figure 3 (c) shows that at   s6000t , the 

strain rate decreases in the entire -phase region compared to that at   s200t . Moreover, 

at   s240006000t , further evolution of the ’ morphology leads to the formation of the 

rafted structure. Fig. 3 (b) shows that the inelastic strain region gradually spreads in the  

phase as the rafting phenomenon progresses. The strain rate increases temporarily at the /’ 

interface as shown in Fig. 3 (c) at   s14400t , when the edges of the ’ phase connect with 

each other near the periodic boundary. After   s24000t , the morphological evolution of 

the ’ phase does not occur in this simulation. 

Figure 4 shows the spatial distribution of the creep strain rate ( c ) and the plastic 

strain rate ( p ) at   s14400t . The increase in the inelastic strain rate at the rafting 

completion time primarily originates from the evolution of the creep strain (time-dependent 

inelastic strain). Hence, the equivalent stress of a large part of the -phase region is still less 

than the yield stress even at the time when the rafting phenomenon occurs. 

In Fig. 5, the creep rate versus time curve obtained from the simulation is shown by 

solid symbols. In the initial stage of creep, the creep rate decreases monotonously by 

approximately 
  s6000t  as a result of the relaxation of the internal stress in the  phase. 

The creep rate increases at 
  s14400t , which corresponds to the rafting completion time. 

Thereafter, the creep rate continues to decrease in the simulation. For comparison, the open 

symbols shown in Fig. 5 denote the creep rate versus time curve of CMSX-4 at 1273 K under 

a tensile stress of 160 MPa along the [001] direction [2]. The time to minimum creep rate in 
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CMSX-4 is assumed to be h200t  as indicated by the arrow in Fig. 5. By fitting the 

rafting completion time, the time step in the simulation and real-time experiment are 

conformed to each other; increase in the creep rate in CMSX-4 at approximately h8t  is 

considered as the rafting completion time in this study. Hence, the diffusion mobility in Eq. 

(2) is assumed to be 211002.3 M  J
1 

mol m
2 

s
1

. The experimental result is 

successfully reproduced by the simulation at the point at which the slopes of the creep rate 

versus time curves at the initial stage of transition creep are consistent with each other. 

However, the rafting completion time appears more apparent in the simulation; increase in the 

creep rate is evident compared to that in the experiment. The accelerating creep stage is not 

reproduced by the simulation and there is a large discrepancy between the simulated and 

experimental curves after h15t . 

 

4. Discussion 

 

Figure 6 shows the evolution of the ( + ’) microstructure obtained by 2D 

phase-field simulation under a tensile stress of 160 MPa along the [01] direction. Figures 6 (a) 

and (b) correspond to results with and without considering the inelastic strain in the  phase 

(results of elasto-plastic and elastic analyses), respectively. It should be noted that rafting 

occurs only with inelastic strain in  channels. Further continuation of the simulation after 

  s24000t  does not lead to any morphological evolution. According to the classical work 

by S. Socrate and D. M. Parks [6], the creep flow in the  phase increases the driving force for 

directional coarsening by one order of magnitude greater than that obtained by elastic analysis. 

In addition, N. Zhou et al. calculated the chemical potential difference between the horizontal 

and vertical channels with respect to the loading direction and demonstrated that the -channel 

plasticity leads to a larger driving force for rafting compared to that derived strictly from the 

elastic modulus mismatch between the  and ’ phases [8]. The simulation results shown in 
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Fig. 6 correspond well with these analyses, indicating that the inelastic strain in the  phase 

plays a dominant role in the rafting phenomenon. However, it has been reported that the 

elastic analysis by a three-dimensional (3D) phase-field simulation eventually leads to the 

formation of a rafted structure [8], a phenomenon that is not observed in this study. This 

inconsistency possibly originates either from the difference in the physical parameters used in 

the simulation or from the difference between 2D and 3D analyses. 

The creep rate versus time curve is used for comparing the result of the simulation to 

that of the creep of CMSX-4, as shown in Fig. 5. As mentioned in Section 3.3, the simulation 

time step and real time are matched by assuming that the rafting completion time (increase in 

the creep rate) in the experiment is approximately h8t . Figure 7 shows the micrographs 

of CMSX-4: (a) before the creep test and (b) crept at 1273 K under a tensile stress of 160 

MPa for 30 h. The initial microstructure exhibits an array of cubic ’ particles that precipitated 

coherently in the  phase, as shown in Fig. 7 (a). The rafted structure is partially observed in 

the crept sample, as indicated by arrows in Fig. 7 (b). In the experiment, it is assumed that the 

inhomogeneous progress of the rafting phenomenon leads to the coexistence of cuboidal and 

rafted structures, as shown in Fig. 7 (b), and blurs the sharp increase in the creep rate, as 

shown in Fig. 5. However, it can be inferred that the rafting phenomenon started before 

h30t , and the increase in the creep rate at approximately h8t  is due to the rafting 

phenomenon. In specific alloy systems, it is often reported that the “S-shaped” creep strain 

versus time curve is clearly observed in the primary stage of creep at high temperatures under 

low stresses [37]. The simulation results in this paper demonstrate that the “S-shaped” creep 

curve is related to the formation of the rafted structure. 

In our simulation, the creep rate continues to decrease, as shown in Fig. 5, and the 

accelerating creep is not reproduced. Figure 8 shows the spatial distribution of equivalent 

stress obtained from the simulation: (a) 
  s24000t  and (b) 

  s180000t . The 

equivalent stress in the  phase decreases with time; this is due to the time evolution of the 
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creep strain in the  phase. The change in the equivalent stress directly affects the creep strain 

increment, which is calculated from Eq. (20), and hence, the creep rate keeps decreasing in 

the simulation except at the rafting completion time. In the simulation, the microstructure 

evolution does not occur after the formation of the rafted structure with ideal lamellas. 

However, it has been reported that the rafted structure collapses in the latter creep stage; the 

-channel thickness increases [2] or the lamellar structure develops waves [35]. These 

phenomena can be attributed to the loss of interfacial coherency, the coalescence of the ’ 

phase, and/or change in the morphological stability of the rafted structure during creep 

[5,11]. If such microstructure evolution is reproduced in a large-scale simulation that 

involves many precipitates and microstructural inhomogeneity (spatial variation of the /’ 

microstructure), the stress state in the  phase would be changed, and the increase in the creep 

rate could be reproduced. The creep rate in the accelerating creep stage is closely related to 

the increase in the /’ lamellar thickness, namely, microstructure evolution [2]. 

 In the phase-field model of dislocations, the sheared region enclosed by a dislocation 

loop is described as a plate with thickness equal to the interplanar spacing [38]. The 

eigenstrain of the plate is given by d2/)(0 nbbn  , where d is the interplanar 

spacing, n is the unit vector of the slip plane, and b is Burgers vector. In a simulation study on 

NiAl single crystal [39], this description has been extended by introducing a new set of local 

dislocation density fields for characterizing the -channel plastic deformation on the 

micrometer scale. It is expected that this model will lead to the quantitative reproduction of 

creep deformation by rigorous treatment of the mobility of plastic strain fields [39]. The 

macroscopic strain evolution model is adopted to describe the -channel plasticity in this 

study. The advantage of our model is that the macroscopic experimental data on -phase 

mechanical properties can be incorporated in strain evolution equations. In this study, by 

referring to the tensile and creep properties previously reported for single-crystal  alloys and 

fitting the simulation results to the experimental data, the creep rate versus time curve is 
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successfully reproduced in the initial stage of the transition creep in CMSX-4. 

A limitation of this model is caused by Eq. (20), which is valid only for strain levels 

up to 0.01. Furthermore, for improved quantitative simulations, a rigorous model that 

incorporates the anisotropic mechanical properties of single-crystal  alloys [1517] may be 

necessary. Our model lacks anisotropic calculations of the inelastic strain evolution, as shown 

in Eqs. (16) and (20). In future studies, 3D analysis may also be necessary. For the same 

volume fraction of the ’ phase, the -channel widths in 2D and 3D analyses differ from each 

other. This difference seems to cause the discrepancy in the diffusion mobility M, namely, 

rafting kinetics. It is expected that a large-scale simulation using our model and having the 

physical parameters of multi-component practical alloys as its input would reproduce the 

creep rate versus time curve of nickel-based superalloys at high temperatures under low-stress 

conditions. 

 

5. Conclusions 

 

 A phase-field model is developed by considering the evolution of both ( + ’) 

microstructure and inelastic strain in the  phase during creep in nickel-based superalloys. 

Inelastic strain is defined as the sum of two components: time-independent inelastic strain and 

time-dependent inelastic strain. To describe the inelastic strain evolution, the classical flow 

and creep theories are adopted in which experimentally reported mechanical properties of 

-phase alloys are incorporated. 

The 2D phase-field simulation reproduces the dislocation channel preference 

immediately after loading the external tensile stress; the inelastic strain is concentrated in the 

 channels normal to the loading direction. By fitting creep response from the simulation to 

the experimental data, the creep rate versus time curve of CMSX-4 is successfully 

reproduced; the slopes of the experimental and simulated curves in the initial stage of 
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transition creep are consistent well with each other. The rafting phenomenon during creep is 

also reproduced. At rafting completion time, increase in the creep rate is observed in the 

simulation, whereas it is obscured in CMSX-4. It is demonstrated that the creep rate increases 

at /’ interfaces when the rafted structure is formed. 
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Captions: 

 

Table 1 Simulation parameters used in this study 

 

Fig. 1 Initial microstructure before creep, prepared using phase-field simulation. Black and 

white areas correspond to the  and ’ phases, respectively. 

 

Fig. 2 Simulation results of the spatial distribution of (a) equivalent plastic strain ( p ) and (b) 

equivalent stress ( ), immediately after loading a tensile stress of 160 MPa along the [01] 

direction. 

 

Fig. 3 Results of 2D phase-field simulation during creep at 1273 K under a tensile stress of 

160 MPa along the [01] direction: (a) ( + ’) microstructure evolution with creep time, (b) 

time evolution of the spatial distribution of equivalent inelastic strain, and (c) time evolution 

of the spatial distribution of equivalent inelastic strain rate. Inelastic strain is defined as the 

sum of plastic strain ( p ) and creep strain ( c ). Time t  is the dimensionless time. 

 

Fig. 4 Simulation results of the spatial distribution of equivalent inelastic strain rate at 

  s14400t , when the rafted structure is formed: (a) equivalent creep strain rate (
c ) and 

(b) equivalent plastic strain rate (
p ). Time 

t  is the dimensionless time. 

 

Fig. 5 Creep rate versus time curves obtained from the 2D phase-field simulation (solid 

symbols) and from the creep on CMSX-4 (open symbols) at 1273 K under a tensile stress of 

160 MPa along the [001] direction [2]. The arrow indicates the time to minimum creep rate in 

CMSX-4. 
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Fig. 6 Evolution of ( + ’) microstructure obtained by 2D phase-field simulation at 1273 K 

under a tensile stress of 160 MPa along the [01] direction: (a) considering inelastic strain in 

the  phase and (b) without considering inelastic strain in the  phase. Black and white areas 

correspond to the  and ’ phases, respectively. Time t  is the dimensionless time. 

 

Fig. 7 Micrographs of CMSX-4: (a) before creep test and (b) crept at 1273 K under a tensile 

stress of 160 MPa for 30 h. White arrows indicate the rafted structure that was partially 

formed during creep. 

 

Fig. 8 Simulation results of the spatial distribution of equivalent stress: (a)   s24000t  

and (b)   s180000t . Time t  is the dimensionless time. 
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